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Abstract: Recent studies have shown that the composite of semiconductor photocatalytic materials
and g-C3N4 can effectively inhibit photocatalytic carrier recombination and enhance the adsorption
performance of the composite photocatalytic materials, so that the composite photocatalyst has
stronger photocatalytic activity. In this paper, three kinds of graphitic carbon nitride photocatalyst
g-C3N4 with different morphologies were prepared using the same precursor system by the chemical
cracking method. After characterization and application, the sample with the most significant
photocatalytic activity was selected and the g-C3N4/BiVO4 heterostructure was synthesized by the
simple solvent evaporation method, then the photocatalytic experiment was carried out. The results
show that, when the content of BiVO4 in the composite sample is 1%, the photocatalytic activity of
RhB was the highest, and the degradation rate could reach 90.4%. The kinetic results showed that the
degradation of RhB was consistent with the quasi-primary degradation kinetic model. The results of
the photocatalytic cycle experiment show that the photocatalytic performance remains unchanged
and stable after four photocatalytic cycles. The existence of a g-C3N4/BiVO4 binary heterojunction
was confirmed by UV/Visible diffuse reflection (UV-DRS) and photoluminescence (PL) experiments.
Owing to the Z-type charge process between BiVO4 and g-C3N4, efficient carrier separation was
achieved, thus enhancing the photocatalytic capacity. This work provides a new idea for the study of
heterojunction photocatalytic materials based on g-C3N4.

Keywords: BiVO4; g-C3N4; photocatalytic

1. Introduction

Semiconductor photocatalysts have become increasingly well known in recent decades.
They have been paid attention because of their advantages, such as being green, no pollu-
tion, high efficiency, energy saving, stability, and low price. Photocatalysis technology has
shown excellent performance in improving the environment, making it one of the research
hotspots in pollutant degradation [1–4]. Currently, the most used catalysts are TiO2 [5–7]
and ZnO [8–11], among others. However, their catalytic performance is not efficient. In
visible light, the utilization rate of light is low, which limits its application in real life
scenarios. Therefore, a new type of photocatalyst needs to be prepared to compensate for
the shortcomings of conventional catalysts.

g-C3N4 [12–14] has the advantages of narrow band gap, low cost, acid and alkali
resistance, and environmental protection. Therefore, g-C3N4 has become a hot research
topic in recent years, although monomeric g-C3N4 has some defects, such as low utiliza-
tion of sunlight and fast photogenerated carrier complexation. These defects hinder its
application in the process of environmental treatment. In order to improve the defects
existing in g-C3N4, as well as to improve the photocatalytic activity of g-C3N4, modification
research has been carried out. Different methods such as doping [15–17], morphology
control [18,19], and surface loading [20] can be used.
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BiVO4 [21–23] is a potential functional semiconductor material discovered in recent
years. Thanks to its advantages such as a wide source of constituent elements; excellent
physical, chemical, and thermal stability; being non-toxic and harmless; and narrow band
gap, BiVO4 can be excited to generate photogenerated electrons and holes under visible
light, so as to realize more effective utilization of solar energy. It has recently become one of
the hot spots in the field of photocatalysis. However, the electrons in BiVO4 move at a slow
rate, resulting in about 60–80% of the resulting charge carriers recombining before they
reach the surface. The photogenerated electron hole pairs in BiVO4 materials are difficult
to separate and easy to recombine. At present, no single BiVO4 material can achieve its
theoretical photoelectric conversion efficiency. However, owing to the particularity of
the band structure, the heterojunction composite semiconductor photocatalyst can greatly
improve the separation efficiency of electron–hole pairs and produce responses to most
spectral frequencies, so as to improve the photocatalytic efficiency.

To sum up, three kinds of g-C3N4 with different morphologies were prepared using
urea as the precursor system. The best morphology was g-C3N4 by B characterization and
performance analysis, the Z-type heterojunction GCB composite samples were successfully
prepared by combining with BiVO4, and its catalytic activity was determined by the
photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The
photocatalytic reaction mechanism is also presented. This study provides a reference for
the further development and reference of g-C3N4.

