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Abstract: Tunable structural colors have a multitude of applications in the beautification of mobile
devices, in the decoration of artwork, and in the creation of color filters. In this paper, we describe
a Metal-Insulator-Metal (MIM) design that can be used to systematically tune structural colors by
altering the thickness of the top metal and intermediate insulator. Cu and Si3N4 were selected as
the top metal and intermediate insulator layers, respectively, and various reflection colors were
printed on Al. To protect the Cu surface from scratchiness and oxidation, a number of capping layers,
including SiO2, LPSQ, PMMA, and the commercially available clear coat ProtectaClear, were applied.
In addition to their ability to protect Cu from a humid environment without deteriorating color
quality, ProtectaClear and LPSQ coatings have minimal angle dependency. Furthermore, a bilayer of
PMMA/SiO2 can protect the Cu surface from the effects of humidity. In addition, the PMMA/SiO2

and ProtectaClear/SiO2 bilayers can also protect against corrosion on the Cu surface. The colors can
be tuned by controlling the thickness of either the metal layer or intermediate insulator layer, and
vivid structural colors including brown, dark orange, blue, violet, magenta, cyan, green-yellow, and
yellow colors can be printed. The measured dielectric functions of Cu thin films do not provide any
evidence of the plasmonic effect, and therefore, it is expected that the obtained colors are attributed
to thin-film interference.

Keywords: reflection colors; metal-insulator-metal structure; Cu thin film; capping layer

1. Introduction

Structural colors became much more attractive to researchers as it appears more aes-
thetic than other traditional coloration like pigment or dye-based colors and also have a
long-lasting capability in color quality [1]. Therefore, the structural coloration of metals
can be used in the beautification of mobile devices, art decoration, and color filters [2–4].
Several methods have been reported to date to prepare structural colors such as bio-
inspired photonic structures [5–7], diffraction gratings [8], plasmonic, and dielectric-based
structures [9–16]. But these techniques require complicated procedures, e.g., nanoscale
lithography. Recently, structural color preparation by asymmetric Fabry−Perot type struc-
tures is also proposed [17–26]. The advantage of these F-P cavity structures is it does not
require nano-patterning to fabricate colors. Additionally, colors can be tuned very easily by
the thickness of the intermediate layer.

The present research work is further work of our recent report on structural color
preparation by a non-expensive Cu/Si3N4/Cu structure [26]. In a previous report, it
was shown that a range of highly saturated colors could be generated by Cu/Si3N4/Cu
structure with the introduction of capping layers on top for protecting the structure from
corrosion. In the present study, structural colors were realized on the widely used Al
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substrate. The Cu/Si3N4 bilayer was coated on an Al back reflector and colors were tuned
by tuning the thickness of the top Cu and intermediate Si3N4 layer. Various colors—that
is, brown, dark orange, blue/magenta, cyan, green-yellow, and yellow color—can be
printed on the Al surface by tuning the Si3N4 intermediate layer. The color can also be
slightly tuned by tuning Cu thickness. To protect the colors from harsh environments
SiO2, commercial ProtectaClear (PC), Polymethyl methacrylate (PMMA), and ladder-like
Polysilsesquioxanes (LPSQ) of several thicknesses were introduced. The color quality does
not degrade after coating these capping layers on the MIM structures and colors can also
be protected from the hard corrosive environment. The analytical calculations were carried
out to calculate reflectance and pseudo colors using the refractive indices of measured
values of Cu thin films. The reflectance spectra of the MIM structures were calculated by
OpenFilters software, which adapts the characteristic matrix approach. The calculated
reflectance spectra matched reasonably with experimental data. The measured dielectric
functions of Cu thin films do not exhibit any clear evidence of plasmonic effect in the visible
range of wavelength and therefore, the interference effect was considered solely responsible
for printing these structural colors.

