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Abstract: The reconfigurable feature of FPGAs (Field-Programmable Gate Arrays) has made them a
very attractive solution for implementing adaptive systems-on-chip. However, this implies additional
design tasks to handle system reconfiguration and control, which increases design complexity.
To address this issue, this paper proposes a model-driven design flow that guides the designer
through the description of the different elements of a reconfigurable system. It is based on high-
level modeling using an extended version of the MARTE (Modeling and Analysis of Real-Time and
Embedded systems) UML (Unified Modeling Language) profile. Both centralized and decentralized
reconfiguration decision-making solutions are possible with the proposed flow, allowing it to adapt
to various reconfigurable systems constraints. It also integrates the IP-XACT standard (standard for
the description of electronic Intellectual Properties), allowing the designer to easily target different
technologies and commercial FPGAs by reusing both high-level models and actual IP-XACT hardware
components. At the end of the flow, the implementation code is generated automatically from the high-
level models. The proposed design flow was validated through a reconfigurable video watermarking
application as a case study. Experimental results showed that the generated system allowed a good
trade-off between resource usage, power consumption, execution time, and image quality compared
to static implementations. This hardware efficiency was achieved in a very short time thanks to the
design acceleration and automation offered by model-driven engineering.

Keywords: reconfigurable architecture; dynamic partial reconfiguration; FPGA; UML/MARTE;
automatic code generation; IP-XACT standard; video watermarking application

1. Introduction

Reconfigurable FPGA-based systems-on-chip (SoCs) can be modified several times
after fabrication. Dynamic Partial Reconfiguration (DPR), supported by several FPGAs,
offers the possibility to reconfigure some parts of the FPGA at runtime [1]. This allows for
optimizing the system area by reusing the same hardware resources for different application
tasks. However, it implies an increased system design complexity that can be seen at
different design levels, such as designing reconfigurable application tasks, reconfigurable
architecture regions, reconfiguration control, etc. Furthermore, other elements have to
be taken into account by the designer, such as performance, resource usage, and power
consumption. Therefore, there is a need for a platform that simplifies the designer’s work
while meeting all the constraints of a reconfigurable design.

Model-Driven Engineering (MDE) can be a solution to reduce design complexity. UML
(Unified Modeling Language) [2] is commonly used in this approach for system modeling.
The graphical nature of this language facilitates system understanding, editing, and reuse.
UML profiles are a way to apply this language, originally used for software modeling, to
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other domains such as embedded systems. A UML profile is a set of extensions of the
basic UML elements, which we call stereotypes. These stereotypes are used to describe
different features of a given domain. There are several standard UML profiles for embedded
systems, such as SysML (System Modeling Language) and MARTE (Modeling and Analysis
of Real-Time and Embedded systems) [2].

One of the advantages of using MDE is that it allows for generating a system imple-
mentation code from high-level models. To allow this feature, MDE approaches often use a
deployment phase that links the components of high-level models to low-level implementa-
tions through IPs (Intellectual Properties). All the necessary code for IP communication and
system implementation is then generated automatically from high-level models. Further-
more, the code of some high-level components, with non-existent implementing IPs, can
be generated from the UML descriptions of their behaviors, such as UML state machines.
This can be the case with the reconfiguration controller, for instance. The main issue of the
deployment phase of most MDE methodologies in the literature is that the deployed hard-
ware IPs are tightly linked to the implementation technology, which makes both high-level
models and actual IPs hardly reusable for various technologies. In this context, a standard
representation of the system components is required to enhance design reuse.

The IP-XACT specification developed by the SPIRIT consortium offers a standard
XML description of IP meta-data independent of the used language. This facilitates system
integration using compatible descriptions from multiple component vendors and allows
IPs to be easily reused and exchanged between electronic design automation (EDA) tools
for SoCs [3]. Therefore, this standard has been increasingly used lately in FPGA tools. In the
context of model-driven designs, IP-XACT can be used as an intermediate representation
to go from high-level models to executable code.

The progress in FPGA technologies has enabled them to embed a growing number of
computing resources on one chip, targeting increasingly sophisticated applications. This
has led to a more complex design handling different aspects related to runtime adaptation.
In this context, it may be difficult to analyze all the control data in a centralized way.
Designing a decentralized control by splitting the control problem between autonomous
controllers, each handling the self-adaptation of a reconfigurable component, can be benefi-
cial for complex reconfigurable systems. A coordinator that has visibility only on global
system requirements and constraints can be used in this approach, leaving local control
data management to the distributed controllers. This reduces the complexity of the con-
trollers, facilitating their verification and their reuse as well as the scalability of the control
model. Therefore, the design flow proposed in this paper offers the possibility to design
both centralized and decentralized control, depending on the requirements of the control
problem handled by the target system.

This paper proposes an MDE-based design flow and platform for dynamically recon-
figurable SoCs aiming at reducing design complexity through the following contributions:

• High abstraction level modeling and automatic generation of the implementation
code without the need for in-depth knowledge of many low-level aspects of the
FPGA technology. An extended version of the MARTE profile is used to integrate
reconfiguration-modeling concepts. The separation of concerns is used when design-
ing the models (application, architecture, etc.) to promote their reuse.

• Flexible control decision-making, handling both centralized and decentralized solu-
tions that are easily reusable and scalable for various reconfiguration control require-
ments.

• Transforming high-level architectural models into IP-XACT files, thus targeting differ-
ent tools supporting this standard.

• Using abstract metamodels and model transformations to be easily adaptable to
designs targeting other reconfigurable FPGA technologies.

• Generating FPGA scripts, in addition to the automatic generation of C/VHDL code, so
the synthesis and implementation flow can be run automatically to obtain bitstreams
ready to be loaded onto the target FPGA.
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• Accelerating design exploration (according to the functional and non-functional con-
straints defined at the beginning of the design process) thanks to the automation of
model-driven engineering.

The proposed design flow was validated through a reconfigurable video watermarking
application as a case study. Experimental results showed that the generated watermarking
system allowed a good trade-off between resource usage, power consumption, execution
time, and image quality compared to static implementations.

The rest of the paper is organized as follows: Section 2 gives a short review of the
related work in the field. Section 3 illustrates the proposed design flow and platform.
Section 4 presents the case study video watermarking application. Section 5 describes
the use of the proposed design flow for this application, and Section 6 discusses the
experimental results. A list of the abbreviations, variables, and control parameters used in
this paper is available in Appendix A. A list of the used software and hardware systems is
available in Appendix B.

