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Abstract: In this article, a 4× 4 miniaturized UWB-MIMO antenna with reduced isolation is designed
and analyzed using a unique methodology known as characteristic mode analysis. To minimize the
antenna’s physical size and to improve the isolation, an arrangement of four symmetrical radiating
elements is positioned orthogonally. The antenna dimension is 40 mm × 40 mm (0.42λ0 × 0.42λ0) (λ0

is the wavelength at first lower frequency), which is printed on FR-4 material with a width of 1.6 mm
and εr = 4.3. A square-shaped defected ground framework was placed on the ground to improve the
isolation. Etching square-shaped slots on the ground plane achieved the return losses S11 < −10 dB
and isolation 26 dB in the entire operating band 3.2 GHz–12.44 GHz (UWB (3.1–10.6 GHz) and X-band
(8 GHz–12 GHz) spectrum and achieved good isolation bandwidth of 118.15%. The outcomes of
estimated and observed values are examined for MIMO inclusion factors such as DG, ECC, CCL,
and MEG. The antenna’s performances, including radiation efficiency and gain, are remarkable for
this antenna design. The designed antenna is successfully tested in a cutting-edge laboratory. The
measured outcomes are quite similar to the modeled outcomes. This antenna is ideal for WLAN and
Wi-Max applications.

Keywords: characteristic mode analysis; defected ground system; envelop correlation coefficient;
isolation; MIMO; UWB; X-band

1. Introduction

It is desirable to employ this modern technology, known as Ultra-wideband commu-
nication devices, to address the needs of high data rates at low costs. Since the Federal
Communications Commission (FCC) approved the unlicensed 3.1 GHz–10.6 GHz range for
UWB applications; it has evolved into a well-known innovation in the wireless communica-
tion industry. Because they constitute an essential part of UWB communication systems,
UWB antennas have consequently generated enormous scholarly and scientific attention in
recent years [1]. A technological breakthrough known as UWB allows for reliable wireless
connectivity with greater capacity and data speeds. However, UWB has limited short-range
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characteristics as a result of how low power is handled. Due to congestion issues with
fading, multipath mitigation, and low power handling capabilities, UWB is thus limited to
residential applications [2]. To overcome the issues mentioned above, the MIMO technique
was combined with UWB technology. Higher bandwidth and data rates are possible with
MIMO technology while raising total sent power. By using proper and appropriate antenna
elements at both ends of the communication system, the maximum energy efficiency of
the communication system can be achieved without affecting the power capacities of the
communication system. Given that we can simply replace the MIMO parts while the
transmitted power stays constant, we should arrange the appropriate MIMO antennas to
increase channel capacity [3].

Introducing more components causes mutual coupling to rise, which lowers MIMO’s
performance. Since electromagnetic interaction increases when MIMO units are put closely
together and lowers MIMO performance, low mutual coupling is a crucial MIMO com-
ponent. These techniques are used to initiate reducing mutual coupling: (1) an improper
ground structure, (2) networks for decoupling, (3) parasitic components, (4) electromagnetic
band gap (EBG), (5) lines of neutralization, and (6) meta material. To fulfill the expectations
of the Internet of Things for more bandwidth and data rates, researchers have started to
create UWB antennas to attain a high level of isolation in MIMO Antennas [4]. Two circular
patches that are orthogonal to one another constitute the antenna. Two notched bands
can be generated by combining a y-shaped slot, a rectangular slot, and a circumferential
slot [5]. Innovative approaches are developed for enhancing isolation, bandwidth, and
gain. Regarding IoT applications, bidirectional UWB over a multi-mode link increased
data rates to 2 Gbps at a lesser cost [6]. To increase impedance matching and achieve 20 dB
isolation, the boundaries of triangular-shaped loadings are embedded with a modified
Koch fractal structure in MIMO antennas [7]. The Circular UWB-MIMO antenna demon-
strated impressive isolation of 28 dB and IBW 134.68% by utilizing a T-shaped slot and
protruding strips [8]. Such components allowed the planned antenna to function between
24.1 GHz and 27.18 GHz and between 33 GHz and 44.13 GHz [9]. A 2 × 2 double band
antenna composed of the optically reflecting surface AgHT 8 has been planned for use
in Wireless LAN and Area network operations [10]. A 4 × 4 planer UWB was created
employing circular monopoles as radiators, and isolation was enhanced using DGS and
EBG structures. This modified EBG, mushroom shape produced the isolation of more than
17.5 dB across the whole frequency range of 3.0 to 16.2 GHz [11].

