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Abstract: Electrohydrodynamic jet (E-jet) printing has broad application prospects in the preparation
of flexible electronics and optical devices. Ejection cycle time and droplet size are two key factors
affecting E-jet-printing quality, but due to the complex process of E-jet printing, it remains a challenge
to establish accurate relationships among ejection cycle time and droplet diameter and printing
parameters. This paper develops a model based on random forest regression (RFR) for E-jet-printing
prediction. Trained with 72 groups of experimental data obtained under four printing parameters
(voltage, nozzle-to-substrate distance, liquid viscosity, and liquid conductivity), the RFR model
achieved a MAPE (mean absolute percent error) of 4.35% and an RMSE (root mean square error) of
0.04 ms for eject cycle prediction, as well as a MAPE of 2.89% and an RMSE of 0.96 µm for droplet
diameter prediction. With limited training data, the RFR model achieved the best prediction accuracy
among several machine-learning models (RFR, CART, SVR, and ANN). The proposed prediction
model provides an efficient and effective way to simultaneously predict the ejection cycle time and
droplet diameter, advancing E-jet printing toward the goal of accurate, drop-on-demand printing.

Keywords: e-jet printing; ejection cycle time prediction; droplet diameter prediction;
random forest regression

1. Introduction

Electrohydrodynamic jet (E-jet) printing is a new additive manufacturing technology
in which a fine solution jet is ejected from the tip of a Taylor cone under the action of
an electric field [1] and deposited on a substrate to form a micro-dot pattern. Due to
the advantages of direct writing, noncontact, high resolution, and drop-on-demand, E-jet
printing has been applied in biological 3D structures, cell-laden microspheres [2,3], light-
emitting diodes [4,5], transistors [6,7], transparent electrodes [8,9], optical micro-lenses [10],
sensors [11–13], flexible electronic devices [14–16], and other fields. Under constant DC
voltage, the ejection cycle time and droplet diameter, together with the substrate moving
speed, determine the quality of an E-jet printing pattern. The prediction and control
of these three key parameters precisely are important to achieve on-demand printing.
Among them, the substrate moving speed can be directly controlled, while the ejection
cycle time and droplet diameter are affected by a variety of process parameters, such as
liquid properties, voltage magnitude, supply flow rate, and nozzle-to-substrate distance.
Due to the complex process of E-jet printing, which involves several coupled physical
fields, predicting and controlling the ejection cycle time and droplet diameter, especially
simultaneously prediction, remain a challenge. For printing under a pulse voltage, each
printing cycle consists of one or more DC ejection cycle, depending on the pulse width.
Thus, studying cycle time and droplet size under DC voltage is an important guide for
on-demand printing under a pulse voltage.

Researchers all over the world have conducted a variety of research to study the
E-jet-printing process, and have reported some formulas and prediction models to pre-
dict either droplet ejection or droplet diameter. Ejection cycle time has been predicted by
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formulas that relate the ejection frequency to different printing parameters. An et al. [17]
studied the relationships between ejection frequency and liquid viscosity, conductivity, and
surface tension and then proposed a theoretical formula for ejection frequency estimation.
Chen et al. [18] proposed a scaling law of ejection frequency with process parameters (elec-
tric field, viscosity, and conductivity). Choi et al. [19] obtained the relationship between
ejection frequency and the electric field but ignored the effects of liquid viscosity and
conductivity. Bober et al. [20] developed a theoretical prediction equation relating ejection
frequency with liquid supply flow rate. Ball et al. [21] predicted ejection frequency with an
improved firefly algorithm. Unlike ejection cycle time, droplet diameter is usually predicted
by simulation models. Qian et al. [22] researched the effect of voltage magnitude and air
pressure on the droplet diameter of E-jet printing and predicted the droplet diameter by
theoretical modeling. Wang et al. [23] derived a simplified model for droplet diameter pre-
diction based on the balance of electric field, surface tension, and gravity. Collins et al. [24]
explained the mechanism of Taylor cone formation, jet ejection, and droplet breakup by
numerical simulation and then proposed a scaling law for droplet diameter prediction.
Jiang et al. [25] used CFD modeling to simulate the whole process of E-jet printing and
predicted droplet diameter under different process parameters. Guo et al. [26] used a poly-
nomial regression analysis to establish a model predicting droplet volume under several
parameters (voltage, nozzle-to-substrate distance, fluid viscosity, and fluid conductivity).
These experimental research projects and theoretical modeling studies have provided ef-
fective ways to predict ejection cycle time and droplet diameter under certain printing
conditions, but none of them can simultaneously predict ejection cycle time and droplet
diameter. As the key factors that affect the quality of a desired printed pattern, ejection
cycle time and droplet diameter should be controlled simultaneously in an on-demand
E-jet-printing process. A method that can accurately and economically predict ejection
cycle time and droplet diameter simultaneously is required.