2. Related Work

SoCs are composite and complex systems that can include several hardware and
software IPs and various processors for software tasks. Thanks to their reconfigurability,
FPGA devices extend the concept of SoCs, making them able to adapt to various changes
in user preferences, application requirements, and standards [4]. However, this implies
additional design tasks to handle system reconfiguration and control, which increases
design complexity [5]. To address this issue, several approaches have been proposed based
on MDE tools.

In the literature, many works have proposed high-level modeling to reduce the de-
sign complexity of DPR SoCs. In this context, several works used MDE to automatically
generate the code necessary for the system implementation from high-level models, thus
reducing design complexity and time-to-market. For example, the authors in [6] presented
a development framework based on UML/MARTE models for dynamically configurable
systems design. In this framework, an XML-based tool was used to generate a VHDL and
SystemC code from high-level models. In addition, the work in [7] proposed a design
methodology based on UML/MARTE to deal with DPR designs. In this work, Xilinx
concepts were included in the high-level models, which limits its flexibility. In [8], the
authors proposed a UML/MARTE framework aimed at designing and synthesizing a
formal controller managing dynamic reconfiguration. The UML/MARTE description of
the formal controller was transformed into a BZR language in [9] to build a correct-by-
construction executable controller; the controller code is generated in C language and can
then be added to a reconfigurable FPGA design to be executed by the processor. However,
this work dealt only with the modeling and generation of the controller and did not cover
the high-level modeling of the rest of the reconfigurable system. One of the main issues
of most MDE approaches for reconfigurable systems design in the literature is that they
end with a deployment phase that is still tightly linked to the implementation technology.
This leads to generating system IPs that are dependent on a given technology, which makes
the high-level models for these IPs hardly reusable for various technologies. Therefore, a
standard representation of the system components is needed to enhance the design reuse
for various FPGA tools and vendors. Indeed, using a standard representation of the system
components in high-level modeling facilitates the reuse of both models and actual IPs for
different targets.

The IP-XACT standard, offering an XML description of the system IPs independently
of the used language, is a good solution to face the SoCs design reuse challenge. Some
works proposed the integration of IP-XACT and UML in MDE-based design since they are
complementary tools for the information they deliver [10]. Indeed, IP-XACT is a standard
for IP exchange and also a great solution that promotes IP reuse. In the literature, the
exploitation of both specifications has been used in a variety of works to generate IP-XACT
design files from MARTE models. This approach was proposed in the context of static
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SoC designs [11] as well as for reconfigurable ones. In [12,13], the authors proposed an
approach that has some similarities with ours. This approach is based on the transformation
of MARTE models into IP-XACT descriptions to automatically generate reconfigurable
systems code. The main limit of this work is that it is tightly linked to the implementation
technology (Xilinx Tools) and does not provide a metamodel that is abstract enough to easily
target other technologies such as Intel FPGAs. Furthermore, the reconfiguration control
design in this work was very simplistic since the reconfigurations were launched according
to a system mode selected by the user. Our design flow offers a reconfigurability control
design that can easily adapt to various application requirements. It also presents a higher
control design flexibility, enabling both centralized and decentralized reconfiguration
control.

3. Proposed Design Flow

The proposed design flow is called the generic design flow for dynamic partially
reconfigurable systems (GDF4DPR). The term generic is explained by the fact that even
though not many FPGA vendors provide dynamic reconfiguration, this is a tendency
that will cover all FPGA vendors and our design flow also aims to be used for future
reconfigurable FPGAs.

The flow is based on six steps, where the first four steps imply high-level modeling
covering: (1) system constraints and requirements specification, (2) application design,
(3) architecture and task allocation design, and (4) deployment modeling. The fifth step
is model transformations and code generation, and the sixth one is design exploration, as
illustrated in Figure 1.
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The proposed model-driven design platform was implemented using the Eclipse
framework using plugins for high-level modeling, model-to-model transformations, and
model-to-text transformations. After realizing the high-level modeling (the first four steps),
the designer launches the transformation process, which generates all the system code
(in VHDL and C languages). It also generates tool-specific scripts and a tool-specific design
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file. The designer can then launch the FPGA design tool (such as Vivado for Xilinx FPGAs),
and execute the generated tool-specific scripts, which automates synthesis, implementation,
and bitstreams generation. During the design exploration step (step 6), designers verify,
using FPGA design tools, if the generated system respects the functional and non-functional
constraints and requirements specified at the beginning of the design flow. If not, high-level
models can be edited, and code can be regenerated automatically. A list of the software
and hardware systems used in this work is available in Appendix B.

Thanks to the concern separation of the first four steps, the used models can be
easily modified and reused for different system specifications or to target different FPGA
platforms. In this section, the design flow is described through the used UML/MARTE
concepts and the extensions we propose for the MARTE profile. The application of these
concepts and extensions is presented in Section 5 with a watermarking case study.

3.1. System Constraints and Requirements Specification

This represents a critical step that directly affects the final system. Indeed, at this stage,
the designer must include all the useful information to analyze the need of the system.
This information groups together the system requirements, the user requirements, the
constraints to be respected, etc. This information can be related to performance, power
consumption, quality of service, etc. It is mainly modeled using the <<nfpConstraint>>
MARTE stereotype (non-functional constraints), as will be illustrated in Section 5 with the
watermarking case study. These requirements and constraints will be then verified during
design space exploration (step 6) to converge towards an implementation that makes a
good trade-off between constraints and requirements.

3.2. The Application Design

In the second step of the flow, the application is described as a set of interconnected
tasks, each handling a specific function. This stage is thus dedicated to the modeling of
the application tasks and the communication between them using mainly UML/MARTE
components, ports, and connectors. Depending on the needs of the target system, the
application tasks can be physically implemented in software or hardware. This choice is
made in the next step.

3.3. Architecture Design and Task Allocation

At this stage, the static and reconfigurable parts of the system are modeled using
UML/MARTE components, ports, and connectors. To model the reconfigurable part of
the architecture, we extended the MARTE profile through the <<ReconfigurableHwCom-
ponent>> stereotype, which inherits from the <<HwComponent>> MARTE stereotype as
shown in Figure 2. Using this new stereotype, we can distinguish components that will be
implemented statically from those that will be reconfigurable.
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This stage also specifies which tasks will be implemented in software by the pro-
cessor(s) and which tasks will be implemented in hardware using the FPGA logic. Task
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allocation on processors or static hardware components is performed using the <<allocate>>
MARTE stereotype.