The 4 × 4 small antennas have 25 mm × 50 mm of surface area, and PIN diodes
were utilized to turn on each radiator in the set up. An LC-shaped decoupling stub was
employed for high isolation (2–12 GHz) across the band [12]. A 4× 4 spike Ultra-wideband
antenna with a 50 mm × 25 mm footprint uses dropouts to block Wireless LAN bands
between 4.9 GHz and 6.4 GHz. This antenna maintains good isolation from 2 GHz to
12 GHz. All four components for polarization diversity are in opposition to one another.
An LC decoupling stub was employed to increase isolation and decrease ECC [13]. A tiny
circular-shaped 4 × 4 UWB-MIMO has the following measurements: 44 × 44 × 1.6 mm3,
and each radiator has a U-shaped slot. Excellent isolation and diversity measurements
were attained [14] as a result of the crescent slot on the circular radiator and the circular slot
resonator. Using the 4 × 4 rectangle MIMO antenna with an arrow-shaped etching on the
rectangular patch, the isolation was increased by more than 18 dB [15]. A two-port UWB-
MIMO antenna with semi-circular radiating elements was able to achieve 55 dB isolation
and a 37 GHz bandwidth by employing a decoupling stub on the ground. The antenna is
18 mm × 36 mm × 1.6 mm, and it was created utilizing the space diversity technique to
boost impedance and bandwidth [16]. A new technique was used to create a multi-input
multi-output (MIMO) 4 × 4 elliptical monopoles Ultra-Wide-band (UWB) device with a
tiny footprint (45 mm × 45 mm × 1.6 mm). An H-shaped slot and a C-shaped slot were
combined in this design to provide double band rejection performance at 5.5 GHz and
7.5 GHz. A stub was connected to the edge of each defective ground structure to provide
isolation of 22 dB [17]. A compact 4 × 4 octagonal Koch fractal shape was employed to
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attain a modest size. Four radiators were positioned diagonally in the 2 GHz–10.6 GHz
frequency range, and grounded stubs were employed to increase isolation by 17 dB [18].
To achieve greater isolation and good radiation performance metrics, researchers applied
techniques such as orthogonal, Asymmetric Coplanar Strip (ACS), polarization diversity,
space diversity, slotted annular ring, and decoupling stubs [19–25].

But the above methods are not able to enhance the isolation. Therefore, we need
an advanced antenna design approach that offers us great isolation and good diversity
performance. A method of evaluation that is step-by-step is characteristic mode analysis.
This design method is used to analyze antenna properties without using feed. The antenna
structure is physically examined using CMA.

The following sections compose the remaining document: In Section 2, the size and
design of the antenna are explained. In Section 3, the proposed antenna is tested with
the characteristic mode analysis. The simulated and observed findings are discussed in
Section 4. In Section 5, the newly created antenna is contrasted with current models.
Section 6 concludes the essay.

2. Design of 4 × 4 Spike-Shaped UWB Antenna

The designed antenna radiator is in the form of a spike-shape. The four symmetrical
monopoles are placed orthogonal to one other, resulting polarization diversity. The pro-
posed spike-shaped MIMO antenna has size in the order of 40 mm × 40 mm × 1.6 mm
(0.44λ0 × 0.44λ0 × 0.0176λ0), placed on a Fr-4 material with loss tangent of 0.002 and
permittivity of 4.3. The Computer Simulation Technology (CST) is used to design and
simulate the proposed antenna.

The spike-shaped single radiator is a circular patch with a radius of 4 mm and it has
five spike bubbles with a diameter of 1.5 mm placed on its circumference. The feeder line
has a width of 1.2 mm, length is of about 10.2 mm, and the distance between two radiators
is 6.25 mm. In this design, a novel ground structure shape is used to achieve good radiation
performance and better isolation.

All four radiators are of the same dimensions and are arranged in an orthogonal
pattern. By using this arrangement of elements in MIMO, it is possible to reduce the
mutual coupling among patch elements. Four rectangular-shaped patches with a width
of 8.334 mm and a length of 7 mm form the structure of the ground plane. In order to
achieve good isolation, a square-shaped conducting patch with a width of 3 mm is placed
on the ground at a distance of 5 mm from the center of ground plane, as shown in Figure 1b.
To improve the bandwidth and isolation in UWB and ITU bands, 12 rectangular slots are
placed on 3 mm square ground patch.
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Out of those 12 rectangular slots, 6 slots are placed vertically, and the remaining slots
are placed horizontally on a square-shaped ground patch as shown in Figure 1b. The
dimensions of a 4 × 4 spike-shaped Ultra-wide band antenna are shown in Table 1.

Table 1. Dimensions of spike-shaped 4 × 4 UWB-MIMO.

Parameter Symbol Value (mm) Parameter Symbol Value (mm)

Substrate length WL 40 Substrate width Ws 40

Length of the spike ground L1 2 Ground length Lg 8.33

Radiator diameter d2 8 Feed length Lf 10.2

Diameter of spike d1 1 Width of the square ground patch L1 3

Feed width Wf 1.2 Space between two vertical slots L3 3

Square patch length W2 10 Width of the ground bs 7

Width of the slot W4 2 Width of square patch W5 3

Height of the slot W3 1

Theory of Characteristic Mode Analysis

Characteristic mode theory is used to analyze the antenna’s input impedance and
current distributions without any excitation. The characteristic mode theory (CMT) is used
to study radiation patterns and scattering fields in perfect electric conductors. In perfect
electric conductors, the antenna’s input impedance and radiation pattern are proportional
to the total surface current density at the feeding point [26]. The impedance matrix is
represented in the below equation.

zimp = Rreal + jIimg (1)

[I]
→
jn = λn[R]

→
jn (2)

where R is the real part and I is the imaginary part of impedance matrix. Here λn de-
notes the Eigen Vector’s eigenvalues. Jn is the antenna current defined in terms of its
characteristic modes

→
jn = ∑N

n

→
Jn

→
Ei

1 + jλn

→
Jn= ∑N

n αn
→
Jn (3)

where N is the order of the moment matrix and Jn is CM current, λn eigen values and
Ei is incident electric field. Equation (1) explains the characteristic modes in the antenna

structure. Equation (1) has two terms
→
Jn

→
Ei and 1

1+jλn
.

The dot product of Ei and Jn is zero at all points except the feed point of the conducting
antenna. The overall phase of Ei depends on eigen values λn.

3. Evaluation Procedure of 4 × 4 UWB-MIMO Antenna

The characteristics mode analysis (CMA) is used to develop the proposed antenna. The
entire design process is carried out in four design stages performed in the proposed antenna
design evaluation process. The total designing process of the suggested antenna depends
on CMA metrics such as (1) Eigen values, (2) characteristic angle, and (3) modal significance.
These three properties exist in each characteristic mode. In this current antenna design, only
the modal significance parameter was considered. The Spike-shaped 4 × 4 MIMO antenna
is analyzed and investigated in four stages: antenna0 (Ant#0), antenna1 (Ant#1), antenna2
(Ant#2), and antenna3 (Ant#3) [27]. The CM currents in CMA are used to evaluate the
performance of each characteristic mode. Without using any excitation, these characteristic
mode current distributions can be observed. The proposed antenna achieved a good
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impedance bandwidth (IBW) covering the bandwidth requirements of UWB systems and
also X-band.

The proposed antenna was developed using a CMA method. A series of sequential
procedures are used throughout the designing process. The modal current distribution
in Computer Simulation Technology (CST) is demonstrated using multi-layer solver. The
evaluation process of antenna in step-by-step manner is depicted in Figure 2
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Modal significance is used to implement the proposed antenna in CMA design. With-
out using any excitation signal, the entire antenna design process is carried out in four
evaluation stages from Ant#0 to Ant#3. The Ant#0 is made up of four spike-shaped radia-
tors that are printed on FR-4 substrate. Each spike radiator has a radius of 4 mm with spike
bubble radius of 1 mm. The Ant#0 has no conducting ground plane and is able to generate
ten characteristic modes using the multilayer solver. Only five out of ten characteristic
modes (CMs) contribute bandwidth and isolation. The modal significances of Ant#0 are
shown in Figure 3a. The characteristics modes CM1, CM2, CM4, CM5, and CM6 contribute
bandwidth between 4 GHz and 6 GHz. The remaining modes CM3, CM7, CM8, CM9,
and CM10 do not contribute any bandwidth. The Ant#0 is good at mid-band frequencies
(4 GHz–6 GHz) and not good at low and high frequencies. In Ant#0, the absence of a
ground plane produces high mutual coupling at low and high frequencies. Ant#0′s design
was changed to improve isolation and bandwidth. On the ground plane, rectangular
ground edges were added for each radiator. The rectangular ground edges are 8.33 mm
and 7 mm in width and length, respectively. Hence, Ant#0 becomes Ant#1 after the ground
edges are added. Ant#1′s characteristic modes were examined in the absence of excitation.
Ant#1 generates ten different modes. The majority of the characteristics modes, CM1, CM2,
CM4, and CM6, are concentrated at mid frequencies (4 GHz–8 GHz) while CM5 and CM10
are concentrated in between 8 GHz and 11 GHz. The remaining modes, CM3, CM7, CM8,
and CM9, are ineffective and contribute no bandwidth and isolation, this is due to the
addition of ground edges in the ground plane. Figure 3 depicts the corresponding modal
significances on the ground plane, a 3 mm square-shaped conducting patch is added to
convert Ant#1 to Ant#2 and analyze its characteristic modes. Some CMs are below 4.5 GHz,
some are at mid-band frequencies, and some are at 11 GHz, implying that this antenna
achieved good bandwidth but requires more isolation. In Figure 3c, the corresponding
modal significances of Ant#2 are shown. Ant#2 was transformed into Ant#3 by adding
12 rectangular slots on 3 mm square patch in ground plane. Ant#3 can be examined in
terms of its characteristic modes. The CM3 and CM7 does not contribute any bandwidth in
the ten modes.

