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Abstract: This current study aims to enhance the electrostatic MEMS converter performance mainly
by boosting its output power. Three different techniques are applied to accomplish such performance
enhancement. Firstly, the power is boosted by scaling up the technology of the converter CMOS
accompanied circuit, the power conditioning, and power controlling circuits, from 0.35 µm to 0.6 µm
CMOS technology. As the converter area is in the range of mm2, there are no restrictions concerning
the scaling up of the accompanied converter CMOS circuits. As a result, the maximum voltage of
the system for harvesting energy, Vmax, which is the most effective system constraint that greatly
affects the converter’s output power, increases from 8 V to 30 V. The output power of the designed
and simulated converter based on the 0.6 µm technology increases from 2.1 mW to 4.5 mW. Secondly,
the converter power increases by optimizing its technological parameters, the converter thickness
and the converter finger width and length. Such optimization causes the converter output power to
increase from 4.5 mW to 11.2 mW. Finally, the converter structure is optimized to maximize its finger
length by using its wasted shuttle mass area which does not contribute to its capacitances and output
power. The proposed structure increases the converter output power from 11.2 mW to 14.29 mW.
Thus, the three applied performance enhancement techniques boosted the converter output power
by 12.19 mW, which is a considerable enhancement in the converter performance. All simulations are
carried out using COMSOL Multiphysics 5.4.

Keywords: performance enhancement; MEMS converter; vibration; boosting the output power;
COMSOL Multiphysics 5.4

1. Introduction

Recent studies focus on developing low-power, portable, and remote devices. Such
development contributes to replacing traditional energy sources with untraditional ones.
Thus, it is important to harvest environmental energy because, in applications located in
a non-reachable environment where maintenance costs are high, harvesting the energy from
the environment becomes essential. Biomedical devices and remote area wireless sensors
are some examples of applications that need energy harvesters [1–4]. Harvesting energy
means converting environmental energy directly into electrical energy. Solar, thermal,
vibration, and wind energy are examples of environmental energy [5–8]. Concerning the
vibration energy, the MEMS harvester is normally used. It consists of a spring and a mass. It
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resonates at one or more of the input vibration frequencies. MEMS vibration harvesters have
three types: electrostatic, electromagnetic, and piezoelectric harvesters [9–13]. Such types
are based on the transfer mechanism. In an electromagnetic harvester, its coil resistance
causes losses which are considered one of its main drawbacks. Additionally, the fabrication
processes of this type of harvester are complex and its process compatibility is low [14].
For the electrostatic energy harvester, its fabrication processes are easy as it uses the micro-
machining standard processes [15–18]. The required type of MEMS harvester is determined
based on the required power density in a certain application. Electrostatic harvesters
dominate piezoelectric when the accelerations are low. The reason is that its energy loss is
low. At very high accelerations, the piezoelectric harvester performance is greatly degraded,
which is caused because of its dielectric breakdown limit. At very high accelerations, the
electrostatic harvesters are better. Thus, the optimal mechanism of transduction is based
on the operating frequency, device size, and harvesting acceleration [19–25]. Electrostatic
harvesters are based on the mechanism of capacitive sensing, which is considered the
dominant mechanism for micro-machined applications. This is because of its compatibility
with all the fabrication processes [26–29]. Recently, the enhancement of the electrostatic
MEMS converter performance becomes important. The enhancement is mainly related
to improving its output power. Until now, it still ranges from µW to a few mW [30–33].
Additionally, another research direction concerns the accompanied converter circuit. Such
direction is necessary for treating the output power to be delivered to the load [34–37].

In this current study, the main objective is to enhance the converter power based on
investigating the main key performance factors which effectively affect the converter perfor-
mance. Such main factors are the maximum voltage of the energy harvesting system, Vmax,
the converter technological parameters, and the optimization of the converter structure.
Our research group has previous efforts concerning the enhancement of the electrostatic
MEMS converter output power. Its power was initially enhanced by depositing a high
dielectric material, which is the tantalum pentoxide, Ta2O5, on its sidewall fingers [38].
The converter power increases to a few mWs, from 0.09 mW to 2.1 mW. Such values are
considered a remarkable enhancement in comparison with recent studies [30–32]. In this
paper, our main contribution is to boost the electrostatic MEMS converter output power
by applying three effective performance enhancement techniques. Each applied technique
aims to effectively enhance one of the main key performance factors which greatly improves
the converter output power. The first technique is carried out by scaling up the technology
of the converter CMOS circuit, the power conditioning, and power control circuits, from
0.35 µm to 0.6 µm CMOS technology. This scaling up increases the maximum voltage of
the energy harvesting system, Vmax, from 8 V to 30 V. As Vmax is the most effective system
constraint that greatly affects the converter output power [38], this output power is nearly
doubled by applying this technique. Secondly, the converter output power is enhanced
by optimizing its technological parameters, thickness, finger width, and length. Finally,
the converter structure is optimized to overcome its wasted shuttle mass area. Thus, the
converter finger length, which is the most effective technological parameter in enhancing
its output power, is maximized.

