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Abstract: The use of gold nanoparticles as drug delivery systems has received increasing attention
due to their unique properties, such as their high stability and biocompatibility. However, gold
nanoparticles have a high affinity for proteins, which can result in their rapid clearance from the body
and limited drug loading capabilities. To address these limitations, we coated the gold nanoparticles
with silica and PEG, which are known to improve the stability of nanoparticles. The synthesis of the
nanoparticles was carried out using a reduction method. The nanoparticles’ size, morphology, and
drug loading capacity were also studied. The SEM images showed a spherical and homogeneous
morphology; they also showed that the coatings increased the average size of the nanoparticles. The
results of this study provide insight into the potential of gold nanoparticles coated with silica and
PEG as drug delivery systems. We used ibuprofen as a model drug and found that the highest drug
load occurred in PEG-coated nanoparticles and then in silica-coated nanoparticles, while the uncoated
nanoparticles had a lower drug loading capacity. The coatings were found to significantly improve
the stability and drug load properties of the nanoparticles, making them promising candidates for
further development as targeted and controlled release drug delivery systems.

Keywords: nanomedicine; nanoparticle; nanoparticle synthesis; gold nanoparticle; drug delivery;
drug carrier; polyethylene glycol; silica; nanocarrier; ibuprofen

1. Introduction

Drug delivery research is an interdisciplinary field that involves the development
of new materials, devices, and strategies for delivering therapeutic agents to specific
locations in the body. Drug delivery systems are designed to deliver therapeutic agents
in order to maximize their effectiveness and minimize their side effects [1]. There are
many different types of drug delivery systems, including micro- [2] and nanoparticles [3],
nanoplatforms [4–6], devices [7–10], and theragnostic platforms [11–13]. These systems
can be used to deliver a wide range of drugs, including chemotherapeutics [14–16], gene
therapies [17–20], and other biologics [21–26]. Optimizing drug loading in drug delivery
systems is a critical aspect of their design and performance. This is because the amount
of drug loaded onto the delivery vehicle can significantly impact its effectiveness and
safety. However, achieving optimal drug loading is not always straightforward, as it can be
influenced by a range of physicochemical factors such as the stability of the drug in the
delivery system, the size and surface properties of the delivery vehicle, and the interaction
between the drug and the delivery vehicle. In addition, the physiological conditions that the
delivery system encounters in the body, such as the pH and temperature, can also affect the
drug loading. Therefore, optimizing the drug loading requires a thorough understanding of
these variables and the ability to carefully control and manipulate them in order to achieve
the desired therapeutic effect.
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To overcome these limitations, researchers have developed a variety of strategies, such
as surface modification or functionalization of drug delivery systems to improve target-
ing and the use of nanoparticles or nanoplatforms to enhance transport and distribution.
Polyethylene glycol (PEG) is a widely used polymer that has many attractive properties
for use as a coating in drug delivery systems [27,28]. PEG has been shown to improve
the stability of drugs within the delivery system, reduce toxicity [29,30], and enhance the
circulation time of the delivery vehicle in the body [31,32]. Additionally, PEG is biocom-
patible and nonimmunogenic, making it suitable for use in various medical applications.
Furthermore, the ability to tailor the size and architecture of PEG coatings allows for fine-
tuning the release properties of the drug delivery system. Overall, the use of PEG coatings
in drug delivery systems has the potential to significantly improve the safety and efficacy
of drug delivery. In the same sense, silica, or silicon dioxide, is a material that has several
attractive properties for use as a coating in drug delivery systems. One of the main benefits
of silica is its high stability and biocompatibility [33–36], which makes it suitable for use in
a range of medical applications. Additionally, silica is highly porous and has a large surface
area, which can be exploited to incorporate a large amount of drug in the delivery system.
This can be particularly useful for delivering hydrophilic drugs, which can be difficult to
incorporate into other delivery systems. Silica coatings can also be modified to control the
release rate of the drug, making it possible to tailor the therapeutic effect. Overall, the use
of silica coatings in drug delivery systems offers the potential for the improved stability,
bioavailability, and the controlled release of drugs.

Gold nanoparticles are highly attractive for use as drug carriers due to their unique
physical and chemical properties, including the ability to be synthesized in various sizes
and shapes and easily functionalized with a variety of molecules, which allows for targeted
drug delivery [37–42]. These features allow gold nanoparticles to target specific cells and
tissues and to release drugs in a controlled manner. One of the main challenges in using
gold nanoparticles as drug carriers is the need to optimize drug loading. The amount of
drug that can be loaded onto the nanoparticles depends on several factors, including the
size and shape of the nanoparticles, the surface functionalization, and the physicochemical
properties of the drug. Therefore, it is important to carefully optimize the drug loading
and release properties of gold nanoparticles to achieve the desired therapeutic effect. Many
reports in the literature have demonstrated the potential of gold nanoparticles as carriers
for various drugs [43–48]; however, more research is needed to optimize the control of drug
loading and to compare extensively used coatings such as polyethylene glycol (PEG) [49–53]
and silica [54–58].

In addition to optimizing drug loading, it is also important to consider the physic-
ochemical properties of the gold nanoparticles themselves. The size, shape, and surface
chemistry of gold nanoparticles can affect their stability, biodistribution, and toxicity. For
example, gold nanoparticles coated with polyethylene glycol (PEG) or silica may be more
stable in the body and exhibit lower toxicity compared to uncoated nanoparticles. However,
PEG and silica coatings may also affect the drug release and targeting properties of the
nanoparticles. Therefore, it is important to carefully the effects of different coatings on
drug delivery to optimize their use as drug carriers. Further research is needed to fully
understand the factors that influence drug loading and release in order to optimize the
use of AuNP as drug delivery vehicles. In this study, we synthesized gold nanoparticles
and coated them with silica and polyethylene glycol (PEG) to investigate their potential
as drug delivery systems. The uncoated gold nanoparticles and the coated nanoparticles
were characterized using various techniques and their drug release properties were com-
pared. Our objective is to contribute to the existing literature on AuNP-based biomedical
engineering applications by demonstrating the importance of coatings in drug loading. To
our knowledge, this is the first time that two of the coatings that have been presented as
suitable for therapeutic applications in nanomedicine systems, PEG and silica, have been
assessed to compare their drug loading efficiency. Our findings offer a new perspective on
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the potential of AuNPs in biomedical engineering and pave the way for further studies on
their therapeutic efficacy.

2. Materials and Methods

The synthesis of gold nanoparticles (AuNPs) was carried out using a reduction method.
Chloric Auric Acid (HAuCl4) was used as the precursor salt, and sodium citrate was used
as the reducing agent. The synthesis process was performed at a critical temperature of
80 ◦C using platens with stirring function to mix the solutions. To synthesize the AuNPs,
5 mL of HAuCl4 was added to 50 mL of distilled water to create solution 1. Solution 2
was prepared by dissolving 115 mg of sodium citrate in 10 mL of distilled water, and
the solutions were mixed for 5 min. The resulting mixture was then placed on a stage
at 80 ◦C and agitated at approximately 300 rpm, while the sodium citrate was added to
the HAuCl4 solution. The nucleation of the nanoparticles was observed by the change in
color from transparent to reddish, indicating the formation of the AuNPs. Maintaining the
proper temperature during the synthesis process was critical for the successful nucleation
of the nanoparticles. The synthesized nanoparticles were characterized using scanning
electron microscopy (SEM), and dynamic light scattering (DLS) to confirm their size and
size distribution and Fourier transform infrared spectroscopy (FTIR) to determine the
functional groups attributable to the coatings.

The method of producing silica-coated gold nanoparticles in our research was inspired
by the procedure previously reported in [59], with some modifications. The process
involved mixing an ethanolic solution of 4 mM cetyltrimethylammonium bromide (CTAB)
and 1 mM tetraethyl orthosilicate (TEOS) with 3 mL of AuNPs and then exposing the
mixture to ultrasonic treatment for 4 h. After that, the product was washed multiple times
with deionized water and ethanol, collected through centrifugation, and dried at 70 ◦C
for 8 h. This procedure was adapted to produce silica-coated gold nanoparticles for our
study. The process for obtaining PEG-coated gold nanoparticles used in our study involved
the preparation of a 30 mg/mL solution of PEG 3350 polymer by dissolving 45 mg of the
polymer in 1.5 mL of deionized water. The resulting solution was mixed with 3 mL of
AuNPs that had undergone prior centrifugation at 8000 rpm. The pH of the solution was
then adjusted to between 9 and 10 using 0.1 M NaOH solution. The resulting mixture was
subjected to magnetic stirring for 2 h and was dispersed with an ultrasonic homogenizer
every 5 min during the first hour and every 15 min during the second hour. The excess PEG
not adhered to the surface of the AuNPs was then removed by centrifugation for 30 min at
8000 rpm. This procedure was used as described in the previous literature [60].

The model drug used in this study was ibuprofen, an anti-inflammatory medication
commonly used for pain relief and inflammation reduction. Due to its low water solubility,
ibuprofen was dissolved in chloroform for purification. Four 400 mg tablets were crushed,
and the resulting white powder was weighed to obtain 2.44 g. This powder was added
to 200 mL of chloroform in a flask and stirred magnetically until completely dissolved.
The solution was filtered to collect the chloroform with ibuprofen, then it was then heated
on a hot plate at 60 ◦C for about an hour to separate the ibuprofen from the chloroform.
The resulting white powder was the purified ibuprofen, which was used to load onto the
nanoparticles coated with polyethylene glycol (PEG) and silica. To avoid contamination, all
the glassware used in the process was washed with acetone and dried in an oven at 60 ◦C.

The drug loading and release properties of the nanoparticles were evaluated using a
UV–Vis spectrophotometer. The results were compared to those obtained with uncoated gold
nanoparticles to assess the effect of the coatings on the drug release. The concentration of
ibuprofen in the solution was determined using a NANODROP 2000 Spectrophotometer
(ThermoFischer, Wilmington, DE, USA). Ibuprofen was dissolved in a 3:1 ratio of acetone
to deionized water to improve its solubility, and ten Eppendorf tubes were prepared with
different concentrations of the drug. The tubes were incubated, homogenized, and labeled to
create a calibration curve and confirm the presence of different concentrations of ibuprofen.
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The drug loading onto gold nanoparticles (AuNPs) was performed using a 3:1 ratio
solution of acetone and water to dissolve the drug in an aqueous medium. Ten Eppendorf
tubes were prepared with different concentrations of the drug-loaded solution by mixing
0.5 mL of the drug solution with 0.5 mL of AuNPs solution. The tubes were incubated for
30 min in a Thermolyne Roto Mix Type 50800 orbital shaker to allow the drug to attach to
the AuNPs. The tubes were then centrifuged for 15 min at 13,000 rpm in an Eppendorf
Centrifuge 5415 D to precipitate the AuNPs and recover the liquid solution. The liquid
solution was analyzed using UV–Vis spectroscopy to determine the drug concentration.
The absorbances were compared to the absorbances obtained in the calibration curve of
the drug to calculate the amount of drug present in the solution and the amount of drug
anchored to the surface of the AuNPs.

3. Results and Discussion

In order to determine the shape and size of the AuNPs, a Scanning Electron Microscopy
(SEM) study was conducted (Figure 1). The SEM configuration was set to a secondary
electron detector, at the same voltage (15.0 KV) and at different magnifications (130 and
600 K) to visualize the AuNPs. The samples placed in the SEM vacuum chamber exhibited
a spherical morphology for all the nanostructures observed during the study. The whole
sample was also found to be monodispersed, confirmed by DLS (Figure 2) indicating
that the AuNPs were suitable for various alternative therapy applications in biomedical
engineering. The size of the AuNPs was determined to be in the range of 5 to 60 nm, with
larger sizes observed for the AuNPs coated with PEG or Silica.
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Figure 1. SEM images of the AuNP particles. In panel (a), the AuNPs are shown without any coating.
In panel (b), the AuNPs are coated with PEG, which can be observed to slightly increase the size of
the particles and maintain their dispersion. In panel (c), the AuNPs are coated with silica, which can
be seen to form small aggregates on the surface of the particles. All the particles shown in the figure
are spherical in shape.

It is important to note that the coating has the potential to extend the lifetime of the
AuNPs in physiological media. The coating provides a longer lifetime and acts as an anchor
for the drug on the nanostructure, serving as a vehicle for drug localization. AuNPs smaller
than 10 nm are rapidly excreted and metabolized by the liver due to their size, which allows
for unrestricted distribution and mobilization through capillaries in the body. By coating the
AuNPs with polymers such as PEG or silica, the dimensions of the AuNPs can be increased
to above 10 nm, reaching up to 30 nm, which makes this size range optimal as they are not
rapidly eliminated by the liver and kidneys. This can be seen in Figures 3 and 4.
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Figure 3. FTIR spectrum of (a) the AuNPs coated with PEG, showing the O-H and C-H vibrations
bands at 3350 to 3490 cm−1 and 1630 to 1750 cm−1, which correspond to the O-H flexion and
stretching vibrations, respectively, and (b) the FTIR spectrum of the AuNPs coated with silica, where
the bands at 1100, 1300, 800, and 1000 cm−1 correspond to Si-O-Si and Si-O bond vibrations.
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Fourier transform infrared spectroscopy (FTIR) was employed to analyze the AuNPs–
PEG sample and confirm the presence of polyethylene glycol (PEG) on the surface of the
gold nanoparticles (AuNPs). The FTIR spectrum of the AuNPs–PEG sample showed bands
between 3350, 3490, 1630, and 1750 cm−1, corresponding to the O-H flexion and stretching
bonds, respectively. Additional bands were also observed due to the functionalization of
the AuNPs with PEG, including C-H stretching bonds between 1180 and 1210 cm−1 and
C-H flexion bonds between 950 and 1050 cm−1. These bands indicate the successful coating
of the AuNPs with PEG. Figure 3 shows the FTIR spectrum of the PEG-coated AuNPs.
A zoom was applied to the spectrum to better visualize the bands of the PEG functional
groups. FTIR was also used to determine the presence of silica on the surface of the AuNPs.
The AuNPs–Silica sample showed bands between 3350 and 3490 and 1630 and 1750 cm−1

corresponding to the O-H flexion and stretching vibrations, respectively, as well as bands
between 1100, 1300, 800, and 1000 cm−1 corresponding to the Si-O-Si vibration and Si-O
bond vibration, respectively.

Since the samples were in suspension, we performed a thermogravimetric analysis.
The thermogravimetric analysis of a sample of AuNPs was conducted to quantify the mass
of the sample. The characterization of the AuNPs is shown in the resulting graph, in which
the sample had an initial weight loss of 83.12%. The final weight corresponded to the
presence of gold in the sample, while the rest was the medium in which the AuNPs sample
was suspended. See Figure 4 for the thermogravimetric analysis of the AuNPs.

The calibration curve and the results of the absorbances obtained after incubation [61]
can be seen in Figure 5a,b, respectively. (AuNPs, AuNPs–PEG, and AuNPs–silica). In the
following graph, it can be seen how ibuprofen was able to adhere to the AuNPs sample;
but from the first concentration, the AuNPs became saturated. It is also worth noting that
from the first concentration, the drug continued to adhere to the nanostructures, which
may be due to the drug anchoring to several layers on the nanostructures. On the other
hand, in the AuNPs–PEG sample, there was an increase in the adhesion of the drug to the
nanostructures until it reached saturation at a concentration of around 100 µg/µL. Similarly,
it can be seen that the drug was able to adhere to the AuNPs–silica sample, anchoring
in a greater amount compared to the AuNPs sample but anchoring in a smaller amount
compared to the AuNPs–PEG sample. In this sample, saturation was observed from a
concentration of around 100 µg/µL. It was observed that all samples ceased to adsorb
the drug when an initial drug concentration of around 100 was used. This may be due to
saturation of the drug adsorption sites on the surface of the nanocarriers, leading to an
inability to further incorporate the drug. Alternatively, the high drug concentration may
result in a decrease in the surface charge density of the nanocarriers, leading to decreased
drug–nanocarrier interactions and reduced adsorption. Further investigation is needed to
fully understand the mechanisms behind this phenomenon.

The results show that the AuNPs–PEG sample had the highest drug loading capacity,
followed by the AuNPs–silica sample and finally the AuNPs sample. It is worth noting that
the AuNPs–PEG sample had a higher drug loading capacity compared to the AuNPs–silica
sample despite the fact that the latter had a larger surface area, which suggests that the
PEG coating may have facilitated the adhesion of the drug to the nanostructures.

An important aspect to be considered is that the loading of ibuprofen onto nanopar-
ticles can have a significant impact on the physical and chemical characteristics of the
nanoparticles. This is because the drug molecules can alter the surface charge and size
of the nanoparticles and can also change the stability of the nanoparticle suspensions.
Additionally, the drug molecules can interact with the coating materials, leading to changes
in their properties, such as the degree of hydration and stability. In particular, the loading
of ibuprofen onto the gold nanoparticles can have a significant impact on their physical and
chemical characteristics. Further research is necessary to fully understand the mechanisms
behind this relationship, and to elucidate how the amount of the drug loaded affects the
stability and size of the nanoparticles. This approach highlights the importance of consider-
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ing the impact of drug loading on the properties of nanoparticle carriers, as it could have
implications for their efficacy and safety in the treatment of various diseases.
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loading graphs can be seen, where it is observed that the uncoated AuNPs do not exhibit efficient
drug loading, while coating with silica increases the drug loading efficiency, but the PEG coating
achieves the best drug loading. The PEG coating achieves a mass loading of 33%, while the silica
achieves around 25% when a concentration of 100 micrograms per milliliter of the drug is used, and
the uncoated AuNPs achieve around 10%.

4. Conclusions

To investigate the drug delivery potential of gold nanoparticles coated with silica and
polyethylene glycol (PEG), we synthesized gold nanoparticles using a reduction method
and coated them with the two materials. The uncoated and coated nanoparticles were
characterized using various techniques, including scanning electron microscopy, dynamic
light scattering, and Fourier transform infrared spectroscopy. We then conducted drug
loading studies to compare the uncoated gold nanoparticles with the silica- and PEG-coated
nanoparticles. The results of these studies showed that the coatings significantly improved
the drug loading properties of the nanoparticles, making them promising candidates for
further development as targeted and controlled release drug delivery systems. More
in vitro studies will be necessary to fully assess the potential of these coated nanoparticles
as drug carriers and to optimize their design for specific applications. This work highlights
the importance of the surface modification or the functionalization of drug delivery systems
for targeted delivery and improved drug loading properties. Further studies are necessary
to confirm these results and investigate the mechanisms behind the drug loading capacity
of these nanostructures as well as the rate of drug release.
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