2. Materials and Methods

To fabricate a Cu/Si3N4/Al trilayer structure on a Si substrate, optically thick Al
(200 nm) thin film was deposited by electron beam evaporation technique (EBX-1000,
ULVAC, Japan) and onto a polished (1 1 1) Si wafer, which was used as a bottom metal
surface of the MIM structure. Prior to the deposition, the chamber was evacuated until
it reaches a pressure of 3 × 10−7 Torr. Afterward, the dielectric Si3N4 layer (30–130 nm)
was deposited using a plasma-enhanced chemical vapor deposition (PECVD) system
(PlasmaPro 800Plus, Oxford Instruments Plasma Technology (OIPT), Bristol, UK). For the
Si3N4 deposition, a mixture of SiH4, NH3, and N2 was used, and the substrate temperature
was maintained at 250 ◦C. Afterward, Cu thin films of various thicknesses (12, 15, 18, 25, 30,
and 35 nm) were deposited on top of the Si3N4 layer by a magnetron sputtering method
and the MIM structures were prepared. Prior to the deposition of the Cu top layer, the
chamber of magnetron sputtering was evacuated to 1.5×10−6 Torr. The film thicknesses of
Cu were varied by deposition time and the deposition rate was controlled at 0.20 nm/s. The
Cu film was deposited at room temperature under a working pressure and sputter power
of 2 mTorr and 40 W, respectively. The refractive indices of the Cu films were measured by
the ellipsometry method. Au thin film was also deposited by DC magnetron sputtering
under a base pressure of 2.0 × 10−6 Torr while DC power of 20 W was used to deposit
10 nm film on the Si3N4/Al bilayer. The SiO2 insulating layers were deposited on top of
MIM structures. The SiO2 thin films were also deposited via the PECVD technique (Oxford
Plasma Pro 800 plus). The dip-coating method was used to coat commercially available
ProtectaClear and PMMA coats while LPSQ was coated by drop casting method. PC was
purchased from Everbrite, Inc., Rancho Cordova, CA, USA, and PMMA solutions were
purchased from Kayaku Advanced Materials (Japan). A custom-made humidity chamber
was prepared for the humidity experiment. A plastic container was taken as a humidity
chamber where half of it was filled with water. Later, all MIM samples were kept as they
float in the chamber, and the plastic box was firmly closed. Finally, the humidity chamber
was kept inside a drying oven at 60 ◦C for 24 h. A salt spray test was carried out to study
the corrosion of the MIM structure according to the standard ASTM B-117. The ASTM
stands for American Society for Testing and Materials and the organization develops and
publishes the technical standards for a variety of materials. ASTM B-117 is one of the
certified methods from ASTM internationals for knowing corrosion resistance information
of metals or coated metals. The corrosion test was performed in an Erichsen Corrocompact
617 apparatus (Erichsen GmbH & Co. KG, Hemer, Germany) with. All the specimens were
kept in the enclosed chamber and exposed to a 5% NaCl solution. The temperature during
the salt spray experiment was kept at 35 ◦C and the test period was 24 h.
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The cross-sectional TEM specimens were prepared by the focused ion beam (FIB)
milling method and samples were characterized via a transmission electron microscope
(FEI Talos F200X S/TEM, Thermo Fisher Scientific (TMO), Waltham, MA, USA). The
plan-view microstructures were characterized using a field-emission scanning electron
microscope (FEI Inspect F50, FEI, Hillsboro, OR, USA). The reflectance spectra of the
fabricated samples were measured using a spectrophotometer with a xenon white source
of beam diameter 4 mm (CM 3600A, Konica Minolta, Inc., Tokyo, Japan), for which the
detector and the incident light beam were positioned at 8◦ from the surface normal. To
calculate the reflectance spectra, the OpenFilters software [27] was used with inputs of
the refractive indices and thicknesses of the individual layers in the multilayer structure.
The Spectramagic NX software was used to extract the pseudo colors of the fabricated
samples obtained from their reflectance spectra [28]. The Spectramagic NX software was
also used to obtain the simulated colors with the inputs of the calculated reflectance. For
capturing color images of all the specimens, a Canon 500D camera was used, and images
were captured under a fluorescent lamp.

3. Results
3.1. Printing Structural Colors by Cu-Based MIM Structures

The measured colors and captured images of the Cu(hm)/Si3N4(hd)/Al (200 nm)
structures with varying thicknesses of hm =12–35 nm and hd = 30–130 nm in steps of 20 nm
are illustrated in Figure 1a,b. In this case, hm was increased from 12 to 15, 18, 25, 30, and
35 nm. By varying the thickness of Cu and Si3N4 layers, a variety of colors, including
brown, dark orange, blue, violet, magenta, cyan, green-yellow, and yellow, can be printed.
A slight variation is noticed between the measured colors and the images captured by a
digital camera because, during the capturing images, brightness might be slightly varied
if compared to the measured color. On the other hand, in the case of measured color, the
specimen is kept in a controlled way so that we can get the actual color of the specimen.
Therefore, we should consider the measured colors as a more accurate measure. Reflectance
spectra with variation in Cu (12 nm)/Si3N4(hd)/Al (200 nm)/Si structures are presented
in Figure 1c. As the wavelength increases, the resonance absorption at the reflectance dip
redshifts. The Cu/Si3N4(hd)/Al structure produces a change in color due to the shift in
the reflectance dip. This can be understood from F-P cavity resonances. In this case, the
reflectance dips shift towards red wavelengths with an enhancement for a fixed hm. The
resonance condition in the F-P cavity of a MIM structure can be expressed as [18](