The paper is arranged as follows. Section 2 illustrates the spring design which is re-
sponsible for the frequency tuning of the converter. In Section 3, the COMSOL Multiphysics
5.4 is calibrated by using a case study of 0.35 µm CMOS technology. Moreover, the required
simulation results for calibrating the tool, including electric potential distribution, electric
field distribution, the converter displacement, stress analysis, and the output power at dif-
ferent input voltage, are presented. In Section 4, a qualitative analysis of the three applied
effective techniques used for enhancing the electrostatic MEMS converter performance
based on its power equation is illustrated. In Section 5, the qualitative analysis is evaluated
and verified using COMSOL Multiphysics 5.4. Finally, the conclusions and the important
findings of this work, along with our future work, are offered in Section 6.
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2. Electrostatic MEMS Converter Spring Design

In our previous research, we built up a proposed electrostatic MEMS converter be-
havioral circuit model. The published model represented the converter comb drive. The
proposed model illustrates the converter behavior when converting the input vibration
energy into electricity [38]. A Supplementary Martial which summarizes the basic concept
of the converter operation is provided. The output from the converter proposed model was
the gained energy. The converter resonant frequency, which the converter spring is respon-
sible for, was included in the calculation of the converter output power [38]. In this work,
both the converter comb drive and spring design are considered. In this section, firstly,
the most suitable spring configuration for the electrostatic MEMS converter operation is
qualitatively determined. Then, the design of such a suitable configuration is illustrated.

2.1. The Common Geometries of MEMS Spring

In this subsection, the commonly used MEMS spring geometries are presented.
A comparison between such geometries is carried out to determine the most suitable
type for the in-plane gap-closing electrostatic MEMS converter operation [39]. Figure 1a–c
demonstrates the common MEMS spring geometries which are fixed–fixed, folded, and
crab leg flexures.
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view. 
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Figure 5. (a) The two finger representation of the converter and (b) the converter’s maximum 
displacement. 

 
Figure 6. The converter stress analysis is due to the input vibration signal. 

3.4. The Converter Outputs Power at Different Vip 

Figure 1. The common MEMS spring geometries: (a) fixed–fixed flexures, (b) folded flexures, and
(c) crab leg flexures.

Referring to Figure 1a, the fixed–fixed flexure spring geometry has an extensional
axial stress in its beam. Thus, the spring constant of this geometry is very stiff and non-
linear. Thus, it will not support the converter motion in the required x direction [39,40].
Concerning the folded flexure, referring to Figure 1b, it has a good compromise of linear
behavior to an extent in the y direction. In addition, it has an added stiffness in the
x direction. Therefore, it will resist the converter motion in the x direction [39,40]. In
Figure 1c, the crab leg flexure is a modified version of the fixed–fixed flexure configuration.
It has an added thigh to the beam which is used to minimize the peak stress [41]. This
configuration is used to reduce the extensional axial forces of the beam [40]. Moreover, the
crab leg flexure offers the required symmetry which is suitable for the in-plane gap-closing
converter to function [42]. The most suitable spring type for the in-plane gap-closing
electrostatic MEMS converter is the crab leg flexure, as it supports the motion in the desired
x direction which is the required direction of motion of the converter [39–42]. Moreover,
it reduces the extensional axial stress and provides better symmetry. Thus, the converter
becomes safe from fracture during its operation [39–42].