The remaining modes, CM1, CM2, CM4, CM5, CM6, CM8, CM9, and CM10, not only
covers UWB but also the X-band (8 GHz–12 GHz). Figure 3d shows the corresponding
modal significances. The CM4 is resonated at 4.1 GHz during the evaluation process from
Ant#0 to Ant#3. As a result, CM4 is referred to as the dominant mode. All CMs are scattered
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in between 3 GHz and 12 GHz except CM3 and CM7. The feed is applied to all antennas
and their corresponding S-Parameters are depicted in Figure 4. Placing the square-shaped
ground structure in the proposed antenna, the current interactions among the radiators
reduce because of the increase in current interaction between the ground conduction patch
and radiators.
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This antenna is suitable for UWB (3.1–10.6 GHz) and X-band applications (8–12 GHz).
Figures 5–8 shows the characteristic current distributions of antennas Ant#0 to Ant#3 at
4.1 GHz, 7.2 GHz, and 10.1 GHz. Figure 9 shows Ant#3′s current distributions at various
frequencies.
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4. Results of 4 × 4 Spike-Shaped UWB-MIMO Antenna

The proposed UWB-MIMO spike-shaped antenna has good MIMO metrics such as ra-
diation characteristics and isolation. The CMA technique is used to design the spike-shaped
antenna, resulting in improved isolation. From 3.2 GHz to 12.44 GHz, the impedance band-
width is 9.24 GHz and it covers the bandwidth requirements for UWB and ITU bands.
Figure 10 depicts the designed antenna prototype. The experimental set up for measuring
the reflection coefficient using VNA is shown in Figure 11a. Figure 11b compares both
the simulated and measured reflection coefficients (S11). The designed antenna provides
isolation of 26 dB. This isolation is good in MIMO antenna metrics. The experimental set up
for measuring the isolation using VNA is shown in Figure 12a. Figure 12b provides a com-
parative analysis of simulated and experimental S21 values. The novel type of decoupling
structure in the ground plane provides the excellent isolation.

Figure 13 shows the 4 × 4 radiation patterns at 4.1 GHz, 7.2 GHz, and 10.1 GHz. The
E-plane and H-plane of the primary radiator are obtained by activating its port and other
ports are connected with 50 ohm load. An anechoic chamber set up is used to measure the
radiation pattern, with the aid of the DRH20. The radiation efficiency is achieved as 89%
and gain is 4.9 dB as shown in Figure 14.
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4.1. Spike-Shaped UWB-MIMO Antenna Performance

Four performance metrics exist in MIMO antenna systems, all of which should be
acceptable [28–30]. The envelope correlation coefficient is among the key diversity factors
for assessing MIMO performance. The ECC describes the interactions between the MIMO
elements, it should be ideally zero. Over this operating band, a value of less than 0.5 is
acceptable. S-parameters and far-fields can be used to calculate the ECC. The following
equation can be used to represent the ECC [28].

ρij =
|Skk

∗ Skm + Smk
∗Smm|2(

1−
(
|Skk|2 + |Smk|2

))(
1−

(
|Smm|2 + |Skm|2

)) (4)

where k = 1 and m = 2. Using sophisticated decoupling methods and characteristic mode
analysis this antenna achieved ECC of 0.0016 and is depicted in Figure 15b. The lesser ECC
value means the antenna elements were well-isolated in MIMO. The envelope correlation
coefficient (ECC) is also computed from far fields [29] and shown in Equation (5).

