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Abstract: The present research work represents the numerical study of the device performance of
a lead-free Cs2TiI6−XBrX-based mixed halide perovskite solar cell (PSC), where x = 1 to 5. The
open circuit voltage (VOC) and short circuit current (JSC) in a generic TCO/electron transport layer
(ETL)/absorbing layer/hole transfer layer (HTL) structure are the key parameters for analyzing the
device performance. The entire simulation was conducted by a SCAPS-1D (solar cell capacitance
simulator- one dimensional) simulator. An alternative FTO/CdS/Cs2TiI6−XBrX/CuSCN/Ag solar
cell architecture has been used and resulted in an optimized absorbing layer thickness at 0.5 µm
thickness for the Cs2TiBr6, Cs2TiI1Br5, Cs2TiI2Br4, Cs2TiI3Br3 and Cs2TiI4Br2 absorbing materials
and at 1.0 µm and 0.4 µm thickness for the Cs2TiI5Br1 and Cs2TiI6 absorbing materials. The device
temperature was optimized at 40 ◦C for the Cs2TiBr6, Cs2TiI1Br5 and Cs2TiI2Br4 absorbing layers and
at 20 ◦C for the Cs2TiI3Br3, Cs2TiI4Br2, Cs2TiI5Br1 and Cs2TiI6 absorbing layers. The defect density
was optimized at 1010 (cm−3) for all the active layers.

Keywords: perovskite; solar cell; diffusion; efficiency

1. Introduction

A solar cell is made for the conversion of solar energy into electrical energy directly,
which has undergone continuous development from the past few years due to its superior
photovoltaic (PV) properties. Initially, 1st generation wafer-based PV technology was
developed but the production cost was relatively higher with lower conversion ability. The
production cost became lower after the introduction of thin film-based 2nd generation
solar cells, but still the power conversion efficiency (PCE) remained low. However, the
problems including cost and PCE were nullified after the development of thin film-based
3rd generation PV technology. Perovskite solar cells (PSCs) have a great capability towards
photovoltaic applications and are rapidly emerging as 3rd generation solar cells [1,2]. The
journey started with Kojima et al. 2009, with halide perovskite ABM3 (A: organic CH3NH3

+;
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B: Pb, M: Br, I), and they recorded 3.8% of power conversion efficiency (PCE, %) [1]. Later,
Yang et al. 2015, and Yin et al. 2015 further carried out extensive research on material,
deposition process, fabrication methods and device structure that enhanced the PCE up to
20.1% experimentally, and theoretically 31.4% [3,4]. Hosseini et al. 2022 showed the effect
of non-ideal conditions on lead-based CH3NH3PbI3 perovskite material [5]. Despite the
higher conversion efficiency in the laboratory, it has several issues in terms of commercial-
ization such as environment protection from the toxic lead (Pb) component, and stability
under environment conditions due to the organic component used in the ABM3 structure.
To address such issues, researchers considered using lead-free inorganic material as the
absorbing material for the photovoltaic applications. Titanium (Ti)-based PSCs were intro-
duced by Ju et al. 2018 with 1.0–1.8 eV tuneable band gap, and Chen et al. (2018) achieved
1.02 V open circuit voltage (VOC, V), 5.69 mA/cm2 current density (JSC, mA/cm2) and
56.4% fill factor (FF, %) with Cs2TiBr6 absorbing material [6,7]. Shyma et al. 2022 employed
SCAPS-1D-based simulation on Sn-based perovskite material CH3NH3SnI3 to investigate
the various parameters of the active materials and the selection of the appropriate ETL
(electron transport layer) for the device [8]. On the other side, Omarova et al. 2022 showed
the selection of the optimal HTL (hole transport layer), and also determined that electrodes
can minimize the effects of material defects to improve the device performance [9].

By taking the knowledge from the above discussion, our research article has pin-
pointed several vital contributions including developing a theoretical model of a lead-free
mixed halide FTO/CdS/Cs2TiI6−XBrX /CuSCN/Ag-based structure where all the materi-
als used for the SCAPS simulation are inorganic in nature, and then important physical,
opto-electronic parameters such as thickness of material, device temperature and defect
density of the material are optimized. For this optimization, we have analyzed the device
performance parameter PCE with the variation in thickness of the active materials, followed
by the device performance with the device temperature and defect density.