2.2. Crab Leg Spring Design

The design of the crab leg spring, which is the most suitable MEMS spring geome-
try for the in-plane gap-closing electrostatic MEMS converter operation, aims to adjust
the converter resonant frequency to be tuned to the desired frequency of the required
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application [38]. In this subsection, the design of the crab leg spring is illustrated. Firstly,
the main governing equations which are used to design the crab leg flexure are presented.
Then, the technological parameters of such spring are analytically determined. The spring
constant (k) is determined by Equation (1) [39]:

f0 =
1

2π

√
k
m

(1)

where m is the shuttle mass, as given by Equation (2):

m = ρtAmovable (2)

where ρ (= 2.33 g/cm3) is the density of poly-Si, which is the material utilized for fabricating
the spring, and t is the converter thickness. Amovable is the shuttle mass area and equals Lm
(Wm + 2 Lf), Lm and Wm are the shuttle mass length and width, respectively, and Lf is the
finger length. The values of Lm, Wm, and Lf are 1 cm, 0.3 cm, and 512 µm, respectively [38].
By using Equations (1) and (2), k is calculated to be 11.55 × 103 N/m. Recalling the
equations of the crab leg [39], the spring constants in the x and y directions, kx, and ky, are
given by Equations (3), and (4), respectively:

kx =
EtW3

b
L3

b
(3)

ky =
EtW3

a

L3
a

(4)

Now, referring to Figure 1c, the spring dimensions need to be evaluated. These
dimensions are beam length (Lb), thigh length (La), and the widths of the beam and thigh
which are (Wb, and Wa), respectively. Lb is calculated by using the maximum spring
deflection in the following equation:

Zmax =
2σL2

b
3nstE

(5)

Zmax is the maximum displacement. The values of Zmax and t are 6.75 µm and 500 µm,
respectively [38]. σ and ns are the fracture stress of polysilicon and safety factors and equal
7 GPa, and 1.8, respectively [43]. Substituting Equation (5), Lb is evaluated to be 0.7 mm.
The spring constant that is calculated using Equation (1) is assumed to be in the desired
direction of motion of the in-plane gap-closing converter (kx). Recalling Equations (3) and
(4), ky must be larger than kx to avoid the converter motion in the undesired Y direction [44].
Thus, ky/kx is taken to be 500. In addition, for the homogeneity of the spring, we assume
that Wa = Wb = Ws. Combining Equations (3) and (4), La and Ws are evaluated to be 88 µm
and 23 µm, respectively. All calculated parameters along with their respective definitions
are summarized in Table 1.

Table 1. A summary of the main technological design parameters.

Parameter Definition Value (unit)

t Converter thickness 500 µm
Lm Shuttle mass length 1 cm
Wm Shuttle mass width 0.3 cm
Lf Finger length 512 µm
Lb Beam length 0.7 mm
La Thigh length 3.2 mW
Ws Spring width 3.06 mW
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3. Calibration of COMSOL MultiPhysics 5.4

In this section, the simulation of the electrostatic MEMS converter is carried out by
using COMSOL Multiphysics 5.4. The simulator is calibrated by using the technological
parameters of the electrostatic MEMS converter case study found in [38]. The converter
performance is verified by achieving the simulation results of five main performance
indicators which are electric potential and the electric field distribution, the converter
fingers displacement and the stress analysis due to the input vibration signal, and the
converter output power (Pout) is simulated at different input voltage (Vip).

3.1. The Electric Potential and Electric Field Distributions

First, Figure 2a demonstrates the 2D converter structure for 0.35 µm CMOS technology
by using COMSOL Multiphysics 5.4. Figure 2b shows a part of the structure which clarifies
its details. Upon simulating the structure given the appropriate boundary conditions, the
electric potential distribution is demonstrated in Figure 3a,b. The voltage distribution
changes from 0 V to Vmax, which is 8 V for the 0.35 µm design [38]. Furthermore, the
electric field distribution simulation is performed to check the safe design of the converter
concerning the maximum electric field that exists between the converter fingers. Figure 4a,b
show the simulation results of the electric field distribution with a focus on Figure 4b, which
clarifies the results. It is clear that the value of the maximum electric field is 1.16 × 106 V/m,
which is less than half of the air breakdown electric field, which is 1.5 × 106 V/m [38]. This
result guarantees that the converter design is safe.
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In this subsection, the input vibration signal of the vibration source is applied to the
converter. Thus, the maximum displacement of the converter can be measured. As shown
in Figure 5a, the nominal gap between converter fingers at rest position (dnom), at which
the minimum capacitance of the converter occurs, is 7 µm. Additionally, the minimum
distance (dmin) at which the maximum capacitance of the converter occurs is 0.25 µm. Thus,
the maximum displacement of the converter fingers must be dnom–dmin = 6.75 µm. Figure 5b
shows the simulation results of the converter’s maximum displacement. It is equal to
6.75 µm, which quantitatively verifies the analytically calculated value based on Figure 5a.
This value satisfies the proper operation of the converter.
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Figure 5. (a) The two finger representation of the converter and (b) the converter’s maximum displacement.

