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Abstract: A 10 kV distribution network is a crucial piece of infrastructure to guarantee enterprises’
and households’ access to electricity. Stripping cables is one of many power grid maintenance
procedures that are now quickly expanding. However, typical cable-stripping procedures are manual
and harmful to workers. Although numerous automated solutions for grid maintenance have been
created, none of them focus on cable stripping, and most of them have large dimensions to guarantee
multi-functions. In this paper, a new cable-stripping robot for the 10 kV power system is introduced.
The design of a live working cable-stripping robot that is appropriate for installing insulating rods is
introduced, taking into account the working environment of 10 kV overhead lines and the structural
characteristics of overhead cables. The robot is managed by an auxiliary remote control device. A
cascade PID control technology based on the back propagation neural network (BPNN) method was
developed, as the stripper robot’s whole system is nonlinear and the traditional PID controller lacked
robustness and adaptability in complex circumstances. To validate the structural feasibility of the
cable-stripping robot, as well as the working stability and adaptability of the BPNN–PID controller,
a 95 mm2 cable-stripping experiment are carried out. A comparison of the BPNN–PID controller
with the traditional PID method revealed that the BPNN–PID controller has a greater capacity for
speed tracking and system stability. This robot demonstrated its ability to replace manual stripping
procedures and will be used for practical routine power maintenance.

Keywords: cable-stripping robot; power grid; BP Neural Network; PID; cascade controller

1. Introduction

Power supply systems are playing a bigger role in residential energy consumption,
factory power supply, and other areas as society as a whole develops. People pay more
attention to the stability and dependability of the power supply system, especially factory
users [1,2]. Power outages significantly affect industrial production [3,4]. The stripping
of cable insulation is a crucial activity in live line maintenance, particularly the job of
crimping overhead line conductor tension tubes and connecting drainage lines [5–7]. The
traditional manual cable-stripping approach, which is risky, laborious, physically taxing,
and challenging to learn, is difficult for workers to utilize because of the great strength and
hardness of polyethylene material [8]. The inner metal of overhead cables is easily damaged
during the typical wire-stripping process, which uses mechanical knives and is bad for line
transmission [9]. Furthermore, efficient operations cannot be achieved using the manual
method, as the cutter head must be modified in accordance with cable diameters [10]. In this
paper, a cable-stripping robot for live work is proposed. This robot can increase operational
efficiency and decrease damage to overhead cables’ inner metal, both of which are crucial
for the stability and dependability of power transmission in distribution networks.

In recent years, some scientists have studied stripping tools. Yan created a wire-
stripping tool [11] that consists of a lower transmission component and an upper peeling
portion for the manipulator’s end. The bottom transmission component is connected to the
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motor output shaft to cause the peeling device to rotate, which enables the wire-stripping
operation. The higher peeling part can revolve around a wire’s central axis to cut the
insulation layer of the wire. The lack of an insulation thickness sensing system, however,
prevents correct feeding, which could harm the inner metal or result in a clean cut in the
insulation layer. A wire-stripping robot to perform direct cutting was created [12]. The
cage support, connecting rod assembly, actuator, and lead screw make up the majority of
this wire-stripping robot’s construction. The cage support has twelve cutters installed, and
a motor powers the screw nut mechanism, which moves the connecting rod assembly and
creates tension in the cage support. The cutter then cuts into the wire and strips it along the
wire’s radial direction. A dual arm cooperative robot was suggested by Zhang [13]. An
actuator, insulating mechanism, sensor system, power supply system, and control system
make up the robot’s system. Remote operation can be used to complete the high-voltage
line stripping procedure.

Despite the fact that numerous instruments and robots have been created to main-
tain electricity grids, they are often huge and not specifically designed for cable peeling.
Therefore, a unique small wire-stripping robot needs to be developed. As the operating
stripper robot is a complicated nonlinear system, stable system operation is essential for the
stripper robot to successfully finish the strip. However, it is difficult to carry out adaptive
control using the traditional PID control algorithm; therefore, a brand-new stripping robot
is introduced in this paper, and its adaptive control scheme design is discussed as follows.
The cable-stripping robot system is introduced in Section 2, the design of the cascade
controller based on a BP neural network is discussed in Section 3, and experiments carried
out to validate the robot and its BPNN tuned PID strategy are described in Section 4.

