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Abstract: The exceptional characteristics of bio-synthesized copper oxide nanoparticles (CuO NPs),
including high surface-to-volume ratio and high-profit strength, are of tremendous interest. CuO NPs
have cytotoxic, catalytic, antibacterial, and antioxidant properties. Fruit peel extract has been recom-
mended as a valuable alternative method due to the advantages of economic prospects, environment-
friendliness, improved biocompatibility, and high biological activities, such as antioxidant and
antimicrobial activities, as many physical and chemical methods have been applied to synthesize
metal oxide NPs. In the presence of apple peel extract and microwave (MW) irradiation, CuO NPs
are produced from the precursor CuCl2. 2H2O. With the help of TEM analysis, and BET surface area,
the average sizes of the obtained NPs are found to be 25–40 nm. For use in antimicrobial applications,
CuO NPs are appropriate. Disk diffusion tests were used to study the bactericidal impact in relation
to the diameter of the inhibition zone, and an intriguing antibacterial activity was confirmed on both
the Gram-positive bacterial pathogen Staphylococcus aureus and Gram-negative bacterial pathogen Es-
cherichia coli. Moreover, CuO NPs did not have any toxic effect on seed germination. Thus, this study
provides an environmentally friendly material and provides a variety of advantages for biomedical
applications and environmental applications.

Keywords: metal oxide nanoparticles; microwave synthesis; X-ray photoelectron spectroscopy;
bacterial pathogens; seed germination

1. Introduction

Nanotechnology, which deals with the engineering of matter with a minimum of
one dimension spanning the size of less than 100 nm, is a rapidly expanding area [1]. In
contrast to their bulk analogs, nanoparticles behave better for many applications due to
their high surface-to-volume ratio and greater surface reactivity [2,3]. The high electrical
conductivity, chemical stability, large bandgap, and high transmittance of the metal oxide
nanoparticles [4–6] increase their suitability as a potential material for a number of appli-
cations, including self-cleaning technology, sensor fabrication, data storage devices, and
photocatalysis [7–9]. However, because they eventually get into our environment, their use
needs to be carefully considered. Therefore, the investigation is essential to determining
how these nanoparticles affect plants.

NPs have been used in numerous industrial and consumer goods during the past few
decades. Different sectors are creating unique NPs to enhance their services and goods
as a result of the growing use of NPs in commercial items. NPs may be discharged into
the environment as a result of some of the NP-intensive industries [10]. A small number
of the many NPs are employed on a big scale and may end up in the environment [10].
The NPs have the ability to contaminate the environment through a variety of activities,
including inappropriate industrial waste management and improper user product disposal.
A wide variety of materials are covered by NPs [11], but only a few of them are widely
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used at the moment, putting the environment in danger of exposure. As they are most
frequently employed in industry, metal nanoparticles (silver, copper, aluminum, nickel,
and iron) and metal oxide nanoparticles (titanium dioxide, zinc oxide, cerium dioxide,
and copper oxide) are mostly investigated for their effects on various plants [12]. CuO
NP has been demonstrated to increase plants’ ability to produce reactive oxygen species
(ROS) [13–15]. In plants treated with NPs, various antioxidant molecules were seen to be
greatly enhanced, showing that plants had activated the protective mechanism [16].

Due to their distinct physicochemical and biological characteristics, CuO NPs have
received a lot of attention among these metal oxide NPs. Numerous physical and chemical
techniques can be used to create metal oxide nanoparticles (MO NPs) [17–20]. However,
the creation of NPs must be done in a way that is environmentally friendly [21–23]. The
employment of environmentally friendly biological techniques is preferred. As a result, they
are regarded as “green” methods. Recently, fruit peels were used to make metal or metal
oxide nanoparticles [24–27]. Due to its sustainability, accessibility, and simplicity, CuO NPs’
photosynthesis has attracted more attention lately [28]. The objective of this study was to
characterize CuO NPs in an eco-friendly manner and then show their antibacterial activity.

In this study microwave irradiation process was used to make CuO NPs from the
CuCl2 precursor and their toxic effect on seed germination of Raphanus raphanistrum seeds
has been documented. The synthesized NPs are characterized with the help of analytical
techniques like XRD, FE-SEM, HR-TEM, XPS, BET, and Raman spectral analysis. To the best
of our knowledge, this is the first investigation examining the impact of green synthetic CuO
NPs on the seed germination of R. raphanistrum seeds and in vitro antibacterial potency of
CuO NPs against Staphylococcus aureus and Escherichia coli. This study provides a practical,
affordable, and safe method for the creation of inorganic nanoparticles and their use in
effective nano fertilizers and other biomedical applications.