In recent years, machine-learning algorithms have been widely used as a data-driven
modeling method in many fields, such as geotechnical engineering [27], traffic safety [28],
material engineering [29], and biomedicine [30]. To improve computational accuracy and
computational efficiency, Breima proposed the random forest (RF) algorithm in 2001 [31].
Since then, RF has been successfully applied to many fields, such as power system load pre-
diction [32], genetic engineering [33], and chemical engineering [34], for its high prediction
precision, fast calculation speed, decreased overfitting, and strong generalization ability.

To address the challenge of E-jet printing ejection cycle time and droplet diameter
prediction, this paper proposes a model based on a RFR algorithm to predict ejection
cycle time and droplet diameter simultaneously. Voltage and nozzle-to-substrate distance
can be adjusted easily during the E-jet-printing process, while viscosity and conductivity
can be adjusted on demand during ink preparation. Thus, voltage magnitude, nozzle-to-
substrate distance, liquid viscosity, and liquid conductivity are selected for the full factorial
experimental design of experimental printing data. Then, an RFR prediction model is
established, trained with 72 groups of experimental data, and applied to predict ejection
cycle time and droplet diameter simultaneously. The prediction accuracy of the RFR is
compared with a classification and regression tree (CART), support vector regression (SVR),
and an artificial neural network (ANN). The results show that, with limited training data,
the RFR has the best prediction performance, proving the precision and suitability of the
RFR for E-jet prediction. The proposed prediction model enables fast, economical, accurate
prediction of both ejection cycle time and droplet diameter, guiding further optimization of
the E-jet-printing process.

2. Materials and Methods
2.1. E-Jet-Printing System

A schematic diagram and a picture of the E-jet-printing system are shown in Figure 1. In
addition, a picture of the printing nozzle is shown in Figure S1 in the Supporting Materials.
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Figure 1. (a) Schematic diagram of E-jet-printing system; (b) picture of E-jet-printing system.

The E-jet-printing system was mainly composed of a liquid supply module (liquid
reservoir tube and printing nozzle), a voltage module (function generator and high-voltage
amplifier), a motion module (mobile Z-axis and XY moving stage), an observation module
(high-speed camera and LED light source), and a control module (computer).

A printing nozzle with an outer diameter of 50 um was prepared with a micropipette
puller (Sutter P-1000, Sutter Instrument Company, Novato, CA, USA). The printing nozzle
was connected to a liquid reservoir tube that was fixed to the Z-axis. To avoid the impact of
air pressure fluctuations on the experimental results, no back pressure was added to the
liquid reservoir tube, and the liquid was delivered simply by the capillary action of the
thin nozzle. The distance between the nozzle and the substrate (silicon wafer, 200 mm in
diameter and 800 µm thick) was controlled by moving the nozzle up and down through
a precision motor and then measured via real-time imaging. The applied voltage was
generated by a function generator (Keysight-33500B Series, Keysight Technologies Co.,
Ltd., Santa Rosa, CA, USA) and a high-voltage amplifier (HVA-103NP6, Tianjin Shenghuo
Technology Co., Ltd., Tianjin, China) with an output voltage range of 0 ~±5 KV. The
high-voltage amplifier was connected to the nozzle, and the ground was connected to
the substrate, forming an electric field between the nozzle and the substrate. Under the
action of constant DC voltage, the liquid formed a Taylor cone at the tip of the nozzle and
ejected a fine jet with a certain cycle. The droplet ejection process was recorded with a
high-speed camera (Fastcam Mini UX 100, photron, Kyoto, Japan), and the droplet ejection
cycle time was calculated based on the high-speed images. The substrate was fixed to the
XY stage through vacuum adsorption to collect the deposited droplets. Droplet diameter
was measured with a metallographic microscope (53X-V, Shanghai Optics Instrument Five
Co., Ltd., Shanghai, China).