2. Description of the Cable-Stripping Robot

Figures 1 and 2 depict the cable-striping robot’s prototype and general structure, which
were used in the actual operation of a 10 kV line. The robot consists of the main motor-
rotating mechanism, the V-type collet lifting section, and the tool rest lifting component.
The seat of the insulating rod’s quincunx holds the primary motor’s rotating mechanism in
place. The tool rest lifting component is fixed to the collet mounting seat of the main motor
rotating mechanism, and rotates around the overhead cable in the guide collet control box
of the V-type collet lifting mechanism. The tool rest lifting mechanism has an infrared
sensor built in, which enables automatic feed based on sensor detection results, ensuring the
robot’s operational stability. The robot’s interior has specialized wire channels. The control
line is a shielded twisted pair, which has good anti-electromagnetic interference properties.

The key parameters of the cable-stripping robot in stable operation are shown in
Table 1.

Figure 3 depicts the full robotic system, which consists of a cable-stripping robot,
a wireless remote handle, and an insulating rod. The system’s operational steps are as
follows. First install the wire-stripping robot adapter at the end of the insulating rod. Next,
make your way to the area near the overhead line. Radio frequency modules are used
to connect the robot and the supplemental remote handle. The robot is given commands
via the auxiliary remote-control device, which also directs it to carry out the necessary
actions. The robot’s real-time data are sent to the supplementary remote handle through
the wireless modules.

Table 1. Key parameters of the cable-stripping robot.

Name Parameter

Weight 3 kg
Dimensions 230 mm × 160 mm × 210 mm

Maximum continuous working hours 45 min
Maximum communication distance 500 m

Maximum cutting speed 5 cm/min
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3. A Cascade BPNN–PID Controller for the Cable-Stripping Robot
3.1. General Scheme of the Robot Controller

In this design, the controller manages each motor speed separately to achieve precise
control of each robot mechanism and accomplish the wire-stripping task. The PID approach,
regulated by the BP neural network, is used to implement motor control. Figure 4 depicts
the cable-stripping robot’s overall control architecture.
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3.2. BP Neural Network

A three-layer BP neural network comprising a input neurons b hidden neurons and c
output neurons is depicted in Figure 5 [14]. The threshold of the ith neuron in the hidden
layer is δi and the weight from the input layer to the hidden layer is wij. The threshold of
the hth neuron in the output layer is set to θh, and the weight from the hidden layer to the
output layer is set to whi.
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The input of the ith neuron in the hidden layer can be obtained via the weighted sum
of signals in the input layer.

αi =
a

∑
j=1

wij · xj (1)

The input matrix in the hidden layer is expressed as
α1
α2
. . .
αb

 =


w11 w12 . . . w1a
w21 w22 . . . w2a
. . . . . . . . . . . .
wb1 wb2 . . . wba




x1
x2
. . .
xa

 (2)

The input of the output layer can be obtained as follows.

βh =
b

∑
i=1

whi ·mi (3)

where mi is activation functions in the hidden layer.
Activation functions in the output layer are as follows.

yh = f (βh − θh) (4)

Define output error function as

Ek =
1
2

c

∑
h=1

(yh − y∗h)
2

(5)

where yh is the actual output value, and yh* is the expected output value.
In summary, whi first affects βh, then affects yh, and finally affects Ek [15]. Therefore,

the weight correction ∆whi(n) is

∆whi = −η
∂Ek
∂whi

= −η
∂Ek
∂yh
· ∂yh

∂βh
· ∂βh

∂whi
= −η(yh − y∗h) f ′(βh − θh)mi (6)

The derivative of the activation function can be obtained

f ′(βh − θh) = f (βh − θh) · (1− f (βh − θh)) = yh · (1− yh) (7)

The weight increment from the hidden layer to the output layer is

∆whi(n) = −η
∂Ek
∂whi

= −η(yh − y∗h)yh(1− yh)mi (8)

where η is the learning efficiency.
The weight whi(n + 1) from the hidden layer to the output layer after adjustment is

whi(n + 1) = whi(n) + ∆whi(n) (9)

The correction value ∆θh(n) of the threshold from the hidden layer to the output
layer is

∆θh(n) = −η
∂Ek
∂θh

= η(yh − y∗h)yh(1− yh) (10)

After adjustment, the threshold value θh(n + 1) from the hidden layer to the output
layer is

θh(n + 1) = θh(n) + ∆θh(n) (11)
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Similarly, the weight correction ∆wij(n) and threshold correction δi(n) from the input
layer to the hidden layer can be written as follows.

∆wij(n) = −η
∂Ek
∂wij

= −η(yh − y∗h)yh(1− yh)wijmi(1−mi)xi (12)

∆δi(n) = −η
∂Ek
∂δi

= η(yh − y∗h)yh(1− yh)wijmi(1−mi) (13)

wij(n + 1), the weight from the input layer to the hidden layer after adjustment, is

wij(n + 1) = wij(n) + ∆wij(n) (14)

The adjusted threshold δi(n + 1) from the input layer to the hidden layer is

θi(n + 1) = θi(n) + ∆θi(n) (15)

Weight and threshold corrections are iterated until the end of the iteration.