2. Device Architecture and Simulation

In our proposed FTO/CdS/Cs2TiI6−XBrX/CuSCN/Ag-based planar solar cell device
model, the band gap of ETL (electron transport layer) materials, CdS and HTL material
CuSCN are taken to be 2.4 eV, 3.26 eV and 3.4 eV, respectively, and the absorbing layer
is tuneable under 1.0–1.78 eV [10–15]. The working temperature for the simulation is
maintained at 27 ◦C with −0.8 V to 0.8 V bias voltage in the SCAPS-1D simulator. Here,
Figure 1 shows the schematic view of the proposed structure. the simulation is carried
out with illumination of AM 1.5 with the light power of 1000 W/m2 under Gaussian
energy distribution, and its characteristic energy is set to 0.1 eV. With Br doping the lattice
parameter, band structure and the optical properties of Cs2TiI6 can be changed. Thus, due
to the doping effect, both Cs2TiI2Br4 and Cs2TiI3Br3 are suitable for solar cell applications.
On the other side, based on the superior optical coincidence index and better absorption
coefficient, Cs2TiI2Br4 and Cs2TiIBr5 are ideal for light harvesting applications [16]. The
details of the device materials’ properties and active materials’ basic parameters taken for
the work are shown in Tables 1 and 2, respectively. The symbols, i.e., Eg, denote the band
gap energy;
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Table 1. Device material properties.
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Ea (eV) 1.90 4.18 4.0
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used for the SCAPS simulation are inorganic in nature, and then important physical, opto-
electronic parameters such as thickness of material, device temperature and defect density 
of the material are optimized. For this optimization, we have analyzed the device perfor-
mance parameter PCE with the variation in thickness of the active materials, followed by 
the device performance with the device temperature and defect density. 
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cm2/Vs, hole mobility is 2.5 cm2/Vs and electron and hole thermal velocity is 107 cm/s [17]. 
The Shockley–Queisser limit of a perfect photovoltaic absorbing material is around 1.3 eV 
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10 19 22 25 28 10 18
Donor density, ND (1/cm3) 1 × 1019 2 × 1019 1 × 1018 5 × 1018 5 × 1018 1 × 1019 9 × 1018

Acceptor density, NA (1/cm3) 1 × 1019 2 × 1019 1 × 1018 5 × 1018 5 × 1018 1 × 1019 9 × 1018

Electron mobility, µn (cm2/VS) 4.4 5.4 5.8 7.8 7.8 4.4 8.4
Hole mobility, µp (cm2/VS) 2.5 2.9 3.1 3.9 3.9 2.5 4.3

3. Results and Discussion
3.1. Optimization of Absorbing Layer Thickness with CdS Layer

In this section, the optimization of thickness of different perovskite absorbing layers
such as Cs2TiBr6, Cs2TiI1Br5, Cs2TiI2Br4, Cs2TiI3Br3, Cs2TiI4Br2, Cs2TiI5Br1 and Cs2TiI6
has been studied at 27 ◦C temperature with standard defect density (~1014 cm−3) and a
constant series resistance [18] by varying the thickness from 0.3 to 3.0 µm. Here, Figure 2a–c
represent the PCE; a J-V graph with the thickness variation as 0.3 µm, 0.4 µm, 0.5 µm, 1.0 µm,
1.5 µm, 2.0 µm, 2.5 µm, 3.0 µm, 3.5 µm and 4.0 µm for the Cs2Ti–6−XBrX perovskite solar
cell; and PCE with the back contacts’ metal work function. Generally, the lower thickness of
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absorbing material leads to a low absorption of sunlight, which has a direct impact on PCE.
From Figure 2a,b, it is observed that after 0.5 µm thickness for the Cs2TiBr6, Cs2TiI1Br5,
Cs2TiI2Br4, Cs2TiI3Br3 and Cs2TiI4Br2, and after 1.0 µm thickness for the Cs2TiI5Br1 and
0.4 µm thickness for the Cs2TiI6 absorbing layer, the PCE of the device cell starts to fall
gradually. The reason behind this fall is due to the increment in thickness of the absorbing
layer as the light absorption rate becomes much higher. Such excess light absorption
leads to a temperature rise in the device, and thus VOC starts to fall drastically due to this
temperature rise [12]. With the drop in VOC, the PCE of the device starts to decrease. We all
are aware that the PCE is a key parameter to evaluate the total annual power generation of
a perovskite solar cell device-based PV (photovoltaic) module. Thus, reducing the PCE will
decrease the maximum generated power (PMAX) in the device. Despite the VOC starting to
fall with thickness, the generation rate of the charge carrier increases, which has a direct
impact on the enhancement of JSC [19]. Such an enhancement in JSC will increase the
Shockley–Read–Hall (SRH) recombination [20,21]. This phenomenon could establish a
VOC–JSC relationship in the PV module [20–22].

VOC =
nKT

q
ln (

JSC
I0

+ 1) (1)

where T = device temperature, I0 = reverse saturation current, q = electronic charge,
n = ideality factor and K = Boltzmann constant.

From Equation (1), it is shown that the VOC starts to fall as the reverse saturation
current (I0) increases in the device. Therefore, by analyzing all the parameters we may
conclude that the Cs2TiBr6, Cs2TiI1Br5, Cs2TiI2Br4, Cs2TiI3Br3 and Cs2TiI4Br2 materials
are optimized at 0.5 µm; the Cs2TiI5Br1 material is optimized at 1.0 µm; and the Cs2TiI6
material is optimized at 0.4 µm.

From Figure 2c it is observed that the PCE increases with the higher metal work
function of the Ag paste up to a certain work function value (5 eV). The reason behind such
an increment in the work function value is the decrement of the height of the carrier barrier,
and as a result, the metal contact becomes ohmic in nature [8]. Thus, open circuit voltages
also increase.

On the other hand, Figure 3a,b indicate the changes in diffusion length (Ln) with
the voltage variation at the ambient temperature (300 K). As per the observations, the
diffusion length increases with the open circuit voltage (VOC) for all the seven absorbing
materials except for Cs2TiI5Br1 and Cs2TiI6, where the diffusion length decreases after 0.6 V.
The concentrations of electrons and holes are enhanced with the voltage which leads to
an increment in diffusion length. The diffusion length of the electrons and holes should
be higher than the absorbing layer thickness [8], since Cs2TiBr6, Cs2TiI1Br5 and Cs2TiI6
absorbing materials have a band gap above 1.50 eV which requires large energy to excite
an electron in the conduction band. Thus, such materials operate in a higher temperature
which can burn the device after a certain temperature. Therefore, despite the better power
absorption and power generation capability of Cs2TiBr6, Cs2TiI1Br5 and Cs2TiI6 absorbing
material, they are not suitable for PV application.

3.2. Optimization of Device Temperature with CdS Layer

In our study, we have varied the temperature from −10 ◦C (263 K) to 100 ◦C (373 K)
at an optimized thickness (Cs2TiBr6 = 0.5 µm, Cs2TiI1Br5 = 0.5 µm, Cs2TiI2Br4 = 0.5 µm,
Cs2TiI3Br3 = 0.5 µm, Cs2TiI4Br2 = 0.5 µm, Cs2TiI5Br1 = 1.0 µm and Cs2TiI6 = 0.4 µm) for the
FTO/CdS/Cs2Ti–6−XBrX /CuSCN device structure. Here, Equation (1) can be rewritten as
follows [23,24]:

V =
KBT

q
log (

rif

rif
0
) (2)

where V = VOC, rif = ISC, rif
0 = I0, n is the ideality factor, ISC is the short circuit current and

I0 is the reverse saturation current.
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From Equation (2) we can conclude that as the temperature starts to increase, the open
circuit voltage (VOC) will decrease accordingly. The prime reason behind such a decrement
in VOC is the exponential inverse increment in r0

if in Equation (2), which leads to a similar
exponential inverse increment in I0 due to the temperature rise [12]. On the other hand, the
temperature increment may cause the increment in the recombination process which will
lead to the increment in the short circuit current (ISC) [21]. Figure 4a,b show the changes
in the PCE and VOC with the device temperature for the absorbing materials and suggest
that up to 40 ◦C, the VOC increases quite significantly for the Cs2TiBr6, Cs2TiI1Br5 and
Cs2TiI2Br4 absorbing material, and after that temperature there is a significant change
observed in the VOC. Such a higher VOC starts to increase the PMAX. The reasons behind
such peculiarities are the higher band gap of the Cs2TiBr6 (1.78 eV), Cs2TiI1Br5 (1.58 eV) and
Cs2TiI2Br4 (1.38 eV) perovskite layers, and as the temperature starts to increase initially, the
band gap of the materials starts to reduce, leading to a higher increment in the VOC for the
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Cs2TiBr6 (1.78 eV) and Cs2TiI1Br5 (1.58 eV) material. However, for the Cs2TiI2Br4 material
after 40 ◦C, VOC starts to drop. On the other hand, Cs2TiI3Br3, Cs2TiI4Br2, Cs2TiI5Br1 and
Cs2TiI6 materials have a lower band gap. So, when the temperature starts to rise, the open
circuit voltage (VOC) starts to drop after 20 ◦C onwards despite the existence of almost
constant JSC. As a result, PCE and PMAX after 20 ◦C start to reduce with the voltage drop.
The same will be evidenced from Equation (2). This means as the temperature starts to rise,
VOC starts to decrease continuously and the back recombination process is begun. As a
result, the PCE starts to fall gradually. So, from the above analysis, we may conclude that
the optimal temperature for the Cs2TiBr6, Cs2TiI1Br5 and Cs2TiI2Br4 materials is 40 ◦C and
for the Cs2TiI3Br3, Cs2TiI4Br2, Cs2TiI5Br1 and Cs2TiI6 absorbing layers is 20 ◦C.
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Similarly, changes in electron and hole diffusion length are depicted at 0 ◦C to 100 ◦C
working temperature in Figure 5a,b. It can be observed that at a relatively higher tempera-
ture, the value of Ln is increasing simultaneously, as the diffusion length depends on the
operating temperature and dopant concentration.
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3.3. Optimization of Defect Density

The total defect density plays a key role in determining the performance of a perovskite
solar cell device, as it can debase the performance quality of the device. It has caused
heavy charge recombination between the interfaces [25]. In our present study, we have
changed the total defect density (Nt, cm−3) from 1010 to 1020 in the perovskite absorbing
layer with a cell architecture of FTO/CdS/Cs2Ti–6−XBrX/CuSCN to understand its effects
on the device performances (PCE), and then tried to find out the optimum defect density
for all the materials at the optimized thickness and temperature. It is observed that at
a higher total defect density, there is a higher recombination of electron and hole pairs
due to the generation of pinholes at the electrodes. Such a phenomenon reduces the
stability of the device and overall performance of the device. The effects of defect density
at the different interfaces are not included in this study. Here, Figure 6 shows the PCE
variation with defect density for the Cs2Ti–6−XBrX absorbing layer with the CdS electron
transport layer, respectively. So, from the above figures, it is clearly observed that the
increment in defect density above 1010 cm−3 will reduce the PCE, respectively, for all the
perovskite materials. We can also observe that for the Cs2TiBr6 absorbing material, the
PCE decreases significantly with the defect density as it has a higher band gap as a result
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of the recombination rate starting to reduce. As a result, the collection of electron–hole
pairs is also reduced and JSC starts to decrease. Such changes result in the reduction of
VOC. The Cs2TiI1Br5, Cs2TiI2Br4, Cs2TiI3Br3, Cs2TiI4Br2, Cs2TiI5Br1 and Cs2TiI6 materials
have a continuous VOC drop with JSC reduction, and as a result the PCE falls. This incident
signifies that at the higher total defect density, the back recombination process increases
due to the impurities’ enhancement in the absorbing materials, and as a result, conversion
efficiency (PCE) loss starts to increase due to the VOC and JSC losses [24]. Such losses in
the parameters will decrease the PMAX for the absorbing layers which can be observed in
Figure 6. So, from the above analysis of the performance parameters, the optimal defect
density for the C–2TiI6−XBrX absorbing layer with CdS ETL is 1010 cm−3. Hence, it can
be concluded that the total defect density of the materials affects the PCE of the device
as increasing defects imply reduction in the diffusion length of the electron and hole
charge carriers.
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Figure 6. PCE of C–2TiI6−XBrX absorbing layer with different defