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Abstract: The last few years have seen a rapid increase in body-worn devices because these devices
cover a broad spectrum of potential uses. Moreover, body-worn devices still require improvements in
their flexibility, size, and weight that necessitate the development of flexible and miniature antennas.
In this paper, we present a new flexible miniature antenna for body-worn devices. To ensure flexibility
and comfort when the antenna is in contact with the human body, a substrate from natural rubber
filled with TiO2 is developed. The miniaturization is achieved using the quadratic Koch curve. The
antenna design, optimization, and characterization are performed on a human body model. The
performance of the antenna is analyzed in two scenarios: (1) in- to on-body, and (2) on- to off-body
wireless communications. The results show that the antenna realized the maximum telemetry range
of more than 80 mm for in-body communications and more than 2 m for off-body communications.
Moreover, the highest 10 g specific absorption rate value was 0.62 W/kg. These results, in addition to
the antenna’s compact dimensions (12 mm × 26 mm × 2.5 mm) and the low manufacturing price,
make the proposed antenna an ideal candidate for health telemetry applications.

Keywords: flexible antenna; miniature antenna; off-body wireless communications; in-body wireless
communications; SAR; polymer substrate

1. Introduction

The interest in body-worn devices has been growing steadily in the last few years
because they have found applications in many areas [1,2]. Statistics [3] show that, during
and after the COVID-19 pandemic, applications for remote monitoring of human health
using body area networks (BANs) demonstrated an acceleration in growth. The application
of wireless networks for animal health monitoring has also increased in the last few years.
With increased use, there is growing research interest in body-worn gateway devices, as
they provide wireless communication across an implanted device, a body-worn device,
and an external device using channels in, on, or outside the body [4–8].

One of the primary elements of any body-worn gateway device is the antenna [9].
Many challenges are associated with the design of antennas for body-worn gateway devices.

A body-worn antenna needs to be flexible, lightweight, small in size, and made of
materials allowing direct placement on the human or animal skin. Moreover, to ensure
an adequate power transfer between devices for in-/on- or off-body communications, the
antenna needs to maintain stable on-body performance and a bandwidth that covers the
frequency bands of interest with an omnidirectional radiation pattern [10].

To assess the safety of body-worn antennas for health telemetry applications, the
peak 1 g and 10 g specific absorption rates (SARs) and the SAR distribution on a human
body phantom need to be evaluated. Obtained SAR values must be compared with limits
reported in international guidelines and standards [11,12].
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Several types of flexible textile-based antennas for body-worn devices, such as
monopole [13,14], monopole integrated with a reflector [2], squire slot [15], loop [16],
patch [17,18], logo [19], and MIMO [20] antennas, have been presented. Furthermore,
antennas with polymer-based substrates such as dipoles [21], dipoles integrated with
a reflector [5,10,22], monopoles combined with a metasurface [23], and monopoles and
CPW-PIFA fabricated on Rogers flexible substrates [15,24,25] have been proposed for
body-worn applications.

Most flexible wearable antennas reported in the literature have a high degree of isola-
tion between the antenna and human body tissue [2,5,8,10,15,16,19,23,25] and directional
radiation patterns, which make these designs unsuitable for communications between
an antenna placed on the body and another one inside the body. Only a few previous
studies [6,20–22,24,26] presented the design of body-worn antennas for in-/on- and off-
body communications. In these studies, the antennas still suffered from a relatively large
footprint. Another drawback is that no studies have been conducted to determine the
radiation efficiency when the antennas are on a human body phantom.

Several techniques to miniaturize wearable antennas have been proposed. These
techniques can be divided into two categories: (1) techniques that include a change in the
geometrical shape of the antenna [27] or that use a meander [28] or a fractal shape [29];
(2) material loading techniques, using a substrate with a high dielectric constant [30] and
low loss tangent or using a substrate from magneto-dielectric materials that have a relative
permittivity and permeability greater than unity [31]. The most extensively used technique
in antenna miniaturization is shaping the antenna geometry using fractal shapes [32]. The
Koch curve, Hilbert curve, Peano curve, and Sierpiński triangle are some of the most used
geometries in antenna design [33].