3.3. The Stress Analysis for the Converter Due to the Input Vibration Signal

In this subsection, stress analysis for the converter due to the input vibration signal
is investigated. Such simulation is important to guarantee that the design is safe against
fracture. Figure 6 shows the simulation results of the converter stress. It is obvious
that the maximum stress is 3.67 × 108 N/m2, which is 0.367 Gpa. This value is smaller
than the fracture stress of the polysilicon, which is 7 GPa [43]. Thus, the design is safe
against fracture.



Micromachines 2023, 14, 485 7 of 17

Micromachines 2023, 14, x  7 of 19 
 

 

 

 
(a) (b) 

Figure 5. (a) The two finger representation of the converter and (b) the converter’s maximum dis-
placement. 

3.3. The Stress Analysis for the Converter due to the Input Vibration Signal 
In this subsection, stress analysis for the converter due to the input vibration signal 

is investigated. Such simulation is important to guarantee that the design is safe against 
fracture. Figure 6 shows the simulation results of the converter stress. It is obvious that 
the maximum stress is 3.67 × 108 N/m2, which is 0.367 Gpa. This value is smaller than the 
fracture stress of the polysilicon, which is 7 GPa [43]. Thus, the design is safe against 
fracture. 

 
Figure 6. The converter stress analysis is due to the input vibration signal. 

3.4. The Converter Outputs Power at Different Vip 
In this subsection, the converter output power (Pout) is simulated by sweeping the 

input voltage (Vip). The output power Pout is directly proportional to the square of Vip, as 
indicated in Ref. [38]. Therefore, the maximum value of Pout (Poutmax) has to occur at Vip 
equal to the maximum voltage of the system, which is 8 V for the used case study. Addi-
tionally, Pout is expected to increase with the increase in Vip. Figure 7 shows the simula-
tion results of Pout vs. Vip for sweeping Vip from 0 V to 14 V. It is obvious that the maxi-
mum value of Pout, which is 2.1 mW, occurs at Vmax, which is 8 V, which is in agreement 
with the gained value from the converter model and the analytically calculated values, 

Figure 6. The converter stress analysis is due to the input vibration signal.

3.4. The Converter Outputs Power at Different Vip

In this subsection, the converter output power (Pout) is simulated by sweeping the
input voltage (Vip). The output power Pout is directly proportional to the square of Vip,
as indicated in Ref. [38]. Therefore, the maximum value of Pout (Poutmax) has to occur at
Vip equal to the maximum voltage of the system, which is 8 V for the used case study.
Additionally, Pout is expected to increase with the increase in Vip. Figure 7 shows the
simulation results of Pout vs. Vip for sweeping Vip from 0 V to 14 V. It is obvious that the
maximum value of Pout, which is 2.1 mW, occurs at Vmax, which is 8 V, which is in agreement
with the gained value from the converter model and the analytically calculated values,
which were 2.2 mW and 2.3 mW, respectively [38]. Based on the previous calculations and
results, the COMSOL tool is calibrated to be used for optimizing the electrostatic MEMS
converter structure to enhance its performance.
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4. Qualitative Analysis of the Three Performance-Enhancing Techniques

In this section, the performance enhancement of the converter is investigated to boost
its output power. Three effective performance enhancement techniques are applied to
achieve such an objective. Firstly, the converter output power is boosted by scaling up
the technology of the converter CMOS circuit, the power conditioning, and power control
circuits, from 0.35 µm to 0.6 µm CMOS technology. Secondly, the converter output power
increases by optimizing its technological parameters, namely the converter thickness and
converter finger width and length. Finally, the converter structure is optimized to maximize
its finger length.

Concerning the first technique, the technology of the converter circuit is scaled up from
0.35 µm to 0.6 µm CMOS technology. Such scaling up has the following advantages. Firstly,
it increases the main effective system constraint, Vmax. As the converter output power is
directly proportional to the square of Vmax [38]; so, scaling up the technology is expected
to effectively enhance the converter output power. Moreover, when Vmax increases, the
nominal distance (dnom) between the converters’ fingers increases, resulting in decreasing
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the number of fingers. Additionally, the aspect ratio (AR) of the deep reactive ion etching
(DRIE) fabrication process decreases. Thus, the converter fabrication cost decreases.