2.2. E-Jet-Printing Liquids

The printing liquids were a mixture of glycerol, deionized water, and aqueous sodium
chloride (NaCl). The NaCl aqueous solution was prepared by dissolving 0.2 g NaCl into
40 mL deionized water. The conductivity of the printing liquids could be adjusted by
changing the volume ratio of the NaCl solution, and the viscosity could be adjusted by
changing the volume ratio of the glycerol. The viscosity, conductivity, surface tension, and
contact angle of the printing liquid were measured with a viscometer (SHCP1, Guangzhou
Leadtek Instrument Technology Co., Ltd., Guangzhou, China), a conductivity meter (DZS-
708 L, Shanghai Yidian Scientific Instruments Co., Ltd., Shanghai, China), and a contact
angle meter (SDC-200S, Dongguan Shengding Precision Instrument Co., Ltd., Dongguan,
China), respectively. The properties of the printing liquid are shown in Table 1. The
corresponding compositions of the printing liquids used in the experiments are shown in
Table S1.
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Table 1. Properties of the E-jet-printing liquids.

Number Density
(Kg/m3)

Conductivity
(µS/cm)

Surface
Tension(mN/m) Viscosity(mPa·s)

1 1223.9 5 66.7 35
2 1223.9 10 66.7 35
3 1223.9 15 66.7 35
4 1231.6 5 67.3 50
5 1231.6 10 67.3 50
6 1231.6 15 67.3 50
7 1238.9 5 66.9 65
8 1238.9 10 66.9 65
9 1238.9 15 66.9 65

2.3. Printing Experimental Design

For the printing experiment, four parameters affecting E-jet printing (voltage, nozzle-
to-substrate distance, liquid viscosity, and liquid conductivity) [26] were selected as the
variables. Each variable had 3 levels, forming 81 sets of experimental results, as shown in
Table 2. Through experimental research, it was found that, in order to keep the printing
in pulse jet mode, the range of the electric field strength could only vary in a small range.
If the electric field strength was too low, no Taylor cone was formed; if the electric field
strength was too high, a continuous jet was produced. However, the small change in
electric field strength still had an important impact on the process of jet printing, as shown
in Figures S2 and S3. When the nozzle-to-substrate distance was constant, as voltage
increased from 1150 V to 1170 V, the ejection cycle time decreased from 2.06 ms to 1.23 ms,
decreasing 67.5%. When the voltage was constant, and the nozzle-to-substrate distance
increased from 280 µm to 300 µm, the ejection cycle time increased from 1.10 ms to 2.06 ms,
increasing 87.3%.

Table 2. Selected E-jet process parameters and levels.

Process Parameter Level

Voltage (V) 1150 1160 1170
Nozzle-to-substrate distance (µm) 280 290 300

Viscosity (mPa·s) 35 50 65
Conductivity (µS/cm) 5 10 15

3. Machine-Learning Methods
3.1. RFR Model

As an ensemble algorithm, random forest is based on decision trees and bagging
sampling. A decision tree is a tree structure in which each internal node represents a
judgment on an attribute, and each branch represents the output of a judgment result.
Bagging sampling reduces generalization errors by combining multiple decision tree mod-
els. The principle is to train several different decision tree models independently. For
regression problems, the mean of the decision tree is calculated as the final result. Random
forest builds bagging ensembles with decision trees as base learners. Bootstrap technol-
ogy is the sampling of samples with return. Random forest uses bootstrap technology
to repeatedly and randomly select multiple samples and their features from sample sets
with replacements and constructs multiple decision trees [35]. For regression problems,
after a prediction model is established, an RFR prediction result is determined using the
mean value of each decision tree. According to the above random forest principle, the flow
chart of the RFR model for ejection cycle time and droplet diameter prediction is shown
in Figure 2.
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(1) Data reading and preprocessing: The E-jet printing experimental ejection cycle
time result is read by the RFR model, divided into a training set and a test set in a ratio of
9:1, and then preprocessed to ensure all data obey the standard normal distribution. The
same process is repeated for the experimental droplet diameter results.

(2) Sample set generation: The bootstrap is used to extract a sample set with the same
capacity from the training set, which is repeated for k times to obtain k sample sets: θ1, θ2,
. . . , θk. In particular, when k = 1, the model is a CART.

(3) Decision tree generation: E-jet printing ejection cycle time and droplet diameter
prediction is a regression problem. For the regression problem, the basic learner of the
random forest is a CART, and its nodes are split according to the principle of minimum
mean squared error (MSE), as shown in Equation (1).

min︸︷︷︸
A,s

min︸︷︷︸
cl

∑
xi∈Dl(A,s)

(yi − cl)
2 + min︸︷︷︸

cr

∑
xi∈Dr(A,s)

(yi − cr)
2

 (1)

In Equation (1), xi is an n-dimensional input vector; yi is the output value; A is an
arbitrary division of features; s is the division point of the corresponding feature; Dl and
Dr are the left and right data sets of the sample set divided by s points, respectively; cl is
the average output value of Dl ; and cr is the average output value of Dr.