3.3. Cascade PID Controller Tuned via BP Neural Network

According to tracking errors, the BP neural network modifies the PID parameters [16–18].
Figure 6 depicts the BP neural network’s cascade PID control principle.
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The weight whi from the input layer to the hidden layer, the weight wij from the
hidden layer to the output layer, and the learning efficiency η must all be determined
in order to adjust the cascade PID controller using BPNN. The neural network layout in
Figure 6 is condensed to nine input neurons and four output neurons in order to enhance
the algorithm’s convergence. The layers that make up the input are e(k), e(k− 1), e(k− 2),
y(k), y(k− 1), r(k), u(k− 1), the hidden layer and output layer weight coefficient (k− 2),
and the hidden layer and output layer weight coefficient (k− 1); the layers that make up
the output are u(k), kp, ki and kd [19].

The following describes how the BPNN tuned cascade PID control strategy iterates.

(1) BPNN calculates inputs and outputs of each layer, and finally takes the output neuron
of the output layer as the parameters kp, ki, and kd of the PID algorithm;

(2) The controller outputs u(k) through PID calculation, and finally the robot outputs y(k);
(3) Calculate the weight whi(k + 1) from the input layer to the hidden layer and the weight

wij(k + 1) from the hidden layer to the output layer;
(4) Calculate output quantities kp, ki, and kd in the output layer;
(5) Calculate the output control quantity u(k) of BPNN through the PID cascade controller;
(6) Set k = k + 1 and return to step (2).
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4. Experiments and Analysis

After designing the mechanical system and control system of the cable-stripping
robot, the experimental setup of the cable-stripping robot is built, as shown in Figure 7.
The 95 mm2 cross-sectional area wire utilized in these experiments is frequently used in
distribution networks. In Figure 8, the experimental procedure is displayed.
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Figure 9 depicts how the stripped cable skin appeared using different controllers. Evi-
dently, the robot’s cascade BPNN–PID controller provided superior stripping performance
compared with the traditional cascade PID algorithm; Figure 9b shows less cable skin
damage as a result.
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Figure 9. Stripped appearance using different controllers.

The experimental test of the robot sampled the motor speed of each mechanism. The
expected speed of the rotating mechanism of the main motor was set at 28.6 rpm. Figure 10
shows the response curve of the cascaded traditional PID algorithm and the cascaded
BPNN–PID method. It can be seen from the figure that the speed response curve range
of the cascade PID output was [15, 40] rpm, and the maximum error floating rate was
47.5%; in contrast, the speed response curve range of the cascade BPNN–PID output was
[23, 33] rpm, and the maximum error floating rate was 19.5%. This further proves the
superior performance and strong robustness of the BPNN adjustment algorithm.
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Figure 10. Responses of main motor rotating mechanisms.

The V-type collet was expanded and the cable was clamped after adjusting the motor
speed of the V-type collet lifting mechanism to 28.6 rpm. The speed response curves for the
motor using the two controllers are shown in Figure 11, where it can be seen that the output
response curve range of the BPNN–PID controller was [25, 30] rpm, and the maximum error
floating rate was 12.5%, whereas the output range of the traditional PID response curve
was [22, 34] rpm, and the maximum error floating rate was 23.1%. This also indicates that
although the robot’s response using the BPNN–PID controller was better than that using
the traditional PID controller, this advantage was not obvious. This is because in general,
the actual speed output under the two controllers often fluctuated during the big gear
rotation. When the tool rest and V-chuck lifting mechanism increased with the rotation of
the gear, the speed was slightly slower. The gravitational effect made the velocity increase
after the peak period until it finally reached the ideal level, while the external disturbance
was relatively small.
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Figure 11. V-type collet-lifting mechanism actual speed outputs.

The motor speed of the tool rest lifting mechanism was set at 5.7 rpm. The speed
response over time in Figure 12 shows that the overall process of the tool rest lifting
was relatively stable. The output speed range of the cascade BPNN–PID method was
[5.1, 6.2] rpm, and the maximum error floating rate was 10.5%, whereas that of cascade PID
method was [4.9, 6.9] rpm. The maximum error fluctuation rate was 21.1%, which further
indicates that the cascade BPNN–PID method is superior to the cascade PID method in
terms of fluctuation and velocity response. The cascade BPNN–PID controller was more
efficient than the traditional cascade PID controller.
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Figure 12. Tool rest lifting mechanism actual speed outputs.