To qualitatively calculate the maximum voltage (Vmax) of 0.6 µm CMOS technology, its
breakdown voltage (VBD) must be specified. From the 0.6 µm CMOS technology file [45],
VBD is 62 V. For a safe design of the power switches found in the system power condition
circuit, Vmax is assumed to be approximately equal to half of VBD [38]; thus, Vmax is assumed
to equal 30 V. Based on the value of Vmax, the nominal distance between the converter fingers
(dnom.) must be calculated to satisfy the safe design. The nominal distance is determined
using Equation (6):

Emax = Vmax/dnom. (6)

Emax is the maximum electric field that occurs between the converter fingers. For
a safe design, it is assumed to be half of the breakdown field of air. Thus, E equals
1.5 × 106 V/m [46], from which dnom is calculated to be 20 µm.

The second applied performance enhancement technique is the optimization of the
converter technological parameters which are the finger length (Lf), finger width (Wf), and
the converter thickness (t). Equations (7)–(9) represent the converter number of fingers
(Ng), maximum capacitance (Cmax), and minimum capacitance (Cmin).

Ng =
Lm(

W f + 2 × dnom.

) (7)

Cmax =
4Ngε0εrL f tdnom.

(d2
nom. − Z2

max)
(8)

Cmin =
4Ngε0εrL f t

dnom.
(9)

Based on the above equations, to increase Pout, the converter capacitances must in-
crease [38]. To increase the capacitances the converter finger length and thickness, the
number of fingers must increase. Concerning the finger width, using Equation (7) to
increase the number of fingers, the finger width must decrease. In the optimization of
converter technological parameters there are essential technological limitations and restric-
tions. Such limitations affect the optimum values of each technological parameter. In the
Section 5, these limitations will be illustrated.

The third applied performance enhancement technique is the optimization of the
converter structure. Such optimization aims to overcome the converter wasted shuttle mass
area, which will be illustrated in the coming sections.

5. Enhancing the Converter Performance Using COMSOL Simulations

In this section, the electrostatic MEMS converter performance based on the three applied
enhancement techniques is simulated using COMSOL Multiphysics 5.4.

5.1. Scaling Up the Technology

As mentioned herein, the converter out power becomes 4.5 mW when scaling up to
0.6 µm CMOS technology. This value is double the output power in the case of 0.35 µm
CMOS technology, which was 2.1 mW. The converter performance based on the technology
scaling is simulated to ensure the proper operation of the converter under investigation.
The electric potential and the electric field distributions, the converter displacement, and
the stress analysis due to the input vibration signal, and the converter output power at
different Vip is simulated. Figure 8a demonstrates the 2D converter structure for 0.35 µm
CMOS technology by using COMSOL Multiphysics 5.4. Figure 8b shows a part of the
structure which clarifies its details.
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Figure 9a–e show the simulation results of the electric potential distribution, electric
field distribution, the converter displacement due to the input vibration signal, the stress
analysis, and the converter output power at different values of Vip. In Figure 9a, it is clear
that the maximum voltage, Vmax, is 30 V, which numerically verifies the qualitative value
in Section 4. Figure 9b displays the maximum electric field, which is 1.83 × 106 V/m. It
is less than half of the air breakdown electric field, which is 1.5 × 106 V/m [46]; thus, the
design is safe. In Figure 9c, the maximum displacement is 19.7 µm, which agrees with the
analytical value dmon.–dmin. = 20 µm–0.25 µm = 19.75 µm in Section 4. Further, regarding
Figure 9d, the value of the maximum stress is found to be 0.36 Gpa, which is again smaller
than the fracture stress of the polysilicon. Thus, the converter design is safe against fracture.
Finally, concerning Figure 9e, it is obvious that the value of the simulated Poutmax at Vmax is
4.5 mW, which is double the value found for 0.35 µm CMOS technology.
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5.2. Technological Parameters Optimization

Here, the converter performance is enhanced by optimizing its technological pa-
rameters which are the converter thickness (t), finger width (Wf), and finger length (Lf).
Concerning the device thickness (t), recalling Equations (7)–(9) of Ng, Cmax, and Cmin, it is
obvious that Cmax and Cmin increase by increasing the device thickness (t). As a result, the
output power of the converter increases. In this work, t is selected to be 500 µm, as it is
the standard device thickness for SOI technology [19,47]. Concerning the converter finger
width (Wf), it is clear using Equation (7) that Ng increases by decreasing Wf. Thus, Cmax,
Cmin, and Pout will increase. The converter output power is calculated and simulated for
different values of Wf. The optimum value of Wf that achieves the highest output power
is found to be 5 µm. Table 2 represents the calculated and simulated values of Pout at
different Wf. Figure 10 shows Pout versus Vip at different Wf. It is obvious that Pout increases
by decreasing Wf. In this work, the value Wf is set to 10 µm to guarantee the rigidity of
the structure.

Table 2. Pout at different Wf.

Wf Pout Calculated Pout Simulated

5 µm 5.3 mW 4.5 mW
10 µm 5 mW 4.3 mW
15 µm 4.5 mW 4 mW
20 µm 4.1 mW 3.6 mW
25 µm 3.8 mW 3.4 mW
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For the converter finger length (Lf), recalling Equations (8) and (9), it is obvious that
Cmax and Cmin increase by increasing Lf. Thus, Pout also increases. Table 3 represents the
calculated and simulated values of Pout, at different values of Lf [48]. Furthermore, Figure 11
shows Pout versus Vip at different Lf. As is depicted, Pout increases by increasing Lf. In this
work, the value Lf is set to 1200 µm, achieving the optimum Pout. Figure 12a demonstrates
the 2D converter structure for 0.35 µm CMOS technology by using COMSOL Multiphysics
5.4. Figure 12b shows a part of the structure which clarifies its details.

Table 3. Pout at different Lf.

Lf Pout Calculated Pout Simulated

200 µm 2 mW 1.96 mW
400 µm 4.1 mW 3.59 mW
600 µm 6.19 mW 5.5 mW
800 µm 8.26 mW 7.4 mW

1000 µm 10.3 mW 9.3 mW
1200 µm 12.39 mW 11.2 mW
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Figure 13a–e show the simulation results of the optimized converter; the maximum
voltage is 30 V, as indicated in Figure 13a, which agrees with the analytical value. In
addition, the maximum electric field is 1.78 × 106 V/m according to Figure 13b, confirming
the safety design criterion. Furthermore, the maximum displacement is 19.7 µm, extracted
from Figure 13c, which agrees with the analytically calculated value. Furthermore, as can
be inferred from Figure 13d, the value of the maximum stress is 0.317 Gpa, revealing the
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safety against fracture. Finally, Poutmax is 11.2 mW according to Figure 13e, which illustrates
the variation of Pout versus Vip. This simulated value also agrees with the analytically
calculated value.
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Remarkably, the most effective technological parameter which significantly influences
the converter performance is Lf. Referring to Figure 12, it is not recommended that Lf
exceeds 1200 µm [19,47,48]. From fabrication visibility, the converter finger becomes so
long that it can be easily broken. Thus, if Lf exceeds 1200 µm, the converter will become
fragile. For the converter structure to be optimized, one has to maximize the converter
finger length without being fragile.
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5.3. The Electrostatic MEMS Converter Structure Optimization

Next, the converter performance is enhanced by modifying and optimizing its struc-
ture. Figure 14 demonstrates the proposed converter structure which has the following
advantages. First, it makes the best use of the wasted shuttle mass area by evacuating its
center. Secondly, the finger length increases; thus, the output power also increases. Finally,
the converter becomes ridged because of the continuous fingers which are anchored from
both sides. Figure 15 shows the simulation results of the proposed converter output power
with the input voltage. As depicted in the figure, the output power becomes 14.29 mW.
Thus, the proposed structure enhances the converter output power further by 3 mW.
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As a comparison with the cited work in [30], multi-vibrational mode electrostatic
energy harvesters have been designed. An output of 2.96 µW at an input vibration fre-
quency of 1.272 kHz has been obtained [30]. Further, a symmetric comb electrode has been
used at an input vibration frequency of 125 Hz and an output power of 70 µW has been
provided [31]. An electret vibration energy harvester was used which provides an output
power of 495µW at an input vibration frequency of 1.2 kHz [32]. Concerning Ref. [47],
gap-closing inter-digitated electrodes electrostatic MEMS vibration energy harvesters were
used at an input vibration frequency of 120 Hz and gave 3.13 µW of output power. A 2DOF
e-VEH MEMS device with impact-induced nonlinearity was utilized where operation at
an input vibration frequency of 731 Hz was employed [49]. Such type gives an output
power of 14 µW. Moreover, in Ref. [50], a batch-fabricated, low-frequency, and wideband
MEMS electrostatic vibration energy harvester has been used at an input vibration fre-
quency of 428 Hz and an output power of 6.6 µW was recorded. Finally, an out-of-plane
electret-based vibrational energy harvester was introduced at an input vibration frequency
of 95 Hz giving an output power of 0.95 µW [51].