As for reconfigurable tasks, we propose to use the <<mode>> and <<configuration>>
concepts of MARTE together with the <<allocate>> stereotype. Depending on the system re-
quirements, reconfiguration control can be either centralized or decentralized, in which case
each reconfigurable region is handled by a separate module. In both cases, state machines
are used for reconfiguration decision-making, where each state (<<Mode>>) represents
a different configuration of one or several reconfigurable regions. To model these state
machines, the <<modeBehavior>>, <<mode>>, and <<modeTransition>> MARTE stereo-
types are applied, respectively, to UML state machines, states, and transitions. The MARTE
<<configuration>> stereotype is used here to describe the task allocation on reconfigurable
regions. Our GDF4DPR design flow offers two ways of modeling <<configurations>>.
First, a <<configuration>> can model task allocation on a single reconfigurable region for
a given <<Mode>>. In this case, a separate state machine is used to model each region,
so a <<configurations>> describes task allocation on this region for a given <<Mode>>
of the state machine. In the second case, a <<configuration>> models task allocation on
multiple reconfigurable regions. In this case, the behavior of reconfigurable regions can
be modeled either by a separate state machine for each region or by using a single state
machine to model the different modes of all the reconfigurable regions of the system, so a
<<configurations>> describes, in the second case, either a combination of the active modes
of all the state machines of the reconfigurable regions or an active global mode in a global
state machine.

In both centralized and decentralized reconfiguration decision-making, a global con-
troller is required to guarantee that the reconfiguration decisions respect the global system
requirements. To model this controller, we propose the <<ReconfigurationController>>
stereotype as an extension to the <<RtUnit>> (Real-Time Unit) MARTE stereotype. As
shown in Figure 3, we offer various options for the reconfiguration controller modeling.
First, the designers can mention the allowed global system configurations, which are al-
ready modeled using the <<configuration>> stereotype. This option is used when each
MARTE <<configuration>> describes the active modes of all the reconfigurable regions.
For example, for a system having two reconfigurable regions and three possible modes
for each region, if we use four different MARTE <<configurations>>, modeling each the
active mode of the two reconfigurable regions, the allowedGlobalConfiguration field of
the <<ReconfigurationController>> will take these four configurations. The second way to
coordinate reconfigurable regions’ active modes is to use the allowedModeCombinations
field of the <<ReconfigurationController>>. Each allowed mode combination is a combi-
nation between the active modes of all the reconfigurable regions. This option is useful
when the designer separately models a MARTE <<configuration>> for each reconfigurable
region active mode. Likewise, designers can specify the denied mode combinations, so that
when a distributed reconfiguration decision is made targeting a denied mode combination,
this reconfiguration is not launched. Non-functional constraints can also be attached to the
controller to be considered for reconfiguration decision-making using the constraints field.
Static and reconfigurable tasks allocation, as well as reconfiguration control modeling, will
be illustrated later with an example in the watermarking case study.

3.4. Deployment

At this stage, the implementation details of the application tasks and the architecture
components are specified through IPs. To be used in the deployment model, IPs have to be
already packaged according to the IP-XACT standard and then transformed into MARTE
components and stored in a MARTE components library. Figure 4 describes the extensions
we propose to the MARTE profile for the deployment modeling. The <<IP>> stereotype
can be applied to MARTE components representing either software IPs to be executed by
the processor or hardware IPs to be implemented on the FPGA logic. Designers specify the
language of the IP, its type (software or hardware), and its VLNV (vendor, library, name,
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and version) identifier. This identifier references a unique IP-XACT component in the
library, which is used when transforming the whole high-level system into an IP-XACT
global design. At the deployment stage, the <<CodeFile>> stereotype is used to attach code
files to IPs. To link hardware and software modules to the implementing IPs, we propose
the <<implements>> stereotype. The communication between IPs is then described by
modeling their ports and linking them. At this stage, the designer has to distinguish
single ports from bus interfaces. This information is important for generating the IP-XACT
global design. To model this, we propose the <<ExtendedPort>> stereotype as shown in
Figure 4. This stereotype offers two kinds of ports. The single-port kind is used to specify a
point-to-point connection and the bus interface kind is used for a bus connection.
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Once the software and hardware IPs are specified in the deployment model, model
transformations are used to become closer to the implementation code as detailed in the
next section.

3.5. Model Transformations and Code Generation
3.5.1. MARTE Deployed Architecture to IP-XACT Design

An IP-XACT design file describing the whole architecture is generated from the de-
ployed architecture model and is based on a set of transformation rules: Every instance of a
MARTE component having the <<IP>> stereotype is transformed into a “component in-
stance” according to the IP-XACT standard. Connections between the MARTE components
in the deployed architecture are then transformed into either IP-XACT interconnections, ad-
HocConnections, or hierConnections depending on the type of the connected ports (single
port or bus interface) and the levels of hierarchy between the connected components.

3.5.2. IP-XACT Design to Tool-Specific Design

After transforming the MARTE deployed architecture into an IP-XACT design, the
latter is transformed into a tool-specific design to be imported into an FPGA tool. To
implement the system using the Vivado tool for Xilinx FPGAs, the generated tool-specific
design can be in form of a .bd (Block Design) file. For Intel FPGAs, a .qsys file can
be generated to implement the system using the platform designer tool. To make this
transformation easily reusable and extendable for different tools and technologies, we used
a model-to-model transformation before generating the tool-specific design file. We defined
a metamodel for the tool-specific design. The IP-XACT design file is first transformed into a
model corresponding to the defined metamodel. Finally, we translated the obtained model
into code. Figure 5 shows the used Xilinx Block Design metamodel. In this metamodel, a
« Design » represents the main platform element which contains a set of interconnected
components. Each block design is made up of a set of components linked together by
simple ports, nets, or interfaces. Each component is defined with its VLNV identifier which
is specified in its IP-XACT description. Ports in the Block Design can be either simple ports,
which correspond to simple ports in IP-XACT, or Interface ports, which correspond to
interfaces in IP-XACT. Nets in the Block Design correspond to connections in the IP-XACT
design. The obtained Block Design model is then translated into a .bd file. Indeed, through
a few modifications, the Block Design metamodel for Xilinx tools can be reused to describe
another tool-specific design, such as the Intel Platform Designer .qsys design file.
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3.5.3. Generation of the Reconfiguration Control Code

This step corresponds to the generation of the code necessary for reconfiguration
decision-making and reconfiguration launching. It consists in translating MARTE <<mode-
Behaviors>> (state machines) into code for reconfiguration decision-making together with
the necessary code to launch reconfiguration. For this, we propose two methods. The
first one is purely software-based where decision-making and reconfiguration launching is
performed by a processor. The second one is mixed, where MARTE <<modeBehaviors>>
are translated into VHDL state machines. These machines are coordinated by the processor
which handles also reconfiguration launching. This step will be detailed later in the case
study section.