Each child node of the decision tree is continuously divided using Equation (1) until
the set threshold is satisfied, dividing the sample set into M data sets: D1, D2, . . . Dm.

T(x, θk) =
M

∑
m=1

∧
cm I(x ∈ Dm) (2)
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I =
{

1, i f (x ∈ Dm)
0, i f (x /∈ Dm)

(3)

In Equations (2) and (3), I is the indicator function, and
∧

cm is the mean value of the
output of the data set Dm. Then k CARTs are generated using the sample set and random
forest model, as shown in Equation (4).

{T1(x, θk), T2(x, θk), · · ·, Tk(x, θk)} (4)

For CART generation, the m-dimensional (m ≤ 4) E-jet parameters are extracted
without put-back from the above four key parameters (viscosity, conductivity, voltage, and
nozzle-to-substrate distance) as the feature variables of each split node.

(4) Printing result prediction: The testing set S is input into the RFR model and all
regression decision trees are traversed to obtain the prediction results. Then, the arithmetic
mean of the regression decision trees is calculated as the final prediction result, as shown in
Equation (5).

F(x) =
1
k

k

∑
k=1
{T(x, θk)} (5)

3.2. SVR and ANN Model

To further verify the applicability and accuracy of the RFR model with limited training
data, other commonly applied machine-learning methods, SVR and ANN, were applied to
predict ejection cycle time and droplet diameter. Schematic diagrams of SVR and ANN are
shown in Figure 3.
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The principle of SVR is shown in Figure 3a. Here, the most widely used Gaussian
radial basis function (RBF) was selected as the kernel function of SVR. The values of the
SVR internal parameters (C, σ, ε) determined the predictive performance of the model. C
was the penalty factor in the SVR model, affecting the complexity and learning ability of
the model, as well as the degree of approximation error. σ was the coefficient of the RBF
kernel function, and it related to the radial range of the RBF kernel function. ε was the
error tolerance of the SVR model, controlling the upper and lower boundaries in the SVR.
The SVR model assumed that a maximum error of ε between the predict value and the
experimental value could be tolerated (values within the lower and upper boundaries),
and the loss was calculated only when the absolute value of the difference was greater
than ε. In the SVR model, the experimental data were divided into a training set and a
test set in a ratio of 9:1 and preprocessed to ensure all data obeyed the standard normal
distribution. To find the optimal SVR model, the parameters (C, σ, ε) were then adjusted
using a cross-validation grid search. The parameter combinations are shown in Table 3.
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Through the parameter search, the established SVR model had best prediction performance
when C was 5, σ was 0.3, and ε was 0.01.

Table 3. Combination of SVR model parameters.

C σ ε

5 0.1 0.001
10 0.3 0.01
20 0.7 0.1
40 1 1

The ANN was mainly composed of an input cell, a hidden cell, and an output cell,
as shown in Figure 3b. The number of hidden cells and neurons was related to the ANN
prediction performance. In the ANN, the experimental data were divided into a training set
and a test set in a ratio of 9:1 and then preprocessed to ensure all data obeyed the standard
normal distribution. Due to the small amount of data in this paper, in order make the model
converge faster, the lbfgs optimizer based on the quasi-Newton algorithm was selected. To
reduce the computational cost, the number of hidden layers was selected as 3, and the relu
function was selected as the activation function of the hidden cell. The number of hidden
cell neurons in the ANN model was optimized using a cross-validation grid search, and
the combination of search parameters is shown in Table 4. According to the search results,
when the numbers of neurons in the 3 hidden cells were 5, 15, and 5, respectively, the ANN
model had the best prediction performance.

Table 4. Combination of ANN search parameters.

Number of Neurons in
Hidden Layer 1

Number of Neurons in
Hidden Layer 2

Number of Neurons in
Hidden Layer 3

5 5 5
10 10 10
15 15 15
20 20 20

3.3. Model Performance Evaluation

The mean absolute percent error (MAPE) and root mean square error (RMSE) were
selected as the evaluation indices. The MAPE expression is shown in Equation (6). It could
quantitatively reflect the accuracy of the prediction model. The smaller its value, the higher
the prediction accuracy. The RMSE expression is shown in Equation (7). It was a measure
of the deviation between the experimental value and the predicted value, reflecting the
degree of dispersion of the sample.