4π

λres

)
ndhd + φb + φt = 2mπ (1)

where φb and φt are the phase shifts upon reflection at the interfaces of the dielectric layer
with the bottom and top metal thin film layers, respectively, nd and hd are the reflective index
and thickness of the dielectric layer, and λres is the resonance wavelength, respectively, and
m is an integer that represents the order of the cavity mode. In Equation (1), the subscripts
d, b, and t represent dielectric, bottom, and top respectively. As the reflection phase shifts
φb and φt both depend on the refractive indices and thicknesses of the respective metal thin
film layers, Equation (1) expresses a linear increase λres with hd can be observed for a fixed
hm and the bottom Al layer thickness (200 nm), which eventually leads to a redshift of the
reflection dip as hd are increased, and this can be observed in Figure 1. The dependencies of
the reflectance spectra with varying hm in Cu (hm)/Si3N4 (70 nm)/Al (200 nm)/Si structures
are presented in Figure 1d. The absorption is noticed at 550–570 nm wavelength depending
on the hm and the absorption decreased as hm increased. A blueish color is realized due to
comparatively higher R% values being noticed in the blue wavelength region of wavelength.
When hm increased, the R% enhanced in the longer visible wavelength, and the absorption
region slightly shifted to the blue wavelength region. This phenomenon turned the color to
blue-magenta and pink-magenta as hm were increased. As hm increases, the absorption at
the reflectance dip decreases linearly.
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Figure 1. (a) The measured structural color of the Cu(hm)/Si3N4(hd)/Al (200 nm)/Si structures
with varying hm = 12–35 nm and hd = 30–130 nm in the step of 20 nm. (b)The camera images of
the same. The dependencies of the reflectance spectra with varying (c) The dependencies of the
reflectance spectra with varying hd in Cu (12 nm)/Si3N4(hd)/Al (200 nm)/Si structures and (d) hm in
Cu (hm)/Si3N4 (70 nm)/Al (200 nm)/Si structures.

Simulations have been carried out to calculate the reflectance and the colors for the
Cu (12 nm)/Si3N4 (hd)/Al structure, and these are plotted with a measured counterpart in
Figures 2a–f and 2g, respectively. The measured refractive indices of Cu that were used to
simulate reflectance spectra and colors are shown in Figure 3. To simulate the reflectance
spectra, previously reported refractive indices of bulk Al and of the Si3N4 were used [17,29].
Here, the thicknesses of each layer for the experimental MIM structure were measured by
TEM imaging and used for simulation. The simulation data supports reasonably well with
the experimental counterparts.

Thickness-dependent dielectric functions of Cu thin films along with their bulk coun-
terparts [30] are plotted in Figure 3. The ε1 values exhibit negative values in the whole
range of wavelength for 12–25 nm thick Cu films. A negative ε1 value suggests that light
cannot deeply penetrate as it has a large k value. The ε1 spectra for the 12 nm thick Cu film
exhibit broad peak-like nature at ~720 nm, and this extended over the visible range. As Cu
thicknesses are increased, the ε2 value reduces in longer wavelengths as it is observed in
bulk Cu. The Cu thin film exhibits a surface plasmonic band at 770–850 nm, depending on
the size of the nanoparticle [31]. The extended peak-like nature shown by the 12 nm Cu film
might be due to the plasmonic effect, but according to the dielectric spectra, the SPR peak
exists at a longer wavelength, possibly at >740 nm. Therefore, Cu films do not provide any
clear evidence of having a plasmonic effect in the visible range. Thus, colors that appear
from the MIM structure are realized due to the sole contribution of the interference effect.
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3.2. Protecting Cu Surface by Capping Layers

The SiO2 thin film was chosen as one of the capping layers on Cu(hm)/Si3N4(hc)/Al
MIM measured pseudo color and camera images were shown in Figure 4a,b, respectively.
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Herein, thicknesses of SiO2 (hc), Cu (hm), and layer Si3N4 (hd) were chosen as 1–2 µm, 12 nm,
and 30–130 nm, respectively. For the SiO2 layer with a thickness of 1–2 µm, excellent pseudo
colors were obtained, which almost kept the original color of the uncapped Cu/Si3N4/Al.
The view-angle dependency of the thick SiO2-coated MIM structures was studied, and it
exhibits minimal angle dependency behavior (Figure 4b). The cross-sectional TEM images
of SiO2 (200 nm)/Cu (12 nm)/Si3N4 (50 nm)/Al/Si and SiO2 (200 nm)/Cu (25 nm)/Si3N4
(50 nm)/Al/Si structures are shown in Figure 5 and it is observed that both Cu thin films
exhibit continuous growth mode.

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. (a) The refractive indices (n), (b) the extinction coefficients (k), (c) the real (𝜀 ), and (d) 
imaginary (𝜀 ) parts of the dielectric constants of 12 nm, 18 nm, and 25 nm Cu film measured by 
ellipsometry method. These values are also compared with refractive indices and dielectric func-
tions of bulk Cu. 

3.2. Protecting Cu Surface by Capping Layers 
The SiO2 thin film was chosen as one of the capping layers on Cu(hm)/Si3N4(hc)/Al 

MIM measured pseudo color and camera images were shown in Figure 4a,b, respectively. 
Herein, thicknesses of SiO2 (hc), Cu (hm), and layer Si3N4 (hd) were chosen as 1–2 μm, 12 
nm, and 30–130 nm, respectively. For the SiO2 layer with a thickness of 1–2 μm, excellent 
pseudo colors were obtained, which almost kept the original color of the uncapped 
Cu/Si3N4/Al. The view-angle dependency of the thick SiO2-coated MIM structures was 
studied, and it exhibits minimal angle dependency behavior (Figure 4b). The cross-sec-
tional TEM images of SiO2 (200 nm)/Cu (12 nm)/Si3N4 (50 nm)/Al/Si and SiO2 (200 nm)/Cu 
(25 nm)/Si3N4 (50 nm)/Al/Si structures are shown in Figure 5 and it is observed that both 
Cu thin films exhibit continuous growth mode. 
  

 
Figure 4. (a) The measured pseudo colors and (b) the camera images of the SiO2 (1000–2000 nm)/Cu 
(hm)/Si3N4(hd)/Al structure. 

Figure 4. (a) The measured pseudo colors and (b) the camera images of the SiO2 (1000–2000 nm)/Cu
(hm)/Si3N4(hd)/Al structure.

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. The Cross-sectional TEM images of (a) SiO2 (200 nm)/Cu (12 nm)/Si3N4 (50 nm)/Al (200 
nm)/Si and (b) SiO2 (200 nm)/Cu (25 nm)/Si3N4 (50 nm)/Al (200 nm)/Si structures. 

A few other transparent polymer layers, such as PMMA, LPSQ, and ProtectaClear 
(PC), were also chosen as capping layers of the MIM structure, and a comparative study 
is shown in Figure 6. Among the capping layers that we use, SiO2 is known as hydrophilic 
and other polymers are hydrophobic. Figure 6a shows the reflectance spectra of hc/Cu (15 
nm)/Si3N4 (90 nm)/Al (200 nm)/Si MIM structures where three different passivation layers 
were used as hc: 7.5 μm thick PC, 56 μm thick LPSQ, and 9 μm thick PMMA. As can be 
observed, the pattern of the reflectance spectra was unchanged while coated in these thick 
protective layers and, therefore, original colors could be realized with the capping layers. 
Figure 6b,c shows the measured pseudo colors and camera images of the hc/Cu (15 
nm)/Si3N4(hd)/Al (200 nm)/Si structure which state that color was not altered after these 
coating of capping layers. The measured pseudo colors show that the brown, orange, blue, 
cyan, green-yellow, and yellow colors could be printed without a capping layer. The PC-
coated MIM structures could keep the exact colors obtained by uncapped (hc=0) MIM 
structures. The PMMA and LPSQ also show good candidacy to keep the original colors 
but a slight shift in colors from blue to violet is noticed in the case of hc/Cu (15 nm)/Si3N4 
(70 nm)/Al (200 nm)/Si structure. Figure 6c shows the camera images taken for the PC, 
LPSQ, and PMMA-coated MIM structures, and photos were captured both vertically (in-
cident angle:0-degrees) and angularly (incident angle: ~45 degrees). The view-angle-de-
pendency in colors are shown for the hc/Cu (15 nm)/Si3N4(hd)/Al (200 nm)/Si structures, 
and view-angle-dependency is found to be negligible while coated PC, LPSQ, and PMMA. 
The hc/Cu (15 nm)/Si3N4 (70 nm)/Al (200 nm)/Si structure shows a blue to pink-violet shift 
in colors. This happened due to the case that uncapped Cu (15 nm)/Si3N4 (70 nm)/Al (200 
nm)/Si shows slight angle dependency: blue (incident angle:0-degrees) and pink-violet 
(incident angle: 45 degrees). 