We performed 25 cable-stripping tests using the cascade BPNN–PID algorithm, mea-
suring the length of peeled wire, the time it took to strip the cable, and the degree of cable
damage. Table 2 displays the results of the wire-stripping test. The findings of 25 group
tests reveal the stripping times of five group lengths (5 cm, 10 cm, 15 cm, 20 cm, and
25 cm) with an average stripping speed of 6.25 cm/min. The system’s stability could be
preserved as a result of the moderate stripping pace. At the same time, analysis of the
damage situation indicated that the wire stripper would also be slightly damaged. This
was because the high voltage cable was excessively bent during installation, resulting in
a delay in tool adjustment; this needs to be improved in the future. However, analysis of
the task completion rate indicated that the integrity rate reached higher than 70%, further
attesting to the robot’s high reliability; in addition, the cable damage effect showed that the
damage was tolerable.

Table 2. Test data for wire-stripping experiments.

Serial Number Stripping Length/cm Stripping Time Cable Damage

1 5 48′′ Intact
2 5 50′′ Intact
3 5 52′′ Slight damage
4 5 55′′ Slight damage
5 5 49′′ Intact
6 10 1′48′′ Intact
7 10 1′52′′ Slight damage
8 10 1′50′′ Intact
9 10 1′59′′ Intact

10 10 1′46′′ Intact
11 15 2′25′′ Intact
12 15 2′23′′ Intact
13 15 2′26′′ Intact
14 15 2′21′′ Slight damage
15 15 2′27′′ Intact
16 20 3′15′′ Intact
17 20 3′08′′ Intact
18 20 3′10′′ Intact
19 20 3′12′′ Slight damage
20 20 3′08′′ Intact
21 25 4′05′′ Slight damage
22 25 4′02′′ Slight damage
23 25 3′59′′ Intact
24 25 4′01′′ Intact
25 25 3′59′′ Intact
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5. Conclusions

In this paper, a cable-stripping robot for distribution lines was designed; the robot
is light in weight, small in size, and easy to carry, which is helpful for power workers
who perform outdoor work. To improve the working stability of the cable-stripping robot,
its cascade BPNN–PID control scheme was investigated, and experiments were carried
out to assess its performance. The cable-stripping robot’s tests were used to assess the
mechanical structure’s logic, the system’s hardware and software, and the adaptive control
algorithm’s dependability. The cable-stripping robot helped increase live working efficiency
and advanced smart grid development.

Author Contributions: Conceptualization, J.Z. and Z.H.; mechanism, Z.W.; software, S.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52275285; and the Science and Technology planning projects of Changzhou, grant number
CE20215052.

Data Availability Statement: Data presented in this study are available on request from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Menendez, O.; Auat Cheein, F.A.; Perez, M.; Kouro, S. Robotics in power systems: Enabling a more reliable and safe grid. IEEE

Ind. Electron. Mag. 2017, 11, 22–34. [CrossRef]
2. Katrasnik, J.; Pernus Franjo Likar, B. A survey of mobile robots for distribution power line inspection. IEEE Trans. Power Deliv.

2010, 25, 485–493. [CrossRef]
3. Takaoka, K.; Yokoyama, K.; Wakisako, H.; Yano, K.; Higashijima, K.; Murakami, S. Development of the fully-automatic live-

line maintenance robot-Phase III. In Proceedings of the 2001 IEEE International Symposium on Assembly and Task Planning
(ISATP2001), Assembly and Disassembly in the Twenty-First Century (Cat. No. 01TH8560), Fukuoka, Japan, 29 May 2001; IEEE:
Piscataway, NJ, USA, 2001; pp. 423–428.

4. Park, J.Y.; Cho, B.H.; Byun, S.H.; Lee, J.K. Development of cleaning robot system for live-line suspension insulator strings. Int. J.
Control Autom. Syst. 2009, 7, 211–220. [CrossRef]

5. Sawada, J.; Kusumoto, K.; Maikawa, Y.; Munakata, T.; Ishikawa, Y. A mobile robot for inspection of power transmission lines.
IEEE Trans. Power Deliv. 1991, 6, 309–315. [CrossRef]

6. Nakashima, M.; Yano, K.; Maruyama, Y.; Yakabe, H. The hot line work robot system “Phase II” and its human-robot interface
“MOS”. In Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot
Interaction and Cooperative Robots, Pittsburgh, PA, USA, 5–9 August 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 2,
pp. 116–123.