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣yi −
∧
yi

yi

∣∣∣∣∣× 100% (6)

RMSE =

√
1
n

n

∑
i=1

∣∣∣yi −
∧
yi

∣∣∣2 (7)

In Equations (6) and (7), n is the number of predicted samples; yi is the experimental

value; and
∧
yi is the model-predicted value.

4. Results and Discussions
4.1. Printing Results

Precise prediction and control of ejection cycle time and droplet diameter is the key to
ensure efficient and high-quality E-jet printing. Here, we proposed a RFR prediction model
that was trained with limited experimental data sets. The experimental data of ejection
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cycle time and droplet diameter were obtained according to Table 2. The results are shown
in Figure 4.
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Under constant DC voltage, the liquid at the nozzle tip formed a Taylor cone and
ejected a fine jet with a fixed cycle. A droplet formed on the moving substrate for each
ejection cycle, and the distance between the droplets was determined by the ejection cycle
time and substrate moving speed. In real experiments, it takes a lot of time to adjust the
moving speed to control the droplet distance since the ejection cycle is difficult to predict
and control. An accurate and efficient prediction model would save a lot of time. Here, the
process of droplet ejection was recorded and measured with a high-speed camera, and a
typical droplet ejection cycle is shown in Figure 4a. A complete droplet ejection process
consisted of two stages: droplet accumulation and droplet ejection. During the droplet
accumulation stage, the curved lunar surface was gradually transformed into a Taylor cone
under the electric field force; during the droplet ejection stage, a fine jet was ejected from
the tip of the Taylor cone and lasted for a certain period of time.

The key factor determining the resolution of a printing pattern is the size of the droplet
diameter. The droplet diameter was measured with a metallographic microscope, and
typical, on-demand E-jet-printing droplets are shown in Figure 4b. The droplet diameter
was mainly determined by the volume of the jetted fluid, as well as by the contact angle
between the fluid and the substrate. The volume of the jetted fluid depended on the voltage
magnitude, nozzle-to-substrate distance, surface tension of the liquid, liquid conductivity,
and liquid viscosity. The contact angle depended on the surface tension of the liquid and
the surface properties of the substrate. All the experiments in this paper used the same
silicon substrate, so the droplet diameter was mainly determined by the process parameters
of E-jet printing.
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To improve the reliability of the prediction model, each group of printing experiments
was repeated 10 times, and the mean value was selected as the final experimental result. The
degree of variation of the experimental data was analyzed by the coefficient of variation
(CV) (the ratio of the standard deviation to the mean value). The statistical results of
the 81 groups of ejection cycle time and droplet diameter are shown in Figure 4c. The
minimum CV for the ejection cycle time was 1.13%, and the maximum CV was 14.64%. In
addition, 96.3% of the ejection cycle time results had a CV within 10%, indicating that the
experimental results were highly reliable. The minimum CV was 0.29%, and the maximum
CV was 6.70%. All the droplet diameter results had a CV within 10%, indicating that the
experimental results were highly reliable. The reason for the variation in the CV could be
because, in the experimental process, the E-jet-printing process is also affected by humidity,
temperature, air cleanliness, and other unstable environmental factors.

4.2. Prediction Performance of RFR Model

In the E-jet-printing process, ejection cycle time and droplet diameter size are the
main factors that affect the quality of a printed pattern. Thus, the simultaneous prediction
of these factors is beneficial to achieve efficient, high-quality, on-demand E-jet printing.
Here, we developed an RFR model to achieve the simultaneous prediction of ejection cycle
time and droplet diameter. To improve the accuracy of the RFR model, the value of the
regression decision tree k was optimized to be 30 using the grid search method, and the
RFR prediction results are shown in Figure 5 and Table 5.

It can be seen from Figure 5 that most of the predicted ejection cycle times were
within the standard deviation of the experimental results, and most of the predicted droplet
diameters were close to the experimental results. According to Table 5, the maximum
relative error between the experimental value and the predicted value was −8.732% for
ejection cycle time, and the maximum relative error between the experimental value and
the predicted value was 8.628% for droplet diameter. Both were lower than 10%, indicating
high accuracy of the RFR prediction model. For ejection cycle time prediction, the MAPE
was 4.35% and the RMSE was 0.04 ms. For droplet diameter prediction, the MAPE was
2.89% and the RMSE was 0.96 µm. The prediction results show that the RFR model could
accurately predict both the ejection cycle time and the droplet diameter with a small training
data set. The proposed RFR model was an accurate and economical way to simultaneously
predict the ejection cycle time and the droplet diameter.
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Table 5. Comparison of predicted and experimental results.