2. Materials and Methods

The details of materials and methods of synthetic CuO NPs (A scheme for synthe-
sizing NPs is shown in Scheme S1), the instruments used for the characterization of NPs,
Scheme S2 provides an overview of the proposed mechanism for making CuO NPs, and
the synthesized CuO NPs are tested for cytotoxicity with MDA MB 231 cell line (Figure S1)
are provided in the supplementary section.

2.1. Antibacterial Activity and Safety Assessment of CuO NPs
2.1.1. In-Vitro Antibacterial Efficacy

The agar well diffusion method is employed to evaluate the antibacterial activity of
CuO NPs [29]. The microorganisms E. coli (ATCC 43895) and S. aureus (ATCC 6538) are
employed in this study. In a nutshell, sterile Mueller–Hinton agar (MHA) plates are loaded
with 50.0 L of CuO NPs at different concentrations (50.0, 100.0, and 200.0 g/mL (w/v)) and
punctured with a 7 mm-diameter cork borer. Overnight cultures of each bacterial strain
were distributed on the MHA plates at 0.5 McFarland standard. After the incubation period,
a Vernier caliper is used to determine the radius of the inhibitory zone. In this investigation,
Mueller–Hinton broth media was used to determine minimum inhibitory concentrations
(MICs) of synthesized CuO NPs according to the Clinical Laboratory Standards Institute
(CLSI) for bacteria. MIC was defined as the lowest concentration that inhibited cell growth.
Briefly, freshly grown cells were diluted for the optimum size of inoculum for MICs and
treated with various concentrations of CuO NPs in a 96-well microtiter plate. At least two
independent cultures are used in experiments to ensure accuracy and reproducibility.

2.1.2. Seed Germination Toxicity Assessment of CuO NPs

Using Murashige and Skoog agar plates, as previously described [30], researchers
looked at the effect of CuO NPs on seed germination using Raphanus raphanistrum seeds
that had been soaked overnight. The seeds were sterilized with 1 mL of 100% ethanol before
the experiment, and they were then submerged in a solution of 3% sodium hypochlorite for
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15 min. The seeds were subsequently put on agar plates (0.86 g/L Murashige and Skoog
medium) that contained both CuO NPs at 0–500 µg/mL and 0.7% bacto-agar. The plates
were then imaged after being incubated for seven days at room temperature.

3. Results and Discussion
3.1. XRD Analysis of Green Synthetic CuO NPs

An effective analytical method to learn more about the crystalline peaks in metal oxide
NPs was XRD pattern analysis [31–33]. The XRD patterns of green synthetic CuO NPs are
displayed in Figure 1. The patterns for both NPs appear to have shown a significant peak at
Miller indices (021), (110), (002), (111), (200), (130), (202), (020), (002), and (113), respectively,
at 30.2, 31.5, 35.0, 37.5, 39.0, 40.8, 48.0, 49.5, 58.0, and 61.5◦ [34]. According to the strong
peaks in the XRD patterns, the CuO NPs were crystalline and in the monoclinic phase. It
was discovered that the lattice parameters a, b, and c were 4.68, 3.41, and 5.08, respectively.
According to the well-known Scherrer equation, the average crystal size for the NPs was
discovered to be 41.6 nm [35].

D = (Kλ)/(β.cosθ) (1)

where D is the crystallite size (in nanometers), K is the Scherrer’s constant, commonly taken
to be 0.9, β is the whole width half maximum (in radians), λ is the wavelength of the Cu K
radiation (1.54 Å), and θ is the Bragg angle (in degrees).
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Figure 1. XRD patterns of CuO NPs.

3.2. FE-SEM Analysis of Green Synthetic CuO NPs

CuO NPs’ surface morphology was examined visually and analyzed using FE-SEM
images [36,37]. Figure 2A,B show an FE-SEM picture of both NPs at various magnifications.
The CuO NPs had a particle-like structure and a consistent shape. CuO NPs exhibit
homogenous distributions with particle sizes ranging from 45.0 to 110.0 nm. Images exhibit
clusters that have agglomerated together and some square-shaped particles. Clusters of
material-like particles can also develop with stabilized NPs when they are positioned closely
together. The peel extract decreased and stabilized NPs, allowing for their redispersion [38].
A peel extract restricts flocculation and clustering to regulate particle size distribution.
Apple peels are a successful stabilizing agent for the fabrication of NPs in small sizes.
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As a result, procedures like particle growth, impurity adsorption, and aggregation were
responsible for determining the structure of NPs [39]. The chemical composition and
particle dispersion of both NPs on the entire surface are confirmed by the EDX data.
Figure 2C,D show that Cu and O can be found in the NPs. Cu La, Cu Ka, and Cu Kb
representations for the copper reveal that the strong signals are seen around 0.91, 8.04, and
8.92 keV, respectively, and for oxygen (O Ka), about 0.54 keV [40]. Figure 2C,D also include
information on the weight percentage and atomic percentage of NPs. The carbon material
was not taken into account in the NP composition estimate because it was coated with NPs.
These outcomes proved that microwave synthesis can produce a CuO structure in about
five minutes.
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Figure 2. FE-SEM images of green synthetic CuO NPs (A) for the CC 100, (B) for the CC 110, EDX
spectra of CuO NPs, (C) for the CC 100, and (D) for the CC 110.

3.3. HR-TEM Analysis of Green Synthetic CuO NPs

The particle size and crystallinity of the NPs are revealed by the TEM pictures and
their SAED patterns [41]. HR-TEM pictures of the obtained NPs with 31 nm scale bars
are shown in Figure 3A–E,G–K. The stone NPs in these photos have a tight variation of
particle sizes and an average diameter of 40.2 4.0 nm. ImageJ software was used to analyze
particle size distributions. The linkages, spherical nature, and NP aggregation in Figure 3
closely resemble the FESEM pictures. Figure 3F,L show that the SAED pattern is indexed to
planes (021), (110), (002), (111), (200), (130), (202), (020), (002), (021), and (002), respectively,
which represent the FCC crystalline structure of CuO. (113). They are stone structures
and agglomerated, according to microscopic visualization with FE-SEM and HR-TEM
morphological characterization of the NPs.

3.4. XPS Analysis of Green Synthetic CuO NPs

XPS analysis, a potent surface-sensitive method for determining CuO oxidation state
and chemical composition in NPs, has been used to evaluate the green synthetic CuO
NPs [42]. The C 1s peak, which formed at a binding energy of 284.60 eV, is used as a
reference for standardizing all binding energies. The peaks of the XPS wide-scan spec-
tra for both NPs are connected to the elements Cu, C, and O, as shown in Figure 4A,E.
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Figure 4B–D,F–H show high-resolution measurements of the XPS spectra of Cu 2p, C 1s,
and O 1s (core XPS spectra). Cu 2ps’ core level spectra or narrow energy range shows a
dominating peak at the Cu 2p3/2 atom’s stronger binding side and an increase in the main
peak’s binding energy, both of which point to an unfilled Cu 3d9 shell. The discovery of
an unfilled Cu 3d9 shell in the CuO sample [43] further supports the discovery of Cu2+.
Additionally, Cu 2p3/2 of CuO is responsible for the peaks at 954.48 and 954.28 eV for the
NPs of CC 100 and 110, respectively, in the core level spectra of Cu 2p (deconvolution of
CuO NPs, Figure 4B,F). Similar to this, Cu 2p1/2 of CuO is responsible for the peaks at
934.48, and 934.48 eV for the NPs of CC 100, and 934.48 eV for the NPs of CC 110 (Table 1),
respectively, in the core level spectra of Cu 2p (deconvolution of CuO NPs, Figure 4B,F).
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Figure 4. XPS of (A,E) survey scan spectrum of CuO NPs of CC 100, and CC 110, (B,F) Cu 2p of CC
100, and CC 110, (C,G) C 1s of CC 100, and CC 110, and (D,H) O 1s of CC 100, and CC 110.
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Table 1. Binding energies of elements present in the NPs.

Name of the
Sample

Cu 2p (eV)
O 1s (eV) C 1s (eV)

Cu 2p3/2 Cu 2p1/2

CC 100 934.88 954.48 531.18 284.18 288.38
CC 110 934.48 954.28 531.08 284.28 287.88

The NPs of CC 100 and CC 110 each have a single component at bonding ener-
gies of 531.08 and 531.08, respectively, according to the Gaussian–Lorentzian fit of O1s
(Figure 4C,G). One can conclude that the peaks represent the binding energy for oxygen
vacancies or flaws in the CuO NPs’ surrounding environment [44]. Figure 4D,H display
a high-resolution spectrum of carbon (C 1s), which supports the appearance of the two
reference peaks. The first peak is at 284.18, and the second one is at 284.28 eV for the NPs of
CC 100 and CC 110, respectively. These higher energy peaks indicate adventitious carbon
containing the C-C bond at 288.38 and 288.88 eV for the NPs of CC 100 and 110, respec-
tively. The two peaks of the C 1s spectrum are referred to as contamination of adventitious
carbon and serve as a charge reference for the XPS spectra on the surface of nanoparti-
cles (NPs). There was no potential for residual nitrogen in the precursor, as seen by the
NPs’ XPS spectra. The structural stability of CuO NPs was confirmed by evaluating the
XPS spectrum.

