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Abstract: The bit density is generally increased by stacking more layers in 3D NAND Flash. Gate-
induced drain leakage (GIDL) erase is a critical enabler in the future development of 3D NAND Flash.
The relationship between the drain-to-body potential (Vdb) of GIDL transistors and the increasing
number of layers was studied to explain the reason for the self-adaption of the GIDL erase. The
dynamics controlled by the drain-to-body and drain-to-gate potential contribute to the self-adaption
of the GIDL erase. Increasing the number of layers leads to a longer duration of the maximum value
of Vdb (Vdb_max), combined with the increased drain-to-gate potential, which enhances the GIDL
current and further boosts channel potential to reach the same value at different positions of the
NAND string. We proposed a method based on the correlation between the duration of Vdb_max

and the number of layers to obtain the limited layers of the GIDL erase. The limited layers allowed
are more than four times the number of layers used in the current simulation. Combining the novel
method of dividing the channel into multi-regions with the asynchronous GIDL erase method will be
useful for further stacking more layers in 3D NAND Flash.

Keywords: 3D NAND Flash; GIDL erase; self-adaption; drain-to-body potential

1. Introduction

With the continuous development of smartphones, 5G, artificial intelligence, and cloud
computing, the demand for higher bit density in the market has grown rapidly. The bit
density is generally increased by stacking more layers in 3D NAND Flash [1–9]. However,
the connection scheme of using a body contact spacer (BCS) between channel polysilicon
and the array common source line faces challenges during the process of removing the
bottom of the gate stack, especially when stacking more than two stacks due to the overlap
problem [10]. The novel connection scheme of the channel-hole sidewall ONO butting
(CSOB) scheme was proposed to boost the storage density by using the sidewall connection
scheme between channel polysilicon and the array common source line [10]. The erase
method was changed from body erase in the BCS scheme to GIDL erase in the CSOB
scheme. Therefore, holes needed to be generated by gate-induced drain leakage (GIDL)
to increase the channel potential and achieve the erase operation. The first challenge for
GIDL erase is the control of the doping profile in GIDL transistors, especially when it is
first used in Bit Cost Scalable (BiCS). Since the manufacturing process of the bottom select
gate is formed prior to the memory cell, the memory cell requires processes with a high
thermal budget to achieve a large memory window and better performance. However,
this leads to the problem of doping in the bottom select gate, as it can spread from the
heavily doped source diffusion during the high thermal budget process [11]. To solve
this problem, the manufacturing process of the bottom select gate was changed in Pipe-
BiCS, placing it after the memory cell and adopting a shallower and steeper select gate
channel doping profile with the low thermal budget [12]. Since then, the GIDL erase has
faced challenges related to the variability and uniformity of the erase potential due to the
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indirect bias of GIDL erase caused by the potential drop for band-to-band tunneling. Caillat
et al. proposed an optimization method for GIDL erase with dual-side (bottom select
gate side and top select gate side) GIDL injection, which led to better erase effectiveness
and more effective tail control of the erase threshold voltage distribution for variability
improvement [13]. Malavena et al. studied the GIDL erase dynamics process in the
vertical channel NAND Flash, focusing on the increase in channel potential, and proposed
a compact model for the dynamic process of the GIDL erase to explore the directions
for continuous optimization [14,15]. Nowadays, most of the advanced manufactured 3D
NAND Flash structures in production use the GIDL erase method. The industry expects
that the cost-effective manufacturing of 3D NAND Flash can achieve over 1000 stack
layers via innovations in processes and novel materials [16]. Meanwhile, combining these
innovative solutions with file-system and firmware-level optimizations can greatly improve
memory performance and expand the application market of 3D NAND Flash memory [17].
GIDL erase is a critical enabler for the future development of 3D NAND Flash. However,
the challenge of GIDL erase is the limitation layer, as more holes are required to boost
the channel potential with stacking more layers. This has become a potential risk for the
realization of thousands of layers in 3D NAND Flash.

In this work, we have investigated the correlation between GIDL erase and the number
of layers (NLayers) based on TCAD simulation. The relationship between the drain-to-body
potential (Vdb) and NLayers was studied. We found self-adaption of the GIDL current (Igidl)
with an increase in the NLayers. As the NLayers increased, the duration of the maximum
value of Vdb (Vdb_max) also increased, resulting in a longer duration of maximum GIDL
current. The self-adaption of the GIDL erase is achieved through the dynamic control by
the drain-to-body and drain-to-gate potential. At the end of the duration of Vdb_max, which
leads to maximum Igidl, the same potential can be reached at different positions of the
NAND string. The proposed method enables the determination of the limited number of
layers for the GIDL erase based on the correlation between the duration of Vdb_max and
the number of layers. Finally, we propose to divide the channel into multi-regions and
implement an asynchronous GIDL erase method to overcome the limitation of GIDL erase
and enable the stacking of more layers in 3D NAND Flash.