7. Gonçalves, R.S.; Carvalho, J. A mobile robot to be applied in high-voltage power lines. J. Braz. Soc. Mech. Sci. Eng. 2014, 37,
349–359. [CrossRef]

8. Tang, M.; Gu, Y.; Wang, S.; Liang, Q. DCBot: An autonomous hot-line working robot for 110 kV substation. Robot. Auton. Syst.
2019, 119, 247–262. [CrossRef]

9. Zhang, Y.; Wang, T.; Li, J.; Yao, Y.; Zhou, X. Research on new type of live working robot system for overhead transmission lines. J.
Phys. Conf. Ser. 2018, 1074, 012040. [CrossRef]

10. Yano, K.; Maruyama, Y.; Morita, K.; Nakashima, M. Development of the semi-automatic hot-line work robot system “Phase II”. In
Proceedings of the ESMO’95—1995 IEEE 7th International Conference on Transmission and Distribution Construction, Operation
and Live-Line Maintenance, Columbus, OH, USA, 29 October–3 November 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 212–218.

11. Yan, Y.; Jiang, W.; Zou, D.; Quan, W.; Li, H.J.; Lei, Y.; Zhou, Z.F. Research on mechanism configuration and coordinated control for
power distribution network live working robot. Ind. Robot. 2020, 47, 453–462. [CrossRef]

12. Yu, Y.; Zhou, Z.; Liu, W.; Hu, S.; Xu, X. The Design and Simulation Analysis of Distribution Network Stripper Structure. J. Phys.
Conf. Ser. 2020, 1486, 062035. [CrossRef]

13. Zhang, L.; He, Y.; Xu, S.; Zhang, T.; Guo, J.; Wang, M. Mechanical design and finite element analysis of live working robot for
10kV distribution power systems. Procedia Comput. Sci. 2021, 183, 331–336. [CrossRef]

14. Guo, C.; Song, Q.; Cai, W. A Neural Network Assisted Cascade Control System for Air Handling Unit. IEEE Trans. Ind. Electron.
2007, 54, 620–628. [CrossRef]

15. Wu, X.; Chen, H.; Wang, Y.; Shu, L.; Liu, G. BP neural network based continuous objects distribution detection in WSNs. Wirel.
Netw. 2016, 22, 1917–1929. [CrossRef]

http://doi.org/10.1109/MIE.2017.2686458
http://doi.org/10.1109/TPWRD.2009.2035427
http://doi.org/10.1007/s12555-009-0207-7
http://doi.org/10.1109/61.103753
http://doi.org/10.1007/s40430-014-0152-0
http://doi.org/10.1016/j.robot.2019.07.008
http://doi.org/10.1088/1742-6596/1074/1/012040
http://doi.org/10.1108/IR-02-2020-0036
http://doi.org/10.1088/1742-6596/1486/6/062035
http://doi.org/10.1016/j.procs.2021.02.078
http://doi.org/10.1109/TIE.2006.888809
http://doi.org/10.1007/s11276-015-1074-1


Micromachines 2023, 14, 689 12 of 12

16. Auer, P.; Burgsteiner, H.; Maass, W. A learning rule for very simple universal approximators consisting of a single layer of
perceptrons. Neural Netw. 2008, 21, 786–795. [CrossRef] [PubMed]

17. Wang, W.; Tang, R.; Li, C.; Liu, P.; Luo, L. A BP neural network model optimized by Mind Evolutionary Algorithm for predicting
the ocean wave heights. Ocean. Eng. 2018, 162, 98–107. [CrossRef]

18. Zhou, Y.; Zhang, Y.; Yang, T. Research on load simulator control strategy based on BP neural network and PID method. MATEC
Web Conf. 2020, 306, 03002. [CrossRef]

19. Chen, M.R.; Chen, B.P.; Zeng, G.Q.; Lu, K.D.; Chu, P. An adaptive fractional-order BP neural network based on extremal
optimization for handwritten digits recognition. Neurocomputing 2020, 391, 260–272. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.neunet.2007.12.036
http://www.ncbi.nlm.nih.gov/pubmed/18249524
http://doi.org/10.1016/j.oceaneng.2018.04.039
http://doi.org/10.1051/matecconf/202030603002
http://doi.org/10.1016/j.neucom.2018.10.090

	Introduction 
	Description of the Cable-Stripping Robot 
	A Cascade BPNN–PID Controller for the Cable-Stripping Robot 
	General Scheme of the Robot Controller 
	BP Neural Network 
	Cascade PID Controller Tuned via BP Neural Network 

	Experiments and Analysis 
	Conclusions 
	References