3.5. BET Surface Area Analysis

The most effective quantitative model for calculating surface area is the Brunauer–
Emmett–Teller (BET) model. Using N2 gas adsorption and BET surface area analysis, the
pore size distribution and surface area of CuO NPs are investigated. The type IV isotherm
obtained for both the CuO NPs (CC 100 and CC 110) and the adsorption-desorption curve
are presented in Figure 5A,E. The presence of the mesoporous character of the produced
NPs is confirmed by the hysteresis loop within the relative pressure (P/P0), which varies
from 0.8 to 0.9 [45]. Most often, mesoporous is the term used to describe the pore size
that results in a Type IV isotherm. The hysteresis loop is the Type IV isotherm’s defining
trait. However, the amount adsorbed is always more at any point on the desorption curve
than on the adsorption curve, regardless of the actual shape of the loop, which changes
from one adsorption system to the next [46]. H1 loops, which are frequently attained for
agglomerates or compacts of spheroidal particles of uniform size and array, are provided
by CC 100. H3 is produced by CC 110, which also has adsorbents and pores with a slit
form [46,47]. By using the typical multi-point BET, the surface areas of both NPs were
determined to be 12.9758 and 2.4368 m2/g, respectively (Figure 5B,F). By using the BJH
desorption method, the pore size distribution of the generated NPs was examined [48,49].
As can be seen in Figure 5C,D,G,H, the pore size values for the NFs of CC 100 and CC 110
were determined to be 10.64 and 17.08 nm, respectively. Table 2 combines the outcomes
of pore size and surface area. Because of this, the pore size indicates that the NPs are
mesoporous, which was consistent with the results of other characterization techniques,
the XRD, FESEM, and HRTEM images.

3.6. Raman Spectral Analysis of Green Synthetic CuO NPs

The main method used to determine the vibrations of metal oxide NPs and local atomic
arrangements, and to examine their structural properties was Raman spectroscopy [50,51].
Additionally, it can be used to gauge how crystalline materials like NPs are. CuO NPs’
Raman spectra were displayed in Figure 6. A prominent peak was visible in both spectra
at a wavelength of 285.0 cm-1, which matched the Ag mode of vibration. The Bg mode of
vibration was indicated by the shoulder-like peaks that occurred at 310.0 cm-1 [51,52]. The
Bg mode of vibration was represented by the medium peak (blue oval in the figure) that
appeared for both NPs at 610.0 cm-1 [53,54]. Only oxygen atoms have a dislocation shift
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in the b-axis of Ag and Bg’s Raman modes. By reducing particle size, it was possible to
change a Raman shift and bandwidth [52].
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Figure 5. BET surface analysis with N2 gas adsorption-desorption isotherms of CuO NPs for CC 100
(A) and for CC 110 (E), surface area plot for CC 100 (B) and for CC 110 (F), BJH desorption pore size
distribution for CC 100 (C) and for CC 110 (G), and differential pore volume plot for CC 100 (D) and
for CC 110 (H).

Table 2. Surface area, pore volume, and pore size distribution of NPs by BET analysis.

Material

Surface Area (m2/g) Pore Volume Pore Size (nm)

t-Plot
External

Surface Area
Surface Area

t-Plot
Micropore

Volume
(cm3/g)

BJH
Adsorption
Cumulative
Volume of

Pores (m2/g)

BJH
Desorption
Cumulative
Volume of

Pores (m2/g)

BJH
Adsorption

Average Pore
Diameter

(4V/A)

BJH
Desorption

Average Pore
Diameter

(4V/A)