2. Materials and Methods
2.1. The Preparation of g-C3N4

Here, 10 g of melamine was placed into an alumina crucible to form a semi-closed
space. The crucible was placed in a muffle furnace under the protection of an air atmosphere;
after heating to 500 ◦C for 2.5 h, deamination polymerization was carried out. After cooling
to room temperature, yellow bulk g-C3N4 samples were obtained, named g-C3N4-b.

2.2. The Preparation of Sheet g-C3N4

The g-C3N4-b was ground into powder, 10 mL of 2 mol/L H3PO4 was added, and it
was stirred at room temperature for 30 min, followed by ultrasonic stirring for 30 min. The
mixture was transferred to a reaction kettle, heated at 160 ◦C in a constant temperature blast
drying oven for 4 h, then cooled to room temperature, cleaned three times with deionized
water and anhydrous ethanol, and dried for 8 h to obtain the sheet g-C3N4 sample—named
g-C3N4-s.

2.3. The Preparation of g-C3N4 Tube

The g-C3N4-s was ground into powder and 10 mL of 2 mol/L NH3·H2O was added.
It was dispersed uniformly by ultrasound for 30 min, then transferred to a reaction kettle,
stored at 180 ◦C in a constant temperature blast oven for 4 h, cooled to room temperature,
and washed three times with deionized water and anhydrous ethanol to obtain the tubular
g-C3N4 sample—named g-C3N4-t.

2.4. Three Kinds of g-C3N4 Morphologies Were Evaluated in Photocatalytic Experiments

The photocatalytic degradation of photocatalysts was evaluated using rhodamine B as
an organic dye model. Here, 0.5 g g-C3N4-b, g-C3N4-s, and g-C3N4-t were weighed into
three beakers and 100 mL of 20 mg/L RhB solution was added to each beaker; RhB solution
was used as the source of pollution and the samples were magnetically stirred in the dark
for 30 min. After adsorption equilibrium, a xenon lamp of 350 watts was irradiated as the
visible light source. The absorbance of 5 mL samples was measured every 30 min. The
maximum absorption wavelength was 553 nm and it was measured with an ultraviolet
visible spectrophotometer.

Degradation rate of RhB =
Ct

C0
× 100% (1)
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where Ct is the concentration of RhB measured after a period of reaction and C0 is the
concentration at the beginning of the reaction. The degradation rate of Rhodamine for
the three samples was calculated, and the sample with the highest degradation rate was
selected for reserve.

2.5. The Preparation of BiVO4

Here, 0.25 g Bi (NO3)3·5H2O was dissolved in 10 mL of 2 mol/L H3PO4 solution
and 0.12 g of NH4VO3 was dissolved in 10 mL of 2 mol/L NH3·H2O solution. The two
were slowly mixed so that they were stirred evenly, and the pH of the mixed solution was
adjusted to 7. After the above process, a uniform clear yellow suspension was formed. The
solution was transferred to the reactor and kept in a constant temperature blast oven at
160 ◦C for 8 h. It was then cooled to room temperature, subjected to high-speed centrifu-
gation, washed several times with deionized water and anhydrous ethanol, and dried at
60 ◦C for 8 h, thus BiVO4 was obtained.

2.6. The Preparation of Z-Type Heterojunction g-C3N4/BiVO4

The g-C3N4 sample with the best 5 g degradation effect was dissolved in 10 mL of
ethanol solution, and the g-C3N4 was evenly dispersed by ultrasonic treatment. BiVO4 with
mass fractions of 0.3%, 0.5%, 1%, 3%, and 5% was added. After continuous agitation, the
pH of the solution was adjusted to 7. Cooling to room temperature, high-speed centrifugal
treatment, centrifugation with deionized water and anhydrous ethanol, washing for several
times, and drying at 60 ◦C for 8 h were carried out to obtain Z-type heterojunction g-
C3N4/BiVO4, named GCB-x (x = 0.3%, 0.5%, 1%, 3%, and 5%, respectively). When testing
its photocatalytic performance, the experimental steps are the same as in Section 2.4.

2.7. Characterization Method

The information of substance composition and crystal structure can be obtained
by XRD characterization; the model of XRD equipment used in this study is XDR-6100
and the scanning range is 10◦–80◦. The infrared spectrometer is IS10 with a scanning
range of 500–4000 cm−1. SEM uses secondary electronic signal imaging to observe the
surface morphology and structure of the sample. This article is used for research. XPS can
determine the composition and state of atoms or ions in the surface layer of an unknown
sample. The XPS used in this study are AXIS ULTRA devices from Shimadzu, Japan. The
instrument used was a Nicolet 5700 infrared spectrometer to test the molecular structure
inside the material. In the test process, KBr and the tested sample were mixed and ground
at a ratio of 100:1, and then pressed to test the transmittance. Photoluminescence (PL)
is the process by which a substance absorbs a photon and radiates it back. PL spectrum
can characterize the defects, impurities, and luminescence properties of semiconductor
materials. Fluoro Max-4p is the PL spectrometer used in this study, with a Xenon lamp with
an excitation source of 150 W and excitation wavelength of 425 nm. A UV-4100 UV/Visible
spectrophotometer (Hitachi, Tokyo, Japan) was used to obtain the visible diffuse spectra
(UV/Vis diffuse reflectance spectra, DRS) to test the absorbance change in the powder
sample with wavelength change; the scanning range is 200 nm–800 nm.

2.8. Evaluation of the Photocatalytic Mechanism

The light absorption characteristics of the samples were studied by solid UV/Vis DRS.
This method was used to analyze the displacement of the side band and the change in the
forbidden band gap between them. The band gap of the sample can be calculated using the
formula below.

αhυ = A (hυ − Eg)n/2 (2)

where α is the absorption coefficient, hυ is the photon energy, A is a constant equal to 1,
and Eg is the band gap energy. The values of n are 4 for indirect transition and 1 for direct
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transition [24]. The valence and conduction band potentials of g-C3N4 and BiVO4 can be
calculated using their electronegativity with the following empirical equations.

EVB = X + 0.5Eg − Ee (3)

ECB = EVB − Eg (4)

Here, ECB and EVB represent the conduction band edge and valence band edge, respec-
tively; X is the absolute electronegativity of the semiconductor; and Ee is a measurement
scale factor of the redox level of the reference electrode relative to the absolute vacuum
scale [25].

3. Results

Figure 1a shows massive g-C3N4-b, with many layers and serious agglomeration
and a small specific surface area, which is not conducive to the photocatalytic reaction.
Figure 1b shows g-C3N4-s, which has thin lamella and a relatively uniform distribution.
Figure 1c shows g-C3N4-t. It can be seen that the rough surface and large specific surface
area provide more active sites, which is conducive to the construction of the semiconductor
heterojunction and improving the catalytic activity of the catalyst [26].
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Figure 1. SEM diagram of (a) g-C3N4-b; (b) g-C3N4-s; and (c) g-C3N4 -t.

The XRD pattern of the g-C3N4 photocatalyst is shown in Figure 2a. It shows that
g-C3N4-t, g-C3N4-s, and g-C3N4-b all have two characteristic peaks. The diffraction peak
of g-C3N4 at 27.5◦ is the typical superposition reflection between layers of the conjugated
aromatic hydrocarbon system, and the small peak at about 13.1◦ corresponds to the (100)
diffraction plane of g-C3N4. It can also be seen from Figure 2a that the diffraction intensity
of plane (100) and (002) in g-C3N4-s is weaker than that of plane g-C3N4-b and g-C3N4-t,
which may be because of the fact that the CO2 produced by C and O in urea during the long
calcination of t inhibits the growth of the crystal surface, thus forming structural defects in
the sample. Figure 2b shows the FT-IR spectrum of the prepared sample. The spectra of pure
g-C3N4-t, g-C3N4-s, and g-C3N4-b all showed the characteristic peak of g-C3N4. The results
showed that multiple peaks in the range of 1230–1650 cm−1 were caused by C=N: 1637 cm−1

was attributed to C=N and 1235 cm−1–1574 cm−1 was attributed to aromatic C-N. The wide
peak centered on 3180–3440 cm−1 was attributed to N-H. At 1574 cm−1, the absorption
peak strength of g-C3N4-t is higher than that of g-C3N4-s and g-C3N4-b, indicating that
g-C3N4-t has good crystallinity and structural integrity, which is consistent with the XRD
results. Figure 2c shows that the three samples have strong fluorescence emission peaks
at 547 nm and g-C3N4-b has a higher fluorescence intensity, while the g-C3N4-t form has
a lower fluorescence intensity. The results showed that the position of the emission peak
remained unchanged after morphology regulation, but the fluorescence intensity was
relatively reduced. Therefore, g-C3N4-t fluorescence intensity was the lowest, facilitating
the separation of photogenerated carriers and effectively improving the photocatalytic
activity.
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curve of −ln (Ct/C0)-t is a straight line, and the correlation coefficients R2 of the line system 
are all greater than 0.98, which proves that the photodegradation reaction of this series of
synthesized samples follows the first-order reaction kinetics law. As the apparent kinetic 
constant of the quasi-first-order photocatalytic degradation reaction is positively corre-
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Figure 3a shows the degradation effect of pollutants. With the passage of light time,
the characteristic absorption peak of RhB in the UV/Visible absorption spectrum weakens
synchronously, and no new absorption peak appears in the whole spectrum. When the
characteristic absorption peak decreases, it indicates that the concentration of the RhB
specific hair group decreases, and the solution gradually becomes transparent, so it can be
proved that the pollutant is decomposed at a certain rate. Figure 3b shows the comparison
curve of the degradation effect of the synthetic sample on RhB, and it can be seen that
the RhB aqueous solution does not easily degrade naturally under visible light radiation,
while g-C3N4-t showed the best photocatalytic activity. For the data results in Figure 3b,
the relationship curve of −ln (Ct/C0)-t is used to represent the first-order reaction kinetics
model of the degradation effect in Figure 3c. As shown in Figure 3c, the fitted relationship
curve of −ln (Ct/C0)-t is a straight line, and the correlation coefficients R2 of the line system
are all greater than 0.98, which proves that the photodegradation reaction of this series of
synthesized samples follows the first-order reaction kinetics law. As the apparent kinetic
constant of the quasi-first-order photocatalytic degradation reaction is positively correlated
with its photocatalytic activity, under the same experimental conditions, the photocatalytic
activity order of the sample is g-C3N4-t > g-C3N4-s > g-C3N4-b.
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reaction kinetics curve of the degradation effects of the synthesized sample on RhB.

The morphology, crystal structure, functional group, and fluorescence intensity of
three different kinds of g-C3N4 were tested and analyzed in detail. It can be seen from
the characterization results that the modified functional groups are not damaged and the
crystal structure is not significantly changed, but g-C3N4-t has a large specific surface
area and can provide more active sites. The fluorescence intensity of g-C3N4-t was the
lowest, and the photocatalytic activity was improved effectively. The photocatalytic results
showed that g-C3N4-t had the best degradation effect. Therefore, g-C3N4-t was selected for
follow-up study.
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Figure 4 is a composite sample of g-C3N4 and BiVO4. It is hereinafter referred to as
GCB. The rough surface of g-C3N4-t can provide more active sites and promote semicon-
ductor recombination to form a heterojunction, which is conducive to better absorption of
visible light and separation of photogenerated charge, thus improving the photocatalytic
efficiency.
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Figure 4. TEM diagram of the composite sample of g-C3N4 and BiVO4.

For the g-C3N4 sample, it can be clearly seen that the diffraction peak intensity is the
highest at 27.4◦, corresponding to the (002) crystal plane, highly consistent with standard
cards (JCPDS 87-1526). BiVO4 has several very obvious characteristic peaks, at 24.52◦,
29.08◦, 34.49◦, and 39.78◦. The peak position is basically consistent with the monoclinic
crystal of BiVO4 standard card (JPCDS14-0685). With the increase in BiVO4 [27] content, the
intensity of the diffraction peak gradually increases, indicating that the two are successfully
recombined. Figure 5b shows that g-C3N4 at 810 cm−1 is attributed to the bending vibration
of the hepazine ring system, 1637 cm−1 is attributed to VC=N, and 1235 cm−1–1574 cm−1 is
attributed to aromatic VC-N. The wide peak centered on 3180–3440 cm−1 was attributed
to VN-H. The corresponding peaks of BiVO4 at 742 cm−1 and 842 cm−1 are attributed to
Vσas3 (VO4) and Vσa1 (VO4). The peak intensities of Vσas3 (VO4) and Vσa1 (VO4) in the
GCB composite sample increased slightly with the increase in BiVO4 content, indicating
the existence of two phases in the composite sample. As can be seen from Figure 5c, the
emission peaks of BiVO4 and GCB composite samples appear at 541 nm. The fluorescence
intensity of BiVO4 and g-C3N4 is higher than that of the GCB composite sample, indicating
that the photogenerated charges of GCB are more easily separated. It can be seen from
the figure that the fluorescence intensity changes with the increase in BiVO4 content. The
sample fluorescence intensity is lowest when the doping amount is GCB-1%. It is speculated
that the excess BiVO4 may cover the active site and reduce the reactive groups.

In order to further characterize the surface chemical composition of g-C3N4, BiVO4,
and g-C3N4/BiVO4 composite catalysts and the interaction between g-C3N4 and BiVO4
in composite heterojunction materials, we performed XPS tests on pure g-C3N4, BiVO4,
and GCB-1%. As can be seen from the full spectrum of XPS in Figure 3a, the characteristic
absorption peaks on the surface of g-C3N4 are C 1s and N 1s, and those on the surface of
BiVO4 are Bi 4f, V 2p, and O 1s. These absorption peaks are present on the surface of the
GCB-1% composite. In g-C3N4/BiVO4 composites, the binding energy of C 1s is higher
than that of g-C3N4. As shown in Figure 6c, the characteristic peaks of g-C3N4/BiVO4 in
the composite materials all shifted, indicating that g-C3N4 interacts strongly with BiVO4
during the formation of the composite catalyst, which increases the binding energy of C
1s and N 1s. As shown in Figure 6d, Bi 4f has two characteristic peaks, and the binding
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energies of Bi 4F7/2 and Bi 4F5/2 are 159.2 eV and 164.5 eV, respectively. As shown in
Figure 6e, V 2p has two characteristic peaks, and the binding energies of V 2P1/2 and V
2P3/2 correspond to 516.8 eV and 523.7 eV, respectively. As shown in Figure 6f, O 1s has
three characteristic peaks. Moreover, 529.5 eV represents the lattice O in BiVO4, and 530.2
eV and 532.3 eV correspond to hydroxyl oxygen and O adsorbed in water on the catalyst
surface, respectively. Through the analysis of element species, it was further proved that
the GCB composite sample was successfully prepared.
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GCB (m) is a simple physical mixture of g-C3N4 and BiVO4, and GCB is a composite 
catalyst with a heterojunction prepared by the hydrothermal method, Figure 8a shows 
that, after 30 min reaction in the dark, GCB has a strong adsorption capacity. This is be-
cause, in the process of doping, ultrasound can evenly disperse g-C3N4-t in deionized wa-
ter, so that GCB has a large specific surface area. The degradation efficiency of GCB (m) 
was significantly lower than that of GCB during the photoreaction, which was caused by
the formation of the Z-type heterojunction between the GCB composite samples. Figure
8b shows that the photocatalytic activity of g-C3N4-t is low with the increase in time after 
the dark reaction for 30 min and then light reaction for 300 min. DRhB = 33.4%. Even though 
g-C3N4-t can absorb visible light, the photoelectron–hole pair recombination rate is high, 
which inhibits their photocatalytic activity. When different BiVO4 contents were added, 
the DRhB of the GCB-0.3% sample was 59.6%, that of the GCB-0.5% sample was 63.3%, and
that of the GCB-1% sample was 90.4%. However, when the content of BiVO4 was increased 
further, the degradation rate did not increase, but rather decreased. It may be that exces-
sive doping of BiVO4 may attach to the surface of g-C3N4, thus reducing the active site and 
specific surface area of the surface, resulting in lower degradation efficiency of RhB. 
Therefore, the degradation rate of RhB reaches 90.4% when the doping amount is GCB-
1% under illumination for 300 min, and it has the best catalytic activity.
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Figure 7a shows that the GCB composite samples display a red shift phenomenon, and
the light absorption capacity is obviously improved. With the increase in BiVO4 content, the
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red shift was more obvious. Eg corresponding to g-C3N4 and GCB composite samples was
calculated according to the formula. It can be seen from the figure that the absorption band
of g-C3N4 is about 470 nm, Eg = 2.63 eV. The absorption band of the GCB composite sample
is about 510 nm, Eg = 2.43 eV. The results show that the preparation of GCB composite
samples reduces the band gap width and improves the visible light response ability of the
composite samples.
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Figure 7. UV/Vis (a) and band gap of (b) g-C3N4 and (c) GCB composite sample.