3.5.4. Generation of the Processor Code

The high-level model describing task allocation on the processor is translated into
a processor code containing function calls to the software IP linked to these tasks at the
deployment phase. This code also contains the code necessary for reconfiguration decision-
making and reconfiguration launching.

3.5.5. Generation of Tool-Specific Scripts and Project Skeleton

At this step, the proposed platform creates a project skeleton in which it copies: (1) the
hardware and software IPs codes specified at the deployment phase of the high-level
modeling, (2) the generated tool-specific design file, (3) the generated hardware code for
reconfiguration control, and (4) the generated code for the processor. Tcl scripts are also
generated at this phase so the synthesis and implementation flow can be run automatically
to obtain bitstreams ready to be loaded onto the target FPGA. The generated scripts handle
the following steps: (1) importing the generated design file, (2) launching Synthesis for the
static part of the system and reconfigurable modules, and (3) loading the Synthesis results
in the floor planning tool. Designers can then place the reconfigurable regions as desired.
This is the only task that is performed manually since we cannot predict the resource usage
of the reconfigurable regions before synthesizing them and therefore their placement is not
completed in the high-level models. The rest of the generated scripts are then launched to
automatically implement different configurations of the system and to generate the related
bitstreams.

3.6. Design Exploration

The objective of this step is to verify that the generated system respects the functional
and non-functional constraints and requirements specified at the beginning of the design
flow. Different kinds of verifications can be completed at this stage, such as functional verifi-
cation, through simulation or during runtime execution, resource usage and timing reports
verification using FPGA tools, power consumption estimation/measuring, etc. Thanks to
these verifications, the designer can make the necessary corrections and modifications in
the high-level model of the concerned design phase to respect the system requirements
and constraints. The system code can be then regenerated automatically and re-verified, if
necessary, which significantly accelerates the exploration phase.

In the next section, we describe the video watermarking application that we will use
as a case study to validate the proposed design flow for reconfigurable systems.

4. Case Study: A Video Watermarking Application
4.1. Overview

In this section, we use a video watermarking application to validate the proposed
design platform. This application is intended for copyright protection to protect the video
sequence from hacking and illegal use. The watermarking technique consists of inserting a
watermark in a multimedia document (image, text, audio, and video) to identify the author
of the document while respecting the security and the visual quality that represent the
major requirements of the user. We call a watermark [14], the information message inserted
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in the multimedia documents. The choice of the message content is arbitrary, it can be a
card number, binary sequence, image, audio, etc. In this work, we used a binary sequence
inserted in an invisible way as a watermark to guarantee the robustness of the algorithm.
In addition to the watermark, it is necessary to determine the watermark insertion space,
such as the frames I, B, and P, the DCT coefficient, motion vector, phase angle, etc. In
this application, we used as insertion space the vertical and horizontal components of
the even motion vectors. We exploited the method presented by Y. Dai [15] in which the
residual motion is used as insertion space. The same suggestion is used in [16], where
the insertion of the watermark depends on the type of phase angle of the motion vectors.
Several reasons justify the choice of motion vectors. Motion vectors are unaffected by non-
geometrical distortions such as noise, color corrections, and digital filters. In addition, the
motion is independent of alterations caused by analog-digital conversion and intra-frame
compression of videos [17]. Furthermore, our aim is not only to identify the author but also
to ensure overall video protection. For this reason, we included the scrambling technique in
the application. This technique [18] is greatly exploited in radio and television broadcasting
to protect the broadcast data. In this video application, this technique consists in swapping
the motion vectors. The permutation order of the vectors is given later as a key delivered
only to the authorized users to access the video sequence.

From a watermarking system implementation point of view, our work presents some
novelties. First, the architecture that we use in this paper is the only FPGA-based imple-
mentation using motion vectors for watermark insertion. Furthermore, to the best of our
knowledge, it is the first dynamic partially reconfigurable FPGA-based architecture for a
video watermarking system.

4.2. Application Tasks

The suggested application is composed of five main modules which are the motion
estimation, the sum, the parity, the insertion, and the scrambling module, as shown in
Figure 6. In this work, to maintain the robustness of the architecture and satisfy the invisi-
bility constraint of the watermarking application, we used an invisible insertion method.
The insertion of the watermark in the even motion vectors is carried out following several
steps. The first step is to extract the video frames. Then, for every frame, the motion vectors
are generated and classified into two groups: the first group contains the even motion
vectors and the second contains the odd motion vectors. The watermark to be inserted is
represented by a sequence of binary values. Only a single bit of the watermark is inserted
into the vertical and horizontal axis of the even motion vectors, given that the number
of inserted bits equals the number of even motion vectors eventually generated. Then,
all generated vectors (even and odd) from each frame are scrambled. Once the motion
vectors are scrambled, the vector permutation order is subsequently exploited as a security
key assigned to the authorized users. The watermarking application is performed in the
compressed domain in which the embedding and extraction of the watermark do not need
complete decoding and re-encoding of the compressed video versus the uncompressed
domain, which implies a reduction in computational overhead [19].

4.3. Adaptive Motion Estimation

In the proposed architecture, the motion vectors represent the insertion space of the
watermark. These vectors are generated in the motion estimator (ME) module, which is
the most critical component in video compression. Its purpose is to minimize the temporal
redundancy between the successive frames of the video. This has been used by various
video-coding standards such as H.265 and H.264. The H.265, also known as standard
High-Efficiency Video Coding (HEVC), is the most used in a wide range of new multimedia
applications [20]. The basic goals and objectives of this standard are upgrading the coding
efficiency in comparison with the H.264/AVC standard by decreasing the bit rate for equal
video quality [21].
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In this case study, we use a motion-adaptive watermarking system using two block-
matching algorithms to generate the motion vectors, the gradient search (GS) and the
four-step search (4SS). Depending on the movement speed in the video, the estimator will
implement either the GS or the 4SS algorithm. The objective of reconfiguration here is
to have a good trade-off between resource usage, power consumption, execution time,
and PSNR (Peak Signal-to-Noise Ratio). Indeed, previous works showed that, for slow
video sequences, the GS algorithm produces a higher PSNR than the 4SS one, though
at the cost of a significantly higher execution time. On the other hand, for fast video
sequences, these algorithms offer close PSNRs. This makes the 4SS algorithm more suitable
for this type of video due to its accelerated execution. Both block-matching algorithms are
implemented using nine Processing Elements (PE) running in parallel to generate the SAD
(sum of absolute differences) value. In the case of slow movement, the estimator will be
reconfigured by the nine PE of the GS algorithm or else by the nine PE of the 4SS algorithm.
In our previous works [22,23], we proposed a software/hardware implementation of a
video watermarking architecture. The architecture was dedicated to the fast video sequence
where we used the 4SS algorithm.

Generally, there are three types of objects in a video sequence: objects that keep the
same motion for certain frames and other objects that move in an almost constant way
between two sequential frames. The third type is objects moving in slow or fast motion
in the same frame [24]. In this application, the reconfiguration is based on the recognition
of the type of movements of each video frame and then choosing the suitable algorithm
that must be activated during the execution time. The SAD can reflect very well the degree
of motion activity in the video sequence having different movement activities. As will
be shown later, the estimator module used in this case study integrates an adaptation
module that makes reconfiguration decisions according to the motion activity. This module
acquires the average SAD generated by the estimator as input. Subsequently, this average
is compared to several thresholds to choose between the GS and the 4SS algorithm and
launch reconfigurations if needed.

5. Design Flow Validation

Video watermarking is a real-time application that requires high processing capacities.
Indeed, a small delay in video stream processing can lead to high degradation in the visual
quality. This application can thus benefit significantly from the hardware acceleration
offered by FPGA. The change of the motion estimation algorithm according to the video
motion speed makes the video watermarking application well-adapted to dynamic partial
reconfiguration.
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5.1. System Constraints and Requirements Specification

As the first step of high-level modeling, the designer specifies the requirements and
constraints of the system. To model constraints linked to non-functional properties, we
used the <<nfpConstraint>> MARTE stereotype as presented in Figure 7. To determine
the requirements imposed by a video watermarking application and architecture, we
carried out a study to extract the PSNR [25] values expected in video watermarking
applications. The power consumption and frequency constraint were defined regarding
a previous implementation using the motion estimator module proposed in [26]. This
implementation was an adaptive non-DPR (non-Partial Dynamic Reconfiguration) one.
The system contained, at the same time, hardware modules implementing both the GS and
the 4SS algorithms. Only one of these algorithms was active at a given time depending
on the motion speed. In this case study, we aimed at reducing the power consumption
compared to this work thanks to resource usage reduction using DPR.
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5.2. The Application Design

The application phase consists in modeling the different application tasks and the
interconnections between them. In this phase, the tasks are defined abstractly indepen-
dently of the used technology, which makes the application model easily reusable for
other system configurations. The modeling of the case study application is presented in
Figure 8. It contains seven tasks (five tasks are specific to the case study application and
two are reusable tasks). The reusable tasks allow for reading and displaying data before
and after processing (watermarking and scrambling). The ports of each application task
are stereotyped as «FlowPort». This MARTE stereotype is used to indicate the direction of
each port (in, out, or in/out) to describe the data flow direction. After receiving the video
frames using the «ReadData» task, these data are then transmitted to the «Estimator» task
for the calculation of the SAD value. Once the motion vectors are generated, we use the
«Sum» and «Parity» tasks, respectively, to calculate the sum of the motion vectors and find
the even motion vectors for watermark insertion. The insertion of 1 bit of the watermark
in the vertical and horizontal components of the even motion vectors is performed by the
«Insertion» task. Finally, all motion vectors are scrambled using the «Scrambling» task and
the data are saved using the «SaveData» task.

In this case study, we use two motion estimation algorithms (GS and 4SS described
earlier) according to the motion speed, so the Estimator task will be implemented with two
algorithms as will be specified in the rest of the GDF4DPR design flow.

5.3. Architecture Design and Task Allocation

In this phase, we modeled the architecture as presented in Figure 9. The IPs of the
proposed architecture are stereotyped as «hwComponent». We modeled the components
of the architecture abstractly and independently of the used technology. That is why we
did not specify the name and the number of ports of each IP. Since we used a hardware
implementation of the watermarking application, the architecture contains a hardware
component for each application task. The architecture also contains a storage component
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and a processor. In addition, we used the IP «Interconnection» to ensure the communication
between the IPs of the architecture and the IP«ProcessorSystemReset» for processor reset.
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Once the architecture components are specified, the designer must detail the recon-
figurable part of this architecture. As mentioned above, the motion estimator used will
implement either the GS or the 4SS algorithm at a given time. The operation of one al-
gorithm or the other depends on the video motion speed. Each PE is implemented in a
reconfigurable region. As shown in Figure 10, the estimator module contains an estimator
core that implements the nine PEs that will be reconfigured with either the GS or the 4SS
algorithm at runtime according to the video motion speed. To indicate that the estimator
core will be implemented in a reconfigurable region, we added the <<reconfigurableHw-
Component>> stereotype to the MARTE profile. The estimator core has as inputs the
current and the reference pixels and provides as results the horizontal and the vertical com-
ponents of motion vectors (MH_final and MV_final). The estimator module also contains
an adaptation component that we added so that reconfiguration decision-making (using a
state machine) is completed in the hardware and then communicated to the processor to
launch reconfigurations.
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After describing the static and reconfigurable parts of the architecture, the allocation
of the application tasks on the architecture component is modeled. The allocation in the
MARTE profile consists in attaching each abstract component of the application to its
execution support in the architecture. The designer performs two types of allocation. The
first type is the allocation of static tasks, which will be implemented in the static part of
the system, and the second type is the allocation of reconfigurable tasks, which will be
implemented in the reconfigurable regions.

5.3.1. Allocation of the Static Tasks

In this step, the task allocation of the processor and static hardware components
is achieved using the <<allocate>> MARTE stereotype. As shown in Figure 11, in our
example, the processor manages the reading and saving of data. The rest of the application
tasks are implemented in the hardware and are allocated to the corresponding hardware
components of the architecture, except for the estimator module since it is a reconfigurable
module.
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5.3.2. Allocation of the Reconfigurable Tasks and Reconfiguration Control Modeling

As mentioned above, both centralized and decentralized reconfiguration decision-
making approaches are possible in the proposed GDF4DPR design flow. For this case study,
since all the PEs implemented in the reconfigurable regions have to be reconfigured at the
same time with the same content, centralized decision-making is used here. In case the
target system has reconfigurable regions handling various tasks, allocating a separate con-
troller to each task allows it to make reconfiguration decisions related to the reconfigurable
region. These decisions can be either authorized or denied later by a global coordinator
to respect global system requirements and constraints. In this case, a separate state ma-
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chine would be used for each reconfigurable region. The decentralized control would
have many advantages in this case, such as decomposing the control design complexity
between controllers, providing easier access to local data for decision-making, and enabling
easier placement and routing of distributed controllers compared to a centralized hardware
controller.

In our case study, we modeled one state machine that represents the behavior of all
reconfigurable regions using the <<modeBehavior>> and <<mode>> MARTE stereotypes
as shown in Figure 12. The reconfigurations conditions are attached to the state machine
transitions. The «ModeTransition» of the MARTE profile makes it possible to determine the
transition from a source mode to a target mode. Since we decided to implement reconfigura-
tion decision-making in the hardware, this state machine is linked to the adaptation module
contained in the global estimator component as described earlier. As shown in Figure 12,
the adaptation module will receive the average SAD (avg_SAD) value obtained after per-
forming motion estimation on a whole frame as input. Based on this value, the adaptation
module will deduce if the estimator is currently handling a slow or a fast sequence. The
GS algorithm is used initially. After processing a frame, the estimator sends the average
SAD to the adaptation module. If this value exceeds a SAD threshold1, the adaptation
module deduces that it is a fast video sequence and then requests a reconfiguration that
loads the 4SS algorithm. If the current configuration is the 4SS algorithm and the average
SAD value is below a second threshold, threshold2, the adaptation module deduces that it
is a slow video sequence and then requests a reconfiguration that loads the GS algorithm.
The SAD thresholds used in this work are threshold1 = 600 and threshold2 = 400. These
thresholds were extracted from the work in [27], which is based on a study of different
video sequences of 300 frames.
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In this case study, the reconfigurable region performs two modes of the same appli-
cation task. Therefore, it is necessary to indicate the version of the task to be allocated
to a region for each configuration of the reconfigurable region. Figure 13 represents a
MARTE configuration used to model one of the possible configurations (modes) of the
reconfigurable estimator, which is the GS mode. Therefore, the GS version of the esti-
mator task of the application is allocated to the estimator core module contained in the
“EstimatorModule” of the architecture.

As we mentioned earlier, in both centralized and decentralized reconfiguration decision-
making, a global controller is required to guarantee that reconfiguration decisions respect
the global system requirements. In this case study, this task is performed by the processor.
To do so, we apply the <<reconfigurationController>> stereotype, described earlier in
Section 3.3, on the processor as shown in Figure 14. Here, we use the allowedGlobalCon-
figurations field, which indicates that the allowed global system configurations are the
GS_Configuration modeled in Figure 13 and the 4SS_Configuration. This corresponds
to the two system configurations where all the nine reconfigurable regions implement
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one of the two used estimator algorithms. In case a decentralized control is used, coor-
dination is performed between several state machines related to separate controllers. In
this case, we can use other fields of the <<ReconfigurationController>> stereotype. As
described earlier in Section 3.3, the allowedModeCombinations and deniedModeCombina-
tions fields of the <<ReconfigurationController>> can be used when the designer models
a MARTE <<configuration>> separately for each reconfigurable region active mode. The
mode combination in this case is a combination of the active modes of all the reconfig-
urable regions. The coordinator can thus either allow or deny a reconfiguration decision
made by a controller if it would lead to a mode combination that is not among the ones
specified in the allowedModeCombinations field or is rather specified in the denied mode
combination. Non-functional constraints can also be attached to the coordinator to be
taken into account for reconfiguration decision-making, using the constraints field of the
<<ReconfigurationController>> stereotype.
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5.4. Deployment

The deployment phase consists in assigning to each elementary component of the
architecture or application a software or hardware IP implementing it. We use the <<im-
plements>> stereotype to link the IP, which has the <<IP>> stereotype, to the application
task that it implements. The code files of the used IPs are also specified at this stage using
the <<codeFile>> stereotype. As shown earlier in Figure 4, the <<IP>>, <<implements>>,
and <<codeFile>> stereotypes are extensions we propose to the MARTE profile. The
hardware IPs used at the deployment phase are retrieved from a MARTE components
library obtained from a transformation of IP-XACT-compliant IPs. Thanks to the use of the
IP-XACT standard, the IPs can be easily integrated and reused in various FPGA vendor
tools. In addition to the application hardware IPs, the designer must specify IPs for other
architectural elements, such as the processor and the interconnect. Figure 15 shows an
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example of the deployment of a technology-dependent IP. In this case study, the Zynq
Processing system implements the processor for this application since we target a Zynq
FPGA.
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The last step of high-level modeling is the description of the deployed architecture.
This step deals with the interconnections between the architecture IPs as shown in Figure 16.
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5.5. Model Transformations and Code Generation

At this stage, the deployed architecture is transformed into an IP_XACT design file,
where MARTE components having the <<IP>> stereotype are transformed into an IP-
XACT “component instance”. Connections between the components of the deployed
architecture are then transformed into either IP-XACT interconnections, adHocConnections,
or hierConnections depending on the type of the connected ports (single port or bus
interface) and the levels of hierarchy between the connected components. The obtained
IP-XACT design file is then transformed into a tool-specific design file. In this case study,
the IP-XACT file was transformed to obtain a .db (Block Design) file to be used in the
Xilinx Vivado tool. To make this transformation easily reusable and extendable for different
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tools and technologies, we used model-to-model transformation before generating the
tool-specific design file.

In addition to the generation of the tool-specific design file, our platform generates the
reconfiguration control code. For this case study, the modeled state machine modeled in
Figure 12 was transformed into a VHDL code to implement the “adaptation module” of the
estimator modeled in Figure 10. As for reconfiguration launching, our platform generates
C code for the processor to execute. In this code, the processor reads a register from the
estimator where the adaptation module has written the number of the configuration to be
loaded. The processor then launches the required reconfiguration. In the case of multiple
reconfiguration decision-making state machines (it is not the case in this case study), a
coordination code is added to the processor where it can accept or refuse to launch a
reconfiguration required by a given adaptation module.