CC 100 13.0291 12.9758 −0.000062 0.040396 0.040583 10.64 6.06

CC 110 3.6874 2.4368 −0.000483 0.017041 0.017084 17.08 13.03

3.7. FT-IR Spectral Analysis of Green Synthetic CuO NPs

To determine the structural and chemical characteristics of the generated metal oxides,
the impacts of the peel extract employed in the synthesis of NPs were examined by FT-IR
analysis [53,54]. FT-IR spectra between 400.0 and 4000.0 cm-1 were taken (Figure 7). CuO
NPs feature a peak that was linked to hydroxyl group stretching, and it is located between
3440 and 3316 cm-1. Because of a bending O-H, NPs have a peak that resembles a shoulder
at 1645 cm−1. The C-O imbalance in NPs was responsible for another little hump at
1386 cm−1. The C-O symmetry explained a smaller hump in the spectra at 1124 cm−1. The
presence of Cu-O bonds was indicated by a strong peak at 538 cm−1. The Au mode and
Bu modes of CuO occurred at 435 cm−1 and 489 cm−1, respectively, and were two of the
metal’s distinctive bands [55]. The NPs of CC 100 and CC 110 exhibit the high-frequency
mode at 590 cm−1 and 580 cm−1. Cu-O stretching vibrations in the (101) direction have
been suggested as the cause [56]. The FT-IR investigation thus validates the monoclinic
structure of the pure phase CuO.
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Figure 7. FT-IR spectra of CuO NPs for CC 100, and CC 110 (A), and expanded spectra (B).

3.8. DRS Analysis of Green Synthetic CuO NPs

The DRS spectrum of pure CuO NPs is seen in Figure 8. UV-VIS-NIR spectrophotome-
ters were used to measure DRS curves. NPs have absorption bands in the 365.0 nm (blue
oval I) range [25,57]. A peak and shoulder were seen at 560.0 nm (blue oval II), indicating
the presence of CuO on the surface of NPs. Additionally, the reflectance was weak in both
the UV and visible spectrums (200.0–800.0 nm). Additionally, it revealed details regarding
the regions’ higher absorption rates given their low transmittance.
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3.9. TGDTA Analysis of CuO NPs

The thermal behavior of the green synthetic CuO NPs in which a weight loss occurs
according to the temperature can be seen with the analysis of TGDTA curves [58]. Figure 9
gives the CuO NPs’ TGDTA curves. In the temperature ranges of 50.0–110.0, 245.0–290.0,
390.0–420.0, and 465.0–660.0 ◦C, there are four stages of weight loss that can be seen. Due
to the removal of water molecules adsorbed on NP surfaces, a very low and progressive
weight loss of 1.0% is seen in the first stage. This stage, which results in a modest weight
loss, reveals that none of the NFs contain much moisture. The phytoconstituents produced
during those temperature fluctuations account for the remaining weight losses in the
next stages. The stabilizing chemicals that were used to coat the NPs may be removed
at this point, and there is a slight but considerable weight loss at the end of NPs. Both
NPs displayed a weight decrease of about 50%. The release of moisture content, and
phytoconstituents from the surface of NPs by which they are physically adsorbed [59], as
well as the release of peel extract from the surface due to the desorption process held on
the surface of NPs, are thought to account for only 60% of the NPs’ total weight loss. The
exothermic peaks in the DTA curves of both NPs at 270.0, 415.0, and 600.0 ◦C demonstrated
that the NPs discharged energy into the surrounding environment.