GCB (m) is a simple physical mixture of g-C3N4 and BiVO4, and GCB is a composite
catalyst with a heterojunction prepared by the hydrothermal method, Figure 8a shows that,
after 30 min reaction in the dark, GCB has a strong adsorption capacity. This is because,
in the process of doping, ultrasound can evenly disperse g-C3N4-t in deionized water, so
that GCB has a large specific surface area. The degradation efficiency of GCB (m) was
significantly lower than that of GCB during the photoreaction, which was caused by the
formation of the Z-type heterojunction between the GCB composite samples. Figure 8b
shows that the photocatalytic activity of g-C3N4-t is low with the increase in time after the
dark reaction for 30 min and then light reaction for 300 min. DRhB = 33.4%. Even though
g-C3N4-t can absorb visible light, the photoelectron–hole pair recombination rate is high,
which inhibits their photocatalytic activity. When different BiVO4 contents were added,
the DRhB of the GCB-0.3% sample was 59.6%, that of the GCB-0.5% sample was 63.3%,
and that of the GCB-1% sample was 90.4%. However, when the content of BiVO4 was
increased further, the degradation rate did not increase, but rather decreased. It may be
that excessive doping of BiVO4 may attach to the surface of g-C3N4, thus reducing the
active site and specific surface area of the surface, resulting in lower degradation efficiency
of RhB. Therefore, the degradation rate of RhB reaches 90.4% when the doping amount is
GCB-1% under illumination for 300 min, and it has the best catalytic activity.
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Figure 8. (a) Photocatalytic degradation curves of GCB (m) and GCB; (b) photocatalytic degradation
curves of different doping amounts of BiVO4; (c) first-order reaction constants of GCB photocatalytic
degradation of RhB.

Table 1 shows that GCB-1% has the highest k value, k = 0.00434 min−1, indicating
that the sample has the best degradation effect on RhB. The correlation coefficients R2 of
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the GCB composite samples are all greater than 0.9, and the results show that the samples
conform to the first-order reaction kinetic equation.

Table 1. Linear fitting data of photocatalytic reaction kinetics of GCB composite samples.

The Sample Name The Regression Equation k R2

g-C3N4 Y = 0.0010 − 0.014 x 0.00099 0.9784
GCB-0.3% Y = 0.0022 − 0.0179 x 0.00219 0.9915
GCB-0.5% Y = 0.0025 − 0.0134 x 0.00251 0.9932
GCB-1% Y = 0.0044 + 0.0207 x 0.00434 0.9959
GCB-3% Y = 0.0033 − 0.0019 x 0.00328 0.9941
GCB-5% Y = 0.0012 − 0.0174 x 0.00117 0.9808