Sample
Number

Experimental
Ejection Cycle

Time (ms)

Predicted
Ejection Cycle
Time of RFR

(ms)

Relative Error
(%)

Experimental
Droplet

Diameter (µm)

Predicted
Droplet

Diameter of
RFR (µm)

Relative Error
(%)

1 0.284 ± 0.013 0.265 −6.690 28.353 ± 0.099 29.153 2.822
2 0.876 ± 0.023 0.866 −1.142 27.555 ± 0.304 27.270 −1.034
3 0.355 ± 0.016 0.324 −8.732 22.874 ± 0.098 23.179 1.333
4 1.98 ± 0.034 2.048 3.434 29.688 ± 0.269 28.947 −2.496
5 0.556 ± 0.013 0.541 −2.698 24.469 ± 0.643 24.344 −0.511
6 1.22 ± 0.034 1.207 −1.066 24.432 ± 0.206 26.540 8.628
7 0.472 ± 0.017 0.486 2.966 26.827 ± 0.605 25.622 −4.492
8 1.224 ± 0.021 1.313 7.271 31.188 ± 0.202 30.438 −2.405
9 0.312 ± 0.017 0.296 −5.128 27.980 ± 0.360 28.630 2.323

4.3. Performance Comparison between Different Models

To further verify the effectiveness of the RFR, the prediction effect of the RFR was
compared with CART, SVR, and ANN models. The predicted values of each model are
shown in Tables S2 and S3 in the Supporting Material. The evaluation indices of each
prediction model are shown in Figure 6. It can be seen that the RFR had the smallest MAPE
and RMSE for both ejection cycle time and droplet diameter, indicating that the RFR had
the best prediction performance. Ejection cycle time prediction performance was in the
following order: RFR > SVR > CART > ANN. The SVR ranked second, but still its MAPE
and RMSE were much higher than those of the RFR. In comparison, SVR training was
slower, and the optimized model was more sensitive to parameter combination, while RFR
training was faster and model optimization was easier to implement. Droplet diameter
prediction performance was in the following order: RFR > CART > ANN > SVR. The
CART ranked second, but still the MAPE and RMSE were much higher than those of
the RFR. This was because the CART had a weak generalization ability and was prone
to overfitting, while the RFR used the mean values of multiple regression decision trees
as the final output, making the RFR more generalized and less prone to overfitting. The
ANN had the worst overall prediction performance, mainly because the ANN required a
large amount of experimental data for training, while the samples of E-jet printing ejection
cycle time and droplet diameter were relatively small. In summary, for both ejection cycle
time and droplet diameter prediction, the RFR was faster to train, easier to achieve model
optimization, had higher generalization ability, was less prone to overfitting, and could
achieve higher accuracy with limited experimental samples.
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5. Conclusions

To address the problem of the simultaneous prediction of ejection cycle time and
droplet diameter for E-jet printing, this paper proposed an RFR prediction model. Based
on an E-jet-printing mechanism, four E-jet-printing process parameters (voltage, nozzle-
to-substrate distance, liquid viscosity, and liquid conductivity) were selected as input
features, and ejection cycle time and droplet diameter were taken as outputs to develop the
RFR prediction model. The experimental and predicted results under different parameter
combinations were obtained. With only 72 groups of training data, the developed RFR
prediction model achieved a MAPE of 4.35% and an RMSE of 0.04 ms for ejection cycle
time prediction, as well as a MAPE of 2.89% and an RMSE of 0.96 µm for droplet diameter
prediction. The prediction results of the RFR were then compared with CART, SVR, and
ANN models, showing that, with limited training data, the RFR had the best prediction
performance. The proposed RFR prediction model could achieve the simultaneous and
accurate prediction of ejection cycle time and droplet diameter, providing a simple, feasible,
efficient method for on-demand E-jet-printing optimization.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/mi14030623/s1, Table S1: The compositions and prop-
erties of the liquids used in the experiments; Table S2: Experimental and predicted values of the
ejection cycle; Table S3: Experimental and predicted values of the droplet diameter; Figure S1: Nozzle
connection diagram, Figure S2: Variation in ejection cycle and droplet diameter with voltage; Figure
S3: Variation in ejection cycle and droplet diameter with nozzle-to-substrate distance.
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