Pe =

∣∣∣∫ 2π
0

∫ π
0 (XPR.Eθ1.E∗θ2Pθ + EΦ1E∗Φ2. PΦ)dΩ

∣∣∣2∫ 2π
0

∫ π
0

(
XPR.Eθ1.E∗θ1Pθ + EΦ1E∗Φ1. PΦ

)
dΩX

∫ 2π
0

∫ π
0

(
XPR.Eθ2.E∗θ2Pθ + EΦ2E∗Φ2. PΦ

)
dΩ

(5)
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Another important MIMO diversity parameter is diversity gain (DG). Generally, in
MIMO antennas the DG is nearly 10 dB. Formula [28] illustrates how such DG is stated in
regards of ECC.

DG = 10
√

1− ECC2 (6)

Figure 15a shows that the DG is nearly 9.962 dB. The channel capacity loss (CCL) is
another important diversity parameter [30]. The number of elements in a MIMO system
determines its channel capacity. In the equation, the CCL [31] is expressed as:

CCL = −log2det(ψR) (7)

ψR =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44


ρii = 1−

(
|Sii|2 +

∣∣Si J
∣∣2) = −

∣∣Sii
∗Sij + Sji

∗Sij
∣∣, fori, j = 1to4
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The acceptable value of CCL is 0.4 bits/s/Hz. In this proposed design, CCL of
0.31 bits/s/Hz is achieved and depicted in Figure 16a.
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4.2. Mean Effective Gain (MEG)

The MEG can be expressed using Equation (8) [32]

MEGi =
∫ 2π

0

∫ π

0
[

ѓ
1 + ѓ

Gθ(θ, Φ)Pθ(θ, Φ) +
ѓ

1 + ѓ
GΦ(θ, Φ)PΦ(θ, Φ)]sinθdθdΦ (8)

where ѓ is the event field’s trans discrimination (XPD). The gain components are represented
as Gθ and G∅ for ith elements. The MEG of the intended antenna is −3.1 dB, as illustrated
in Figure 16b.

5. Comparison with Existing Models

The spike-shaped 4 × 4 UWB-MIMO antenna is designed to work in both UWB and
X-band. This antenna has some better features than others previously reported in the liter-
ature [11,15,21,24,25,31,32] and illustrated in Table 2. Compared with other conventional
models the designed antenna has the added benefit of the CMA process. In the designed
UWB-MIMO antenna, the ECC, IBW, and diversity performances are found to be good.

Table 2. Performance comparison of the proposed extended-UWB-MIMO antenna with state-of-the-
art antennas.

Ref Dimensions (mm3)
Impedance

Bandwidth (GHz) Isolation (dB) Gain (dB) Radiation Efficiency (%) ECC

[11] 0.55λ × 0.55 × 0.16λ 3–16.2 >17.5 8.4 >80 <0.3

[15] 0.69λ × 0.69λ × 0.00λ 2.6–11 >17.4 3.99 >85.7 <0.004

[21] 0.38λ × 0.38λ × 0.017λ 3.2–11 >15 4 >70 <0.5

[24] 0.41λ × 0.44λ × 0.01λ 3.1–10.6 >20 4 >90 <0.2

[25] 0.55λ × 0.55λ × 0.015λ 2.84–15.88 >16 6.35 >89 <0.07

[31] 0.56 λ × 0.39 λ 3.52–10.08 >22 2.91 —- <0.04

[32] 0.67 λ × 0.67 λ 2.8–13.3 >18 6 —— <0.06

Prop. 0.44λ × 0.44λ × 0.0176λ 3.2–12.44 >26 4.9 >89 <0.0016
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6. Conclusions

The spike-shaped UWB-MIMO antenna operates in the 3.2 GHz–12.44 GHz frequency
range, which includes the entire UWB (3.1 GHz–10.6 GHz) and X-band (8 GHz–12 GHz).
Four spike-shaped circular patch radiators are placed orthogonally to achieve polarization
diversity. The reflection coefficients (S11) are below −10 dB, and isolation between both
the radiating elements are far better than 26 dB. The radiation parameters include 89%
radiation efficiency, 118.15% impedance bandwidth, and a 4.9 dB gain. ECC, DG, MEG, and
CCL have diversity features of 0.0016, 9.962 dB, −3.1 dB, and 0.31 bits/s/Hz, accordingly.
In a cutting-edge experiment, these findings are verified. According to its performance
parameters, the developed antenna is suitable for wireless communication in the spectrum
of UWB and X-band.
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