Figure 9a shows that, after four cycles, the DRhB of the GCB-1% sample decreased
somewhat, but the DRhB still remained above 80%, proving that the structure of the pre-
pared GCB sample was not damaged and still had good activity, indicating that the GCB
composite sample has good repeatability. As shown in Figure 9b, DRhB = 90.4% of the
GCB-1% sample, while the photocatalytic activity did not change significantly when IPA
was added. After EDTA and VC were added, the photocatalytic activity was reduced, with
DRhB = 32.6% and DRhB = 51%. Therefore, the experiment shows that h+ and ·O2− are the
main active species in the catalytic system of GCB, among which ·O2− is more important to
the degradation of RhB.
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Figure 9. (a) Stability of GCB-1% photocatalytic degradation of RhB dye; (b) the results of the
reactive-group-capture experiment for the photocatalytic degradation of RhB by the GCB-1% sample.

Figure 10 is a diagram of the photocatalytic reaction mechanism.The crystal structure
of BiVO4 is composed of octahedral layers arranged alternately, which is conducive to
enhancing the separation of e−– h+. Table 2 shows that the gap between CBg-C3N4 and
CBBiVO4 (1.62 eV) is much larger than that between VBBiVO4 and VBg-C3N4 (1.37 eV), so
the e− of CBBiVO4 is easily transferred to VBg-C3N4. As a result, the e− of CBBiVO4 and h+

of VBg-C3N4 are easily recombined, and more e− reduced oxygen molecules on CBg-C3N4

produce ·O2−. Therefore, the photocatalytic activity of GCB samples was significantly
enhanced. It can be concluded that g-C3N4 /BiVO4 is a Z-type heterojunction photocatalyst.
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Table 2. Band gap energy (eV) and conduction band and valence band potential (V) of g-C3N4 and
BiVO4.

Semiconductors Eg (eV) CB (eV) VB (eV)

g-C3N4 2.63 −1.15 1.48

BiVO4 2.38 0.47 2.85

4. Conclusions

Three kinds of g-C3N4 with different morphologies were prepared using urea as the
precursor system. The best morphology was g-C3N4-t, by B characterization and perfor-
mance analysis, and the Z-type heterojunction GCB composite samples were successfully
prepared by combining with BiVO4, and were characterized by various methods. In order
to test the photocatalytic activity of GCB-1%, the degradation experiment of RhB aqueous
solution was carried out. The stability and photocatalytic mechanism of Z-type hetero-
junction GCB-1% composite samples were discussed. TEM shows that doping BiVO4
increases the contact area, improves the separation efficiency of photogenerated charge,
and increases the photocatalytic degradation efficiency. XRD shows that the prepared
BiVO4 is monoclinic crystal phase and the prepared g-C3N4 is tetragonal phase, indicating
that the two are successfully compounded. FT-IR shows that the peak intensities of Vσas3
(VO4) and Vσa1 (VO4) increase slightly with the increase in BiVO4 content, indicating the
existence of g-C3N4 and BiVO4 phases in the composite sample. PL shows that, when the
doping amount is GCB-1%, the fluorescence intensity is the lowest and the photocatalytic
ability is the strongest. PL shows that, with the doping amount of GCB-1%, the fluorescence
intensity is the lowest, that is, the electron–hole recombination rate is the highest. XPS
indicated that the diffraction peaks of C 1s and N 1s in GCB-1% moved in the direction of
higher binding energy, and the diffraction peaks of O 1s and Bi 4f moved in the direction of
lower binding energy. These changes indicated that g-C3N4 interacted with BiVO4 during
the formation of g-C3N4/BiVO4 composites. According to the UV/Vis results, the visible
light absorption intensity of GCB composite samples increased, while the gap between
the GCB composite samples decreased, indicating that the doped composite samples were
more favorable to the improvement in photocatalytic activity. When the doping amount
is GCB-1%, DRhB = 90.4% is the highest. The cyclic stability test shows that the GCB-1%
composite sample has good repeatability. The results of free radical capture experiments
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showed that h+ and ·O2− were the main active components in the GCB catalytic system,
and ·O2− played a decisive role in the degradation of RhB.
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