Table 4, summarizes the output power of the proposed electrostatic MEMS converter
in comparison with cited studies. It is obvious that the proposed converter using 0.6 µm
CMOS technology is promising, as it achieves a high 14.29 mW output power. After
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exploring the design space of all kinds of parameters, there is an important intrinsic
tradeoff and challenges for the proposed electrostatic MEMS converter. Such challenges
concern the reduction in the converter area which will effectively reduce its fabrication
cost. Previously, there was a tradeoff between reducing the converter area to reduce the
fabrication cost which greatly degrades the converter performance, mainly its output power.
In our promising proposed converter, a proposed solution to such an issue is introduced.
The reason is that our converter generates a relatively high output power when compared
with the recent research. Thus, based on the application, its area can be reduced while
maintaining the satisfactory output power which was not applied before. In addition, there
was a main challenge faced by the converter which is its fragility after fabrication. This is
because the finger length must be large to achieve higher output power. Thus, the finger
can be easily broken. However, our promising proposed converter is less fragile and more
ridged. The reason is that the converter fingers are attached from two sides in a structure
that looks like a net, as shown in Figure 4. Thus, it will not suffer from being broken.

Table 4. Performance parameters comparison of different electrostatic harvesters.

Work Converter Type Frequency (kHz) Output Power (mW)

[30] Multi-vibrational mode 1.272 0.00296
[31] Symmetric comb electrode 0.125 0.070
[32] Electret vibration energy harvester 1.2 0.495
[47] Gap-closing electrostatic MEMS vibration energy harvester 0.12 0.00313
[49] 2DOF e-VEH MEMS device with impact-induced nonlinearity 0.731 0.014

[50] Batch-fabricated, low-frequency, and wideband MEMS
electrostatic vibration energy harvester 0.428 0.0066

[51] Out-of-plane electret-based vibrational energy harvester 0.95 0.00095
This work In-plane gap-closing converter using 0.35 µm CMOS technology 2.5 2.1
This work In-plane gap-closing converter using 0.6 µm CMOS technology 2.5 4.5

This work In-plane gap-closing proposed converter using
0.6 µm CMOS technology 2.5 14.29

6. Conclusions

In this work, the electrostatic MEMS converter performance is enhanced by using
three effective techniques. Firstly, the converter output power is boosted by scaling up
the technology of its accompanied CMOS circuit, the power conditioning and power
controlling circuits, from 0.35 µm to 0.6 µm CMOS technology. The maximum voltage of
the energy harvesting system, Vmax, is the most effective system constraint that increases
from 8 V to 30 V. Thus, the converter output power is doubled from 2.1 mW to 4.5 mW.
Secondly, the converter output power increases by optimizing its technological parameters,
the converter thickness and the converter finger width and length. The optimum values of
the converter parameters which achieve the optimum output power are t equals 500 µm, Wf
is selected to be 10 µm, and Lf equals 1200 µm. Thus, the converter output power increased
from 4.5 mW to 11.2 mW. From such optimization, Lf is found to be the most effective
technological parameter which affects the converter performance. It is recommended to
maximize Lf; however, this objective cannot be achieved with the traditional electrostatic
MEMS converter as long as Lf increases and the converter becomes fragile. The third
optimization technique aims to maximize the converter finger length by optimizing the
converter structure. A proposed structure aims to overcome the wasted area of the shuttle
mass and maximize Lf by anchoring it from both sides. Thus, the converter becomes more
ridged. The proposed structure enhances the converter output power from 11.2 to 14.29 mW.
All the simulations are carried out by using COMSOL Multiphysics 5.4. In future work, the
bandwidth broadening of the electrostatic MEMS converter will be investigated. Thus, the
converter will resist performance degradation due to any shift in its resonant frequency.
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