The final step of code generation is to generate tool-specific Tcl scripts, so all the
synthesis and implementation flow can be run automatically to obtain bitstreams ready
to be loaded onto the target FPGA. Our design flow generates three scripts. The first one
handles the following steps: (1) importing the generated design file, (2) launching Synthesis
for the static part of the system and reconfigurable modules, and (3) loading the Synthesis
results into the floor planning tool. Designers can then place the reconfigurable regions
using the floor planning tool. This is the only task that is performed manually since we
cannot predict the resource usage of the reconfigurable regions before synthesizing them
and therefore their placement is not completed in the high-level models. In this application,
the reconfigurable region size corresponds to the size of PEs of the 4SS algorithm since
it requires more resources than the GS algorithm. The second script is then launched to
automatically implement different configurations of the system and to generate the related
bitstreams. The last script compiles the software to be executed by the on-chip processor
and generates the whole system image to be loaded on FPGA.

5.6. Design Exploration

After the first generated script is launched, we can check the consistency of our
architecture before launching the second script that implements the system configurations.
At this phase, we can verify that the static part, comprising interfaces to the reconfigurable
regions, is consistent for all the configurations. For this, we use a design rule checker,
which allows for detecting and managing errors in a report form. After launching the
second script, we can detect if the reconfigurable regions were optimally placed and sized.
Designers can easily replace these regions if necessary to have better resource usage results.
Other verifications are also possible through simulation or at runtime. If the detected errors
or problems are related to the structure of the application, the architecture, tasks allocation,
or components deployment, this can be solved by modifying the high-level models and
regenerating the system code automatically. This makes design exploration faster and
spares the designer from tedious, error-prone, and long development cycles.

6. Experimental Results and Discussion

In a previous work [23], we implemented the watermarking application on a static
FPGA-based system (only the 4SS algorithm was used for motion estimation); this im-
plementation did not use a model-driven approach. Using the GDF4DPR design flow
proposed in the present paper, we noticed a significant design acceleration thanks to the
automatic generation of the whole system code, as well as tool-specific files and scripts,
from high-level models.

The proposed reconfigurable watermarking system aims to make a good trade-off
between the following requirements: resource usage, power consumption, execution time,
and PSNR for various motion speeds. Therefore, in the rest of this section, we present the
implementation results of the reconfigurable watermarking system in terms of resource
usage, power consumption, and reconfiguration time. We also compare execution time and
PSNR results to those of static implementations.
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6.1. Resource Usage

In the proposed architecture, we use nine reconfigurable regions. In each reconfig-
urable region, a PE implementing either the GS or the 4SS algorithm is loaded, depending
on the generated SAD average value. The reconfigurable region size is determined based
on the largest reconfigurable module (RM) size to be loaded, which in our case is the RM
implementing the PE with the 4SS algorithm. The hardware resources used by an RM
implementing the 4SS algorithm are summarized in Table 1.

Table 1. Resource usage of a reconfigurable PE.

Resources Resource Usage of a PE Implementing the 4SS Algorithm

slice 96
LUT 75

LUT as memory 0
RAMB10 0

The resource usage of the whole system was compared to three static versions of the
system: a static version implementing only the GS algorithm, a static version implementing
only the 4SS algorithm, and a third version using adaptive motion estimation proposed
in our previous work [26]. The difference between the third version and the one used in
the current paper is that it did not use dynamic partial reconfiguration. The estimator
in [26] contained hardware modules implementing both the GS and the 4SS algorithms
present at the same time on the chip, but only one of these algorithms was active at
a given time depending on the motion speed. Despite its adaptivity to motion speed
compared to an estimator implementing only one algorithm, this solution has a non-
negligible resource usage overhead as shown in Table 2. The resource usage of the dynamic
partially reconfigurable architecture is significantly lower than the one used in [26] since
only one algorithm is present on the board at a given time. If we compare the resource
usage of the DPR version with the static versions implementing only one estimation
algorithm, we notice that DPR implies a slight resource usage increase, which is due to the
additional hardware modules needed for reconfiguration (reconfiguration decision-making
and reconfiguration interface).

Table 2. Comparison between the static and reconfigurable watermarking systems in terms of
resources.

Architectures

Resources

Resource Usage in
LUT (Out of 53,200)

Resource Usage in
LUTRAM (Out of 17,400)

Resource Usage in FF
(Out of 106,400)

Resource Usage in IO
(Out of 200)

The static version
using only GS 13,229 29 2887 67

The static version
using only 4SS 12,267 32 1878 29

The adaptive non-DPR
version proposed

in [26]
25,648 48 4852 142

The DPR version 4500 235 5748 62

6.2. Reconfiguration Time

As for bitstreams, the GDF4DPR design flow generated one full bitstream and a set
of partial bitstreams (nine partial bitstreams for the PEs of the GS algorithm and nine for
the 4SS algorithm). The full bitstream is the one to be loaded initially and it contains the
static part of the system and the partial bitstreams of the GS algorithm. Using SAD values,
the adaptation module of the estimator decides which algorithm has to be executed and
sends an interruption to the processor if a reconfiguration is required. The processor then
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launches the required partial reconfiguration through the PCAP (Processor Configuration
Access Port) interface. The 32-bit PCAP interface has a theoretical reconfiguration speed of
400 MB/s when clocked at 100 MHz on a Xilinx Zynq SoC. The total size of the nine partial
bitstreams is 1595 Kb, which implies a reconfiguration time of 30 ms. This reconfiguration
time is not negligible. This is because the total size of the reconfigurable module is quite
high. Since the reconfiguration is based on two thresholds applied to the average SAD
produced after processing each frame, this implies a small number of reconfigurations. This
is because successive frames have, most of the time, similar average SAD values, unless the
type of the motion changes significantly, which we manage using the SAD thresholds.

6.3. Power Consumption

Our watermarking system was tested using three video sequences of 300 frames in
the QCIF format. These sequences have three different motion behaviors: slow, medium,
and fast. The average power consumption of the reconfigurable watermarking system
while processing the three video sequences was 140 mW. The same video sequences were
executed in the non-DPR version of the watermarking system using the adaptive motion
estimator proposed in [26]. The average power consumption of the system was 214 mW,
which shows that the DPR version allowed a power consumption reduction of 34.57%.
Compared to the static versions implementing only one estimation algorithm, we notice
that the DPR implies a slight increase in power consumption (up to 5%), which is due to
higher resource usage and runtime reconfiguration.

6.4. Performances

Since one of the objectives of using two different motion estimation algorithms is
to have a good trade-off between execution time and video quality (represented by the
PSNR), we compared the PSNR and processing time given by our DPR system with the
same three non-DPR versions described earlier: the static version implementing only the
GS algorithm, the static version implementing only the 4SS algorithm, and the version
using adaptive motion estimation proposed in our previous work [26] (alternating both
algorithms depending on motion speed). The experimental results are described in Table 3.
The execution times presented in Table 3 are the average execution times per frame for
three different motion-speed video sequences. For our DPR version, the reconfiguration
time is included in the average execution time per frame.