Several wireless technologies have been identified for wireless communication be-
tween wearable devices used in healthcare for monitoring and diagnostic purposes. The
most used wireless technologies include Bluetooth, Wi-Fi, and Zigbee [34]. Generally,
the range of frequencies associated with wearable devices used in healthcare covers the
band between 2.4 GHz and 2.48 GHz (i.e., industrial, scientific, and medical (ISM 2.4 GHz)
band). Moreover, a new medical BAN (MBAN) band, which operates from 2.36 to 2.4 GHz,
has been introduced for such applications [35]. Therefore, there is an increasing demand
for a flexible and compact antenna with a bandwidth from 2.36 to 2.48 GHz and an
omnidirectional radiation pattern for wearable devices.

In this paper, a new highly miniaturized wearable antenna is proposed for in-/on-
and off-body wireless communications. To significantly reduce the size of the antenna,
the quadratic Koch curve, also known as the eight-segment Koch curve or Minkowski
curve, is used. The novelty in our design also lies in the fact that the proposed antenna is
developed on a new polymer substrate to achieve comfortable mounting on the human
body. Compared with other reported flexible antennas, the proposed antenna placed on
a human body model demonstrates smaller dimensions, better radiation efficiency, and
maximum gain. The antenna design steps, performance (for two scenarios: in- to on-body
and on- to off-body communications), and SAR distributions on a human body phantom
are also presented.

2. Methods, Models, and Materials
2.1. Methods

During the antenna’s design, analysis, and optimization process, the finite-difference
time-domain (FDTD) simulation software xFDTD (xFDTD, Remcom Inc., State College, PA,
USA) was used. The FDTD method was chosen because it enables detailed modeling of
both antennas and human models [36]. Simulation parameters in all FDTD calculations
were as follows: a nonuniform mesh having a fine-cell size of 0.5 mm and coarse-cell size of
3 mm; absorbing boundaries—perfectly matched layer; sources—a Gaussian (pulse width
of 32 timesteps) for the broadband and a sinusoidal for the single-frequency simulation.
The number of timesteps used for an accurate assessment of the antenna performance
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on human body models was 25,000 (on Phantom 1) and 50,000 (on Phantom 2). The
12-field-component approach was selected to calculate the SAR.

2.2. Numerical Models

Two numerical homogenous human body models (called Phantom 1 and Phantom 2)
that represent the human body in all FDTD simulations were developed. Phantom 1
(dimensions 61.5 mm (x), 10 mm (y), and 46 mm (z)) was used during the antenna design
and optimization process to reduce the simulation time and computational memory. The
antenna performance and SAR distributions were investigated with the help of Phantom 2
(dimensions 180 mm (x), 150 mm (y), and 120 mm (z)) described in [16]. The electromagnetic
properties of the numerical models were the same as those of the experimental phantom
from Table 1.

Table 1. Material properties of the antenna substrate (NR-TiO2) and 2/3 muscle-equivalent phantom
measured at 2.565 GHz.

NR-TiO2
2/3 Muscle-Equivalent

Semisolid Phantom

εr’ 3.1644 43.0
σ (S/m) 0.000816 2.2
ρ (kg/m3) 940 1166

Moreover, to investigate in- and off-body communication channels, two numerical
models of dipole antennas (Dipole 1 and Dipole 2) were developed. The first one (Dipole 1:
length of 39.5 mm and a radius of 2 mm) was designed for in-body wireless communications,
and was placed inside Phantom 2. Dipole 2 (length of 54.5 mm and a radius of 2 mm) was
designed for off-body wireless communications and was placed in free space. The dipoles
were modeled as perfect electric conductors (PECs).

Lastly, we developed several numerical models of the body-worn antenna during the
design and optimization process described in the next section.

2.3. Experimental Models

A flat semisolid 2/3 muscle-equivalent phantom (dimensions 180 mm × 150 mm ×
120 mm) was prepared adapting the recipe from [37]. After 24 h solidification, the electro-
magnetic properties (EM) of the phantom were measured using the resonant perturbation
method at 2.565 GHz at room temperature. Table 1 presents the real part (εr’) of the complex
relative permittivity, electrical conductivity (σ), and density (ρ) of the solid mixture.

Furthermore, two dipole antennas (Experimental Dipole 1 and Experimental Dipole 2)
were fabricated, to experimentally investigate the in- and off-body communication channels.
The dimensions of the experimental dipoles were the same as those of the numerical models
described in the previous subsection.

2.4. Materials

For the antenna substrate, a composite, composed of a mixture of natural rubber and
TiO2 as a filler (NR-TiO2), was fabricated according to the procedure outlined in [10,38]
and then was vulcanized to form a plate with dimensions 150 mm × 150 mm × 2.5 mm.

After the vulcanization, the EM properties of the composite were measured using the
resonant perturbation method at 2.565 GHz. The results are summarized in Table 1. The
measured values of εr’, σ, and ρ were implemented in the numerical models of the antenna
(to the substrate) and used during the design and optimization process described in the
next section.

Brass foil (thickness 0.05 mm) was employed to realize the conductive parts of the
proposed antenna.
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3. Antenna Design and Numerical Studies of the Antenna Performances
3.1. Antenna Design Concept

The design goal is to create a flexible body-worn antenna with minimal volume that
maintains adequate radiation and SAR lower than the limits reported in [11,12] suitable for
in-/on- and off-body wireless communications in two frequency ranges of 2.36–2.4 GHz
MBAN) and 2.4–2.4835 GHz (ISM 2.4 GHz).

The design and optimization were carried out on a human body phantom (Phantom 1)
since the antenna is intended to operate on a human or animal body. This phantom was
used because it has a small size; thus, simulations run quickly.

First, a coplanar waveguide (CPW) transmission line on a flexible polymer-based
NR-TiO2 substrate was designed (Figure 1a). The CPW was optimized to provide the best
combination of small dimensions and characteristic impedance (approaching the 50 Ω
value (±10%)) in the frequency bands of interest. Figure 1b,c show the frequency depen-
dence of the impedance, as well as magnitudes of the reflection |S11| and transmission
|S21| coefficient.
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Figure 1. Design process: (a) numerical models of CPW and different configurations of the antenna
during the design process, (b) input impedance, (c) magnitudes of the reflection |S11| and transmis-
sion |S21| coefficient, (d) generation of the antenna using the quadratic Koch curve, also known as
the eight-segment Koch curve or Minkowski curve, and (e) comparison of the radiation efficiency
and maximum gain of the proposed antenna and monopole antenna based on Minkovski curve when
the antennas were placed on Phantom 1.
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In the second step, a rectangular monopole (length 29.5 mm) was designed as a
radiator, considering its advantages of simple structure and wide bandwidth. The reflection
coefficient magnitudes and input impedance at different stages of antenna design are
presented in Figure 1. As can be seen in Figure 1b, the monopole antenna exhibited
resonance around 2.1 GHz.

In the next step, to reduce the overall height of the antenna, we used the quadratic
Koch curve, also known as the eight-segment Koch curve or Minkowski curve. First, we
divided the straight line (representing the monopole length—Level 0) into four equal parts.
After that, we replaced the two middle segments of the line (Level 1) with a simple figure
also called a generator of the curve, as shown in Figure 1d. Lastly, the resulting curve was
used as a base to create a monopole based on the Minkowski curve (Level 2), as shown
in Figure 1d. The overall height of the monopole antenna based on the Minkowski curve
was reduced to 17 mm (Figure 2). Comparing the reflection coefficient magnitude and
input impedance of the monopole antenna based on the Minkowski curve with those of the
monopole, we can see that the real part increases, while the imaginary part of the input
impedance tends toward values close to zero in the frequency range of 2.2 GHz to 2.8 GHz.
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Lastly, to achieve the impedance matching in the desired frequency bands with max-
imum possible radiation efficiency, we tuned the geometrical dimensions of CPW and
monopole antenna based on the Minkowski curve, as shown in Figure 1a. The proposed
new flexible miniature body-worn antenna has better radiation efficiency than the monopole
antenna based on the Minkowski curve, as shown in Figure 1e.

Figure 2 shows the geometrical dimensions of the coplanar waveguide and antenna
during the design and optimization process.

3.2. Numerical Studies of the Antenna Performances
3.2.1. Reflection Coefficient

Figure 3 displays the simulated reflection coefficients when the proposed antenna was
placed on Phantom 1 and Phantom 2. Looking at the reflection coefficients, it is clear that
the antenna exhibited bandwidth from 2.0 to 2.65 GHz (on Phantom 1) and from 2.25 GHz
to 2.70 GHz (on Phantom 2) at |S11| < −10 dB covering MBAN and ISM. A shift of the
resonance frequency from 2.28 GHz (on Phantom 1) to 2.47 GHz (on Phantom 2) was also
observed. Observed differences are due to the difference in dimensions between Phantom
1 and Phantom 2.
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3.2.2. Radiation Characteristics