2. Simulations

Figure 1a shows the schematic of the 3D NAND Flash structure. The Synopsys Sentau-
rus Sdevice simulator (Synopsys, Mountain View, CA, USA) was used for the simulation.
The simulation structure of this device is shown in Figure 1b, with one top select gate (TSG),
one bottom select gate (BSG), and more than two dummy cells (DMY) between the select
gate and memory cells, and the number of memory cells will be dynamically adjusted
according to the NLayers. The TSG and BSG function as GIDL transistors. The parameters
of the simulation structure are based on the current technology products. Furthermore, the
drift–diffusion model, Coulomb scattering mobility model, thermionic emission, Shockley–
Read–Hall recombination, and band-to-band-tunneling (BTBT) model were introduced in
the polysilicon channel, which was well-calibrated based on our previous works [18] and
GIDL current experiments. The inset shows the detailed structure of the GIDL transistors.
The BTBT current occurs in the virtual PN junction around the GIDL transistors, and it fol-
lows the channel conduction direction through the BTBT path. Meanwhile, the electric field
in the virtual PN junction is controlled by the drain-to-gate potential and the drain-to-body
potential. GIDL transistors at the top and bottom of the strings can be applied as a negative
bias to the gate relative to the drain. The erase voltage can be transferred to the channel via
hole injection generated by the BTBT during the erase operation.
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Figure 1. (a) Schematic diagram of 3D NAND Flash structure; (b) schematic diagram of TCAD
simulation structure: the inset shows the detailed structure of the GIDL transistor, and the gate stack
consists of the tunnel layer, trap layer, and block layer, respectively.

3. Results and Discussion

Figure 2 shows the GIDL current during the GIDL erase operation for various NLayers.
There is a significant dependence of the Igidl on the NLayers, which can be divided into four
regions. Region I is before Igidl reaches the maximum value. Region II is before the voltage
of GIDL transistors starts to increase (Trise), Region III is before the end time of the ramp-up
of the drain voltage, and Region IV is the main erase region with constant erase voltage. In
Region I, the maximum Igidl value for larger NLayers occurs later than the maximum value
for small NLayers. As the NLayers increase, there is a time delay in the appearance of the
maximum value of the Igidl. Once the Igidl reaches the maximum value, it rapidly begins
to decrease. In Region II, the larger NLayers exhibit a steeper decrease in the Igidl from the
maximum value. In Region III, the Igidl remains relatively constant after the voltage of the
GIDL transistors starts to increase. The larger NLayers result in a higher Igidl. In Region IV,
the Igidl also decreases rapidly, which shows an obvious dependence on the NLayers. Finally,
the GIDL current tends to be the same value regardless of the NLayers in the main erase
region. The reason why the Igidl depends on the number of layers is that the capacitance
of the channel increases as more layers are stacked, requiring more holes to be injected to
boost the channel potential for GIDL erase. Then, we extracted the maximum value of the
Igidl for each of the NLayers. As shown in Figure 3, there is a clear correlation between the
maximum value of Igidl and the NLayers in a log scale. The Igidl generated by the BTBT has
increasing self-adaption with an increase in the NLayers.
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Figure 3. The correlation between the maximum value of the Igidl and the NLayers extracted using
Sentaurus TCAD.

The electric field that drives the BTBT in the junction is controlled both by the drain-to-
gate potential (Vdg) and the drain-to-body potential (Vdb). In the experimental test, the Vdg
can be easily monitored. However, monitoring the changes in the drain-to-body potential
is difficult. To investigate the reason for the self-adaption of Igidl with increasing NLayers,
we used Sentaurus TCAD simulation tools to study the relationship between Vdb and the
NLayers. Figure 4 shows the dependence of Vdb on the NLayers. Before Vdb reaches the
maximum value (Vdb_max), the trend of Vdb is independent of the NLayers. This is due to
the small Igidl, resulting in a slower rise in the channel potential in the body area after the
hole injection compared to the ramp speed of the drain voltage. However, once Vdb reaches
Vdb_max, the duration of Vdb_max exhibits a clear dependence on the NLayers. The increase in
the NLayers leads to a longer duration of Vdb_max. The appearance of Vdb_max is attributed
to the equal rise rate of the GIDL transistors’ body potential and the external drain voltage
ramp speed (shown in Figure 5), which allows Vdb to remain in the Vdb_max state. This can
be explained by the fact that the capacitance of the channel increases with an increase in
the NLayers, which requires a larger Igidl to affect the far-end channel potential and needs
more time to meet the demand of Igidl. Therefore, keeping Vdb at Vdb_max between the
drain-to-body and Vdg will create a further increase, promoting a significant increase in the
GIDL current to meet the demand for higher layers.
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Figure 5. The correlation between drain and body potential.

Figure 6 illustrates the band diagram at various times with the Vdb_max. With an
increase in time, a larger Vdg reduces the BTBT distance, leading to a higher Igidl. At the
final time of Vdb_max, Igidl reaches its maximum value. After that, Vdb starts to decrease
sharply from the maximum value, and this region is closely related to the NLayers. The
final Vdb increases with the number of layers. At this time, the Vdg remains constant, and
the junction is affected by Vdb to dynamically generate Igidl to meet the demand for a
higher number of layers. The dynamics controlled by the drain-to-body and drain-to-gate
potential contribute to the self-adaption of the GIDL erase, which enables one to stack more
layers in 3D NAND Flash.
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Next, the channel potential at different positions of the string during the GIDL erase
operation was studied, as shown in Figure 7. Malavena et al. assumed that the channel
potential remains as a constant channel potential due to uniform hole accumulation [15]. To
investigate the channel potential position dependence of the GIDL erase, we used a verified
channel length longer than 5 um. However, our results show an interesting phenomenon.
There is an apparent channel position dependence on the channel potential before the GIDL
current reaches its maximum value. When the GIDL current reaches the maximum value,
the channel potential starts to reach the same potential, and Igidl becomes large enough to
boost the total channel potential. Then, the channel potential and the position potential of
the GIDL transistors become the same. It is clear that the Igidl reaches the maximum value
during the GIDL erase process, and the same potential can be reached at different positions
along the NAND string.
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Figure 7. The channel potential at different positions of string during the GIDL erase operation.

To explore the limitation of the maximum stacking layers along the NAND string of
the GIDL erase operation, it is essential to determine the time when maximum Igidl occurs
to achieve a consistent channel potential at different positions. Based on the relationship
between Vdb and the NLayers, as the NLayers increase, the duration of Vdb_max also increases,
and the subsequent Igidl is determined by Vdg. The maximum Vdg value is determined by
the ramp of the GIDL transistor voltage, which affects the Vdg voltage jointly with the drain
or source of the GIDL transistors. Therefore, the time when the GIDL transistor voltage
increases determines the longest duration of Vdb_max during the GIDL erase operation. By
extracting the duration of Vdb_max for lower layers and the longest duration of Vdb_max, a
linear correlation between the duration of Vdb_max and the number of layers is obtained.
In order to verify the extensibility of the correlation, we simulated the GIDL erase by
stacking more layers, and extracted the duration of Vdb_max, finding that it still follows this
correlation (red square). Finally, the limited layers of the GIDL erase were obtained using
the proposed method, as shown in Figure 8. The limited layers allowed for more than
four times the number of layers used in the current simulation. To achieve stacking more
layers in 3D NAND Flash, the GIDL erase method needs further optimization. The current
GIDL erase method erases the entire channel simultaneously, that is, the synchronous GIDL
erase operation. Therefore, reducing the capacitance of each erase will effectively break the
limitation of the synchronous GIDL erase method. By dividing the channel into multiple
regions and applying the asynchronous GIDL erase method, the stacking of more layers in
3D NAND Flash can be achieved.
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4. Conclusions

The bit density is generally increased by stacking more layers in 3D NAND Flash.
Gate-induced drain leakage (GIDL) erase is a critical enabler for the future development
of 3D NAND Flash. We have investigated the correlation between GIDL erase and the
number of layers based on TCAD simulation. By studying the relationship between the
drain-to-body potential of GIDL transistors and increasing the number of layers, we have
explained the reason for the self-adaption of the GIDL erase. The self-adaption of the
GIDL erase is achieved through the dynamic control via the drain-to-body and drain-to-
gate potential. As the number of layers increases, the duration of Vdb_max also increases,
which, in combination with increased drain-to-gate potential, enhances the GIDL current
dynamically. This leads to the same potential being reached at different positions of the
NAND string. Based on the correlation between the duration of Vdb_max and the number of
layers, we obtained the limited layers of the GIDL erase using the proposed method. The
limited layers allowed are more than four times the number of layers used in the current
simulation. Furthermore, by combining the novel method of dividing the channel into
multi-regions using the asynchronous GIDL erase method, 3D NAND Flash can stack more
layers. We expect that the GIDL erase will contribute to the further development of 3D
NAND Flash.
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