Table 3. Comparison between the static and reconfigurable watermarking systems in terms of
performance.

Architectures

Performances
Akiyo Foreman Silent

Execution Time
(ms)/Frame PSNR Execution Time

(ms)/Frame PSNR Execution Time
(ms)/Frame PSNR

The static version
using only GS 1.5681 43.120 1.92456 31.500 1.63944 35.411

The static version
using only 4SS 0.85536 42.977 0.85536 32.076 0.9266 35.660

The adaptive
non-DPR version
proposed in [26]

1.140048 44.286 1.85328 32.010 1.35432 35.120

The DPR version 1.620584 44.83 1.72958 32.60 1.19792 35.78

As shown in Table 3, for the slow sequence (Akiyo), the DPR version requires a slightly
higher execution time than the static GS version. This is due to the slight overhead of the
reconfiguration time. On the other hand, the DPR version provides better PSNR results. If
we compare the DPR version with the static 4SS version, we notice that the DPR version
provides better PSNR results, but at the same time, a significant difference in execution



Micromachines 2023, 14, 481 21 of 24

time. This is because the SAD thresholds used in the DPR version make it prefer the
usage of the GS algorithm for most frames in this video sequence since it provides better
PSNR results than 4SS for slow video sequences. Compared to the version in [26], the DPR
version provides better PSNR results but a longer execution time due to the reconfiguration
overhead.

As for the medium-motion sequence (Foreman), the DPR version provides better
PSNR results than the other systems. It also has a faster execution time than the GS version.
This is because this video sequence has more fast-motion frames than slow-motion ones,
depending on the used SAD thresholds, which makes the DPR version apply the 4SS
algorithm more than the GS one for this video sequence. Compared to the version in [26],
the DPR version provides a slightly better PSNR and faster execution time.

For the fast sequence (Silent), the DPR version provides better PSNR results than the
other systems. Its execution time is between the GS and the 4SS execution times since it
applies the 4SS algorithm more than the GS one for this video sequence. This is because,
for fast sequences, the 4SS algorithm has faster execution times than the GS one with
comparable PSNR results. Compared to the version in [26], the DPR version provides a
better PSNR and faster execution time.

The implementation results described in this section show that the reconfigurable
watermarking architecture generated by the proposed design flow makes a good trade-off
between execution time, video quality, resource usage, and power consumption. The
proposed model-driven approach shows a significant design acceleration thanks to the
high-level modeling and the automatic generation of VHDL/C code and tool-specific files
and scripts.

7. Conclusions

In this paper, we propose a model-driven design flow and platform for dynamic
partially reconfigurable architectures aiming at accelerating the design of reconfigurable
systems to be implemented on FPGAs by reducing design complexity, automating code
generation, and facilitating design reuse. The GDF4DPR is based on high-level modeling
that covers several design steps from system specification to physical implementation. As
for reconfiguration decision-making modeling, the proposed design flow handles both
centralized and decentralized control solutions to adapt to various reconfigurable systems
constraints. It proposes an automatic transformation of high-level models into IP-XACT
designs to ensure IP reuse and to target different technologies and commercial FPGAs.
The proposed flow enables the automatic code generation of the whole system, including
tool-specific files and scripts, to increase designer productivity. As a case study, we used a
video watermarking application.

It can be concluded that the proposed flow supports all the design stages of dynam-
ically reconfigurable architectures. Its high-level modeling allows the designer to easily
target different technologies. The implementation results show that the proposed platform
allowed us to automatically generate a dynamic partially reconfigurable watermarking
architecture that provides a good trade-off between adaptivity, performance, resource us-
age, and power consumption. In future work, we intend to enhance the proposed platform
to support more complex reconfigurable systems and offer more automatic generation
possibilities.

Although the tool-specific design files generated by the design flow are currently
targeting Xilinx FPGAs, we designed the tool-related metamodel and model transformation
in a way that makes them easily reusable and extendable to target different reconfigurable
FPGA technologies, which is one of the future directions of our work. In the presented
case study, the performance/energy consumption trade-off was handled by fixing SAD
thresholds to minimize the reconfiguration number and save energy. In future work, we
intend to integrate more sophisticated power/performance optimization techniques into
the proposed design flow to target various reconfigurable systems constraints. Dynamic
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task partitioning is also an interesting feature to add to the proposed design flow to cover
more requirements of reconfigurable systems.
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Appendix A

Table A1. Abbreviations list.

Abbreviation Explanation

4SS Four-Step Search

Bd Block Design

DCT Discrete Cosine Transform

DPR Dynamic Partial Reconfiguration

EDA Electronic Design Automation

FPGA Field-Programmable Gate Array

GDF4DPR Generic Design Flow for Dynamic Partially
Reconfigurable systems

GS Gradient Search

H.264/AVC Advanced Video Coding

HEVC High-Efficiency Video Coding

IP Intellectual Property

IP-XACT
XML format that describes the meta-data of IP
designs and flows and the interconnection of IP
interfaces in a standard specification

LUT Lookup Table

MARTE Modelling and Analysis of Real-Time and
Embedded systems

MDE Model-Driven Engineering

ME Motion Estimator

NoC Network-on-Chip

PCAP Processor Configuration Access Port

PE Processing Elements

PSNR Peak Signal-to-Noise Ratio

QCIF Quarter Common Intermediate Format

RtUnit Real-Time Unit

SAD Sum of Absolute Differences

SoC Systems-on-Chip

SPIRIT Sharing Partnership for Innovative Research in
Translation
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Table A1. Cont.

SysML System Modelling Language

Tcl Tool Command Language

UML Unified Modelling Language

VHDL Very High-Speed Integrated Circuit Hardware
Description Language

VLNV Vendor, Library, Name and Version

XML Extensible Markup Language

Table A2. Variables and control parameters list.

Variables and Control Parameters Explanation

MV_final Vertical components of motion vectors

MH_final Horizontal components of motion

Avg_SAD average SAD

Threshold1 First SAD threshold

Threshold2 Second SAD threshold

Appendix B

Table A3. A list of used software and hardware systems.

Component Details

High-level modelling and code generation
software

Eclipse IDE for Java Developers: Version: Luna
Service Release 1a (4.4.1)

FPGA design tool Vivado v2019.2

FPGA device Zynq-7000
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