The radiation characteristics of the antenna were investigated across the bandwidth of
2.36–2.5 GHz when the antenna was placed on Phantom 2. Figure 4 shows the simulated
radiation patterns at 2.42 GHz, in the xy- and yz-plane. The radiation patterns at frequencies
from 2.36 GHz to 2.5 GHz showed similar behavior.
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3.2.3. Maximum Gain and Radiation Efficiency

The simulated maximum gain is given in Figure 5. As seen, the maximum realized
gain varied between −10.5 dBi and −9.8 dBi and increased with frequency. The negative
antenna gain is due to the power absorbed in the homogeneous phantom. Moreover, the
antenna showed stable radiation efficiency (between 4.6% and 4.83%) in the frequency
range of 2.36 to 2.5 GHz, which is appropriate for health telemetry applications.

3.2.4. Transmission Performances

The capability of the proposed antenna for in- to on-body (scenario 1) and on- to
off-body (scenario 2) communications was also studied. Figure 6a presents the setup for
numerical studies of the transmission performances of the proposed miniaturized antenna.
As seen, the setups consisted of two dipoles (Dipole 1 and Dipole 2) and a homogeneous
phantom (Phantom 2). Dipole 1 was designed to resonate at 2.508 GHz when incorporated
into Phantom 2, while Dipole 2 was designed to resonate at 2.444 GHz in free space. The
simulated reflection coefficient magnitudes versus frequency are presented in Figure 6a for
the two dipoles.
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For the first scenario (in- to on-body communications), the miniaturized antenna acted
as a receiving antenna, whereas Dipole 1 acted as a transmitting one. For this case, the
miniaturized antenna was fixed on the surface of Phantom 2, whereas Dipole 1 was moved
inside the phantom from starting distance din = 20 mm up to din = 80 mm in steps of
10 mm (see Figure 6b). The simulated transmission coefficient magnitudes are presented in
Figure 6b for various locations of the in-body antenna. Results show that the transmission
coefficient magnitudes were higher than −66 dB in the frequency range of interest even at
a distance of 80 mm, which is an acceptable value for a typical receiver.

For the second scenario (on- to off-body communications), the miniaturized antenna
acted as a transmitting antenna, whereas Dipole 2 acted as a receiving one. The simulation
setup for this scenario is similar to the in- to on-body communication scenario. In this
case, Dipole 2 was moved in the free space away from the phantom. The distance from
the phantom surface to Dipole 2 was denoted as doff (see Figure 6c). The investigations
were carried out at four fixed values for doff (0.5 m, 1.0 m, 1.5 m, and 2 m). The simulated
transmission coefficient magnitudes are presented in Figure 6c for various locations of the
off-body antenna. As expected in this scenario, the transmission coefficient magnitudes
were higher than −60 dB even at a distance of 2.0 m, which satisfies the requirement of the
sensitivity of standard receivers at the ISM 2.4 GHz band [23].

From the results, we can conclude that the maximum telemetry range that can be
achieved from the antenna is more than 80 mm for in-body communications and more than
2 m for off-body communications.

4. Fabrication of the Antenna Prototype

A schematic presentation of the antenna prototype is depicted in Figure 7a. In
the first step of the fabrication process, the antenna substrate was prepared by mix-
ing natural rubber, vulcanization accelerators, compatibilizers, and filler (TiO2) in an
open laboratory two-roll mill. The mixture was vulcanized to a plate with dimensions
150 mm × 150 mm × 2.5 mm. In the second step, the conductive elements of the proposed
antenna were fabricated from brass foil using a cutting plotter. Next, the conductive ele-
ments were mounted on the substrate with liquid rubber glue. Lastly, a mini coaxial cable
assembled with a U.FL connector was soldered to the CPW for measurement purposes.
Photographs of the fabricated antenna and experimental flat semisolid 2/3 muscle phantom
are presented in Figure 7b.
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5. Experimental Results

The proposed antenna was tested on the fabricated experimental flat semisolid 2/3 muscle
phantom to validate the antenna design and performance. The reflection and transmission
coefficient magnitudes were measured using a Tektronix TTR500 series TTR503A vector
network analyzer (100 kHz–3 GHz frequency range). Measurements were performed in the
frequency range of 2.0 GHz to 3.0 GHz with 20,001 resolution points. Figure 8a depicts the
measured reflection and transmission coefficients of Dipole 1, Dipole 2, and the proposed
antenna according to the test setup presented in Figure 6a. Good agreement was obtained
between simulations (Figure 6a) and measurements (Figure 8a).
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Figure 8b,c display the measured transmission coefficients for scenario 1 (in- to on-
body communications) and scenario 2 (on- to off-body communications). Comparing the
transmission coefficients presented in Figures 6 and 8, we can see that the measured results
agreed well with the simulations in the frequency range of interest.

The proposed antenna’s radiation patterns were measured in a semi-anechoic chamber,
and the results are presented in Figure 8d. The measured radiation patterns of the proposed
antenna agreed well with the simulated results in both planes.

The effects of bending on the antenna performance were also investigated. The |S11|
and bandwidth were evaluated when the prototype was bent over the arms of a child, man,
and woman. As shown in Figure 8e, the antenna bandwidth did not show any detectable
change after bending. A shift in the resonance frequency was observed. Hence, we can
conclude that bending had a minor effect on the antenna impedance matching.

Moreover, the elongation of the polymer composite evaluated according to ISO
37:2018 [39] was 1.7 MPa.

6. Specific Absorption Rate

Lastly, the impact of the wearable antenna on the human body was investigated by
calculating the specific absorption rate. In all simulations, the flexible body-worn miniature
antenna was on the surface of Phantom 2.

Results show that the highest 1 g (1.98 W/kg per 10 mW of antenna delivered power)
and 10 g (0.62 W/kg per 10 mW of antenna delivered power) SAR values occurred at
2.48 GHz (see Figure 9). According to the specification provided by the ICNIRP [11], SAR
values must be no greater than 2 W/kg averaged over 10 g of tissue. Consequently, the
10 g SAR was below the European threshold of 2 W/kg and the limit proposed in [11].
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Figure 10 displays the SAR distribution at 2.48 GHz. It can be observed that the
maximum SAR occurred at the surface underneath the antenna.
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7. Comparison

Lastly, to demonstrate the advantages of the proposed flexible body-worn miniature
antenna for remote monitoring of human health, its performance metrics are compared to
metrics of the other previously reported antennas for in- to on-body and on- to off-body
communications. The results are presented in Table 2. It can be seen that the proposed
antenna had smaller dimensions than described in [6,21,22,24,26,40,41], better radiation
efficiency than described in [26,40], and higher maximum gain than described in [40]. In
addition, the proposed antenna had the same maximum 1 g SAR compared to the antenna
in [22]. However, the proposed antenna has outstanding features of a simple fabrication
process and a low-cost natural rubber substrate.

Table 2. Comparison of the metrics of the different body-worn antennas with the proposed antenna.

References Rad. Eff. *
(%)

Max. Gain **
(dBi)

Antenna Dimensions
(λ ***)

Frequency Range, GHz
Simulated

Max. 1 g SAR,
W/kg ****

[6] NA NA 0.286λ × 0.006λ 2.4–2.48; 4–10.6 NA
[21] NA NA 0.294λ × 0.620λ 1–4; 3–5 NA
[22] NA −2.10 0.473λ × 0.327λ × 0.0001λ 1.4–2.6; 3–5.9 1.96
[24] NA NA 0.327λ × 0.327λ 2.4–3.5; 4.5–6 NA
[26] 3 NA 0.727λ × 0.490λ × 0.171λ 3.75–4.25 NA
[40] 0.5 −18 0.218λ × 0.229λ × 0.005λ 0.401–0.406; 2.4–2.48 NA
[41] NA NA 0.245λ × 0.286λ × 0.001λ 1.9–2.2 NA

Proposed antenna 4.76 −9 0.098λ × 0.212λ × 0.020λ 1.98–2.8 1.96

* Rad. Eff—radiation efficiency when the antenna is placed on a human body model. ** Max. Gain—maximum
gain when the antenna is placed on a human body model. *** λ—wavelength in free space at 2.45 GHz.
**** Max. 1 g SAR—maximum 1 g SAR at 2.45 GHz when the antenna is on a human body model. All re-
sults were normalized to net input power of 10 mW. NA—not available.

8. Conclusions

A miniature flexible body-worn antenna was proposed and analyzed for remote
monitoring of human health applications. The antenna achieved more than 4.5% on-body
radiation efficiency over the targeted frequency bands. Moreover, the proposed antenna
realized a maximum telemetry range of more than 80 mm for in-body communications and
more than 2 m for off-body communications. These results, in addition to the antenna’s
compact dimensions (12 mm × 26 mm × 2.5 mm) and the low manufacturing price, make
the proposed antenna an ideal candidate for health telemetry applications.
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