3.10. Antibacterial Efficacy of CuO NPs

CuO NPs demonstrate effective activity on both the Gram-positive and Gram-negative
bacterial pathogens that are tested. NPs are effective against E. coli and S. aureus, with
MIC values of 25.0 µg/mL and 50 µg/mL, respectively. Our outcomes revealed that the
synthesized CuO NPs have a superior antibacterial effect against Gram-negative bacterial
strain E. coli (ATCC 43895) compared to Gram-positive S. aureus (ATCC 6538). This might
be because Gram-positive bacteria has a strong cell wall, whereas Gram-negative bacteria
has a thin cell wall. Thus, it is possible that CuO NPs easily penetrate to the cell membrane
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of Gram-negative bacteria and cause damage to the cell [60]. The agar diffusion test, which
is also used to evaluate the antibacterial activity of CuO NPs, revealed a distinct zone
for action against both bacteria. After the treatment, the sizes of the inhibitory zones
were combined in Table 3, and Figure 10 displayed sample photographs. The outcomes
showed that, in relation to the concentration of CuO NPs, the zone of inhibition expanded
dramatically. The concentrations of NPs and the zone of inhibition were inversely correlated.
The zone of inhibition for E. coli and S. aureus at 200 µg/mL of CC 100 was found to be
23.1 ± 2.3 mm and 16.0 ± 1.0 mm, respectively. Additionally, CC 110 demonstrated a
similar pattern of inhibition zones in E. coli and S. aureus following the treatment; these
inhibition zones were measured to be, respectively, 23.2 ± 1.3 mm and 16.1 ± 0.9 mm at
200 µg/mL. It has been demonstrated that CuO NPs are highly effective against a variety of
bacterial strains [61]. Additionally, against E. coli and S. aureus, both CuO NPs (CC 100 and
CC 110) demonstrated dose-dependent antibacterial activity. CuO NPs have a high surface-
to-volume ratio that allows them to interact with the bacterial pathogen’s cell membrane
across its surface, ultimately leading to the pathogen’s death [62]. To increase the surface
responsiveness of NPs, electrical interactions created by CuO NPs with lower sizes and a
bigger surface area were very useful. Furthermore, the increased surface area percentage
immediately collaborates with the bacterium, resulting in improved bacterial engagement
throughout the process. Cu and O, two essential components in NPs, significantly increase
the antibacterial effectiveness of NPs with a large surface area [63,64]. Phytofabricated
CuO NPs by mentha pulegium leaf/flower mixture reported by Alavi et al., 2021, and CuO
NPs synthesized by electrochemical reduction method by Jadhav et al., 2011, demonstrated
comparatively less or limited activity against Gram-positive and negative bacterial strains
compared to CuO NPs’ activity in present work [65,66]. Additionally, Halbus et al., 2019
reported a novel type of modified CuO NPs which have been functionalized with GLYMO
and 4-HPBA (CuO NPs/GLYMO/4-HPBA) to produce an antibacterial agent of much
higher efficiency than bare CuO NPs [67]. Bio-synthesized CuO NPs showed versatile and
higher antibacterial activity against various human and fish bacterial pathogens [68].
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Table 3. Antibacterial efficacy of CuO NPs at different concentrations against S. aureus and E. coli by
a zone of inhibition.

Bacterial Strains Type of
CuO NPs

Zone of Inhibition (mm)

Conc. of CuO NPs (µg/mL)

200 100 50 0

S. aureus
CC 100 16.0 ± 1.0 13.0 ± 0.9 9.0 ± 0.4 ND
CC 110 16.1 ± 0.9 19.3 ± 0.4 11.1 ± 1.2 ND

E. coli
CC 100 23.1 ± 2.3 21.0 ± 0.8 15.0 ± 0.8 ND
CC 110 23.2 ± 1.3 19.5 ± 0.5 14.4 ± 0.5 ND
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3.11. Safety Profiles of CuO NPs

R. raphanistrum seeds are grown on Murashige and Skoog agar containing CuO NPs
at a concentration of 0–500 µg/mL in order to examine the efficient activity of CuO NPs on
seed germination. CuO NPs did not cause any phenotypic changes in the seeds for the first
four days; however, at 500 µg/mL, R. raphanistrum’s germination rate took longer to occur
on day seven (Figure 11A). In comparison to untreated controls, seed germination and
seedling growth are slightly decreased at the concentration of 100 µg/mL. Additionally,
seedlings treated with CuO NPs at a concentration of 500 µg/mL had considerably shorter
lengths than the untreated controls (Figure 11B). CuO NPs, particularly CC 100, displayed a
comparable safety profile to that of biogenic copper nanoparticles and copper oxide-based
nanocarriers as reported in earlier investigations [64,65]. Accordingly, it may be inferred
from these side-by-side observations that the synthetic NPs are more secure for use in
environmental applications.
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4. Conclusions

In conclusion, CuO NPs are produced successfully utilizing an environmentally
friendly method employing apple peel extract, and the NPs were evaluated against both
Gram-positive bacterial pathogen S. aureus and Gram-negative bacterial pathogen E. coli to
investigate its application in the medical sector. The bio-synthesized copper oxide nanopar-
ticles inhibited the growth of S. aureus and E. coli. In order to strengthen our suggested
hypothesis, we discovered that reasonable results of present research that prepared CuO
NPs using microwave irradiation might be an effective alternative for treating S. aureus-
and E. coli-associated infections. Additionally, seed germination toxic assay revealed that
prepared CuO NPs support safe to use or disposal in the environment. Thus, CuO NPs
might be promising ecofriendly and promising antibacterial agents based on their high
dose safety and significant antibacterial efficacy against S. aureus and E. coli. Additionally,
synthetic CuO NPs are more secure in the use of environmental applications.
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