3.3. Reliability Test of MIM Structures  
A humidity test was carried out to see whether these capping layers can protect the 

colors in harsh environments. Figure 6d shows before and after the humidity test for the 
PC coated (7.5 μm), PMMA (7 and 9 μm), and LPSQ (56 μm) coated Cu-based MIM struc-
tures. As seen in Figure 6d, a 7.5 μm thick PC layer is sufficient to protect Cu-based MIM 
structure from a humid environment. A 56 μm thick LPSQ-coated layer could also provide 
similar protection. 7–9 μm thick PMMA layer could not protect the Cu surface from a 
moist environment where an uncapped Cu-based MIM structure can be easily oxidized, 
and color was removed from the surface while kept in a humid environment. A combina-
tion of PMMA and SiO2 layers were used as the capping layers to protect the Cu surface 
from the humid environment and Cu (12 nm)/hd (Si3N4)/Al structures were studied. A SiO2 

(1 μm) layer is considered as 1st layer of capping and PMMA (40–60 μm) layers were used 

Figure 5. The Cross-sectional TEM images of (a) SiO2 (200 nm)/Cu (12 nm)/Si3N4 (50 nm)/Al
(200 nm)/Si and (b) SiO2 (200 nm)/Cu (25 nm)/Si3N4 (50 nm)/Al (200 nm)/Si structures.

A few other transparent polymer layers, such as PMMA, LPSQ, and ProtectaClear (PC),
were also chosen as capping layers of the MIM structure, and a comparative study is shown
in Figure 6. Among the capping layers that we use, SiO2 is known as hydrophilic and other
polymers are hydrophobic. Figure 6a shows the reflectance spectra of hc/Cu (15 nm)/Si3N4
(90 nm)/Al (200 nm)/Si MIM structures where three different passivation layers were used
as hc: 7.5 µm thick PC, 56 µm thick LPSQ, and 9 µm thick PMMA. As can be observed, the
pattern of the reflectance spectra was unchanged while coated in these thick protective
layers and, therefore, original colors could be realized with the capping layers. Figure 6b,c
shows the measured pseudo colors and camera images of the hc/Cu (15 nm)/Si3N4(hd)/Al
(200 nm)/Si structure which state that color was not altered after these coating of capping
layers. The measured pseudo colors show that the brown, orange, blue, cyan, green-yellow,
and yellow colors could be printed without a capping layer. The PC-coated MIM structures
could keep the exact colors obtained by uncapped (hc=0) MIM structures. The PMMA
and LPSQ also show good candidacy to keep the original colors but a slight shift in colors
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from blue to violet is noticed in the case of hc/Cu (15 nm)/Si3N4 (70 nm)/Al (200 nm)/Si
structure. Figure 6c shows the camera images taken for the PC, LPSQ, and PMMA-coated
MIM structures, and photos were captured both vertically (incident angle:0-degrees) and
angularly (incident angle: ~45 degrees). The view-angle-dependency in colors are shown
for the hc/Cu (15 nm)/Si3N4(hd)/Al (200 nm)/Si structures, and view-angle-dependency
is found to be negligible while coated PC, LPSQ, and PMMA. The hc/Cu (15 nm)/Si3N4
(70 nm)/Al (200 nm)/Si structure shows a blue to pink-violet shift in colors. This happened
due to the case that uncapped Cu (15 nm)/Si3N4 (70 nm)/Al (200 nm)/Si shows slight angle
dependency: blue (incident angle:0-degrees) and pink-violet (incident angle: 45 degrees).
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Figure 6. The reflectance spectra and structural colors of hc/Cu (12 nm)/Si3N4 (90 nm)/Al (200 nm/Si
structures where three different passivation layers were used as hc: Protectaclear coat (PC), LPSQ, and
PMMA. (a) The reflectance spectra of hc/Cu (12 nm)/Si3N4 (90 nm)/Al (200 nm/Si MIM structures
with three different passivation layers compared with uncoated structure. (b)The measured colors of
the hc/Cu (12 nm)/Si3N4(hd)/Al (200 nm/Si MIM structures. (c) The color images were captured
by a digital camera at 0 degrees and a 45-degree incident angle for the same structure of (b). The
captured images of the before and after humidity test of the (d) hc/Cu (12 nm)/Si3N4 (90 nm)/Al
(200 nm)/Si and hc -1/hc -2/Cu (12 nm)/Si3N4 (90 nm)/Al (200 nm)/Si structures and of the (e)
hc/Au (10 nm)/Si3N4 (90 nm)/Al (200 nm/Si MIM structures.

3.3. Reliability Test of MIM Structures

A humidity test was carried out to see whether these capping layers can protect the
colors in harsh environments. Figure 6d shows before and after the humidity test for the PC
coated (7.5 µm), PMMA (7 and 9 µm), and LPSQ (56 µm) coated Cu-based MIM structures.
As seen in Figure 6d, a 7.5 µm thick PC layer is sufficient to protect Cu-based MIM structure
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from a humid environment. A 56 µm thick LPSQ-coated layer could also provide similar
protection. 7–9 µm thick PMMA layer could not protect the Cu surface from a moist
environment where an uncapped Cu-based MIM structure can be easily oxidized, and
color was removed from the surface while kept in a humid environment. A combination
of PMMA and SiO2 layers were used as the capping layers to protect the Cu surface from
the humid environment and Cu (12 nm)/hd (Si3N4)/Al structures were studied. A SiO2
(1 µm) layer is considered as 1st layer of capping and PMMA (40–60 µm) layers were used
as the top layer. The 60 µm thick PMMA layer was found to be protective enough from
the humid environment and the colors of the three samples i.e., hd =50 nm, 70 nm, and
110 nm remained intact. The vertically taken images of the PMMA/SiO2 bi-layer coated
MIM structure were shown in Figure 6d. The colors remained view-angle independent
after this PMMA/SiO2 bi-layer coating and a similar phenomenon was found after the
humidity test.

The capping layers were also coated on Au-based MIM structures (hc/Au (10 nm)/Si3N4
(90 nm)/Al (200 nm) and the effect of these capping layers in a humid environment was
studied (Figure 6e). After the humidity test, the uncapped Au-based MIM structure
exhibited large cracks, while the MIM structures capped by PC (7.5 µm) and LPSQ (56 µm),
gave strong protection in a harsh environment. As the Au surface is scratch-sensitive,
therefore, PC and LPSQ layers can be excellent candidates for protecting Au-based MIM
structures from scratchiness.

The reflectance spectra and measured colors of the same structure were presented in
Figure 7. The reflectance spectra before and after the bi-layer coating of the capping layers
(Figure 7a–c) lie close to each other. The reflectance spectra after the humidity test also
show a similar trend and therefore, measured colors (Figure 7d) in these three cases i.e.,
uncoated MIM structure, after the PMMA/SiO2 bi-layer coating, and after the humidity
tests, remained almost the same.

Figure 8 shows the plan-view SEM images of the bare Cu/Si3N4/Al structures after
the humidity test, and these were compared with capped MIM structures. Figure 8a SEM
represents the bare Cu/Si3N4/Al structure where macrostructure from the camera images
shows large cracks and voids, and these are clearly noticed in the SEM microstructure. The
surface was rough and rusty as it was oxidized in a humid environment. A 7.5 µm thick
PC coating can give strong protection from the humid environment as the camera images
of the specimen show the color was intact and no crack was observed. The SEM image of
the specimen (Figure 8b) shows that it has small pores after the humidity test. Figure 8c,d
show the SEM images of 7–9 µm thick PMMA coated Cu/Si3N4/Al structure. Even though
macrostructures observed from the camera images exhibited large cracks and degrade
colors, these cracks were not clearly visible in SEM images. LPSQ-coated Cu/Si3N4/Al
structure exhibits a large number of cracks, and these are visible to the naked eye (camera
images of Figure 8e). The LPSQ-coated specimen was cured at 80 ◦C and could not give
good protection under humid conditions. Figure 8e presents the SEM microstructure of the
LPSQ-coated Cu/Si3N4/Al structure and few cracks were noticed in the SEM images. The
SEM images of the PMMA/SiO2 bi-layer coated Cu-based MIM structure after the humid
test were presented in Figure 8f–h and all three samples exhibited very smooth surfaces
after the test. This signifies that a combination of polymer and CVD-coated transparent
bilayer can protect sufficiently from the humid environment.
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The SEM images of the capped and uncapped Au (10 nm)/Si3N4 (90 nm)/Al structure
after the humidity test, are shown in Figure 8i–k. The SEM image of the uncapped Au-based
MIM structure is shown in Figure 8i. The color was unchanged after the humidity test
in the cases of the uncapped Au/Si3N4/Al structure but there are some voids or cracks
visible in the macrostructure. The SEM microstructure of the specimen shows a large crack
in the top left corner of the image, and it is representative of one of the cracks visible by
the naked eye. Figure 8j represents a 7.5 µm thick PC-coated Au/Si3N4/Al structure and
it shows a very good smooth surface from the SEM images. The 56 µm thick LPSQ layer
coated Au/Si3N4/Al structure (Figure 8k) provided a smooth surface that was visible in
both the SEM images and in the macrostructure. After the LPSQ coating, the Au/Si3N4/Al
structure was cured at 150 ◦C in a vacuum with continuous Ar flow.

Figure 9 represents the pseudo colors and camera images before and after the salt
spray test of the capped MIM structures. The cyan color appeared in bare Cu (12 nm)/Si3N4
(90 nm)/Al structure and after a 30 µm thick PC was coated on the MIM structure, the color
remained almost the same. The reflectance spectra of the PC-coated MIM structure almost
closely matched before and after the PC coating (Figure 9g). The PC-coated Cu-based MIM
structure could not pass the salt spray test as 90% of the surface of the PC-coated MIM
structure was corroded after the test which can be seen in Figure 9a. LPSQ coating was
used as well to understand how protective this layer can be in a salty environment. In the
case of the humidity test of the specimens, it was observed that 80 ◦C was not the standard
curing temperature as it failed to give accurate protection from the humid environment.
Therefore, a 56 µm thick LPSQ-coated Cu (12 nm)/Si3N4 (90 nm)/Al structure was cured at
150 ◦C in a vacuum furnace with the flow of Ar gas. Figure 9b shows a cyan-colored sample
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of the same MIM structure as in Figure 9a, where LPSQ was coated as a capping layer.
After curing the LPSQ-coated MIM structure, a slight color variation is noticed while the
cyan color is slightly varied to a blue-ish cyan color. A slight change in reflectance was also
noticed when LPSQ was coated on the MIM structure as compared with the uncoated MIM
structure, where reflectance values largely enhanced in longer wavelength (600–740 nm).
The reflectance peak position remained almost the same in both uncoated and LPSQ-
coated structures and thus bluish color remained. This slight color change in LPSQ coated
Cu/Si3N4/Al structure occurred possibly due to the fact the specimen might be slightly
oxidized during the curing process. The color and surface remained intact even after the
salt spray test for the case of LPSQ. The reflectance spectra of the uncoated MIM structure
are compared with the reflectance spectra obtained from the LPSQ-coated MIM structure
before and after the salt spray test (Figure 9g) and it is observed that the reflectance spectra
before and after the salt spray test almost remained constant. A green-ish colored Cu
(12 nm)/Si3N4 (110 nm)/Al structure is noticed in Figure 9c to keep the original color when
coated with SiO2 (2 µm) layer as the capping layer of the MIM structure but failed to keep
the color rather surface is completely corroded during salt spray test. An orange-colored Cu
(12 nm)/Si3N4 (50 nm)/Al structure was shown in Figure 9d, where color remained almost
the same after PMMA (30 nm)/SiO2 (2 µm) bilayer was coated on Cu/Si3N4/Al structure
and color also remained intact even after salt spray test. The reflectance spectra of uncoated
Cu (12 nm)/Si3N4 (50 nm)/Al structure were compared with PMMA/SiO2 bilayer-coated
MIM structure before and after the salt spray test (Figure 9h). A small variation is noticed,
i.e., the reflectance value in the reflectance dip region slightly enhanced as PMMA/SiO2
was coated on the MIM structure and therefore, the difference in the color before and after
the coating of the capping layer is less significant. Reflectance spectra closely overlapped
each other before and after the salt spray test which signifies that color quality was intact
after the salt spray test. A bare Cu (12 nm)/Si3N4(70 nm)/Al structure exhibited violet
color when a PC (13 µm)/SiO2 (2 µm) bilayer was coated as a passivation layer on the MIM
structure (Figure 9e), the color brightness of the specimen was enhanced as the reflectance
value in mid to longer wavelength (550–750 nm) region. The reflectance spectra (Figure 9i)
remained almost the same before and after the salt spray test which also produced an
almost similar color.

The corrosion test was also carried out for the specimens capped by various capping
layers on Au (10 nm)/Si3N4 (90 nm)/Al structure. Figure 9f shows that cyan color can be
realized on the Au (10 nm)/Si3N4 (90 nm)/Al structure and color remained almost constant
while coated PC (60 µm)/SiO2 (2 µm) bilayer as the capping layer. The capped MIM
structure was cured at two temperatures: 80 ◦C and 150 ◦C in a drying oven and the color
of the specimens were found to be similar in both conditions. The capped MIM structure
cured at 80 ◦C was damaged in the salt spray test while a large amount of Au surface
was intact in the case of the specimen which was cured at 150 ◦C. Figure 9j represents the
reflectance spectra of the PC (60 µm) coated Au (10 nm)/Si3N4 (90 nm)/Al/Si structure
cured at 80 ◦C and 150 ◦C while these spectra were compared with uncoated Au/Si3N4/Al
structure. The reflectance spectrum of the specimen which passed the salt spray test was
also compared with the spectra measured before the test. The reflectance spectra obtained
before and after the salt spray test for the specimens cured at 150 ◦C, matched very closely,
thus the color also remained the same.
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Figure 8. The scanning electron microscopy (SEM) images of the humidity test specimens: (a–h)
Cu-based MIM structures; (i–k) Au-based MIM structures. The scale bar in all images is 100 µm.

The plan-view SEM images of the salt spray test specimens are shown in Figure 10.
Figure 10a represents the SEM image of the PC-coated specimen after the salt spray test.
Large cracks are visible in the SEM microstructures of the corroded specimen. The SiO2-
coated Cu/Si3N4/Al structure was completely corroded and the damaged surface was
observed in the SEM image shown in Figure 10b. PMMA/SiO2, PC/SiO2, and LPSQ coated
Cu/Si3N4/Al structure passed the salt spray test, and the SEM images of these specimens
after the test were shown in Figure 10c–e, respectively. The SEM images show that a very
smooth surface can be obtained even after the salt spray test was performed. The plan
view SEM images of PC coated Au (10 nm)/Si3N4 (90 nm)/Al structure cured at 80 ◦C
and 150 ◦C after the salt spray test, were shown in Figure 10f,g respectively. The specimen
cured at 80 ◦C has large cracks which are noticeable in the camera images and these cracks
are found in the SEM images. The specimen cured at 150 ◦C gives better protection from
the salt spray though few cracks were noticed in the macrostructure (camera image), and
no voids or cracks were observed in the SEM image rather smooth surface is noticed.
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As the capping layers are relatively thick (e.g., order of 10 µm), these can be coated on
the structures via vacuum-free coating methods such as the dip coating method. This will
be advantageous for the mass production of these color coatings.

4. Conclusions

To summarize, we have proposed a model to prepare reflective structural colors using
Cu-based MIM structures on Al back reflectors. By varying the thickness of Cu and Si3N4
layers, several colors can be printed, such as brown, dark orange, blue, violet, magenta,
cyan, green-yellows, and yellows. SiO2, ProtectaClear, PMMA, and LPSQ were studied as
capping layers to protect the Cu surface. SiO2 layers 1–2 mm thick can maintain the original
color and provide angular independence. In addition to protecting from scratchiness,
SiO2 can also protect from oxidation in the short term. ProtectaClear, PMMA, and LPSQ
present excellent prospects regarding color quality and angle independency. In addition
to protecting Au-based MIM structures (60 ◦C, 24 h), ProtectaClear and LPSQ provide
strong protection against moisture (60 ◦C, 24 h). Even though a single-layer PMMA-coated
Cu-based MIM structure could not protect the surface from the humid environment, this
problem can be solved by a PMMA/SiO2-bilayer coating. A single LPSQ layer can be
a good candidate to protect the Cu surface from the hard corrosive environment as it
passes the salt spray test (24 h) while ProtectaClear/SiO2 and PMMA/SiO2 bilayer play
the same role. The ProtectaClear coat is sufficient to protect the Au surface from corrosion.
It provides cost-effectiveness, lithography-free design, and color-tuning capability, so it can
be used to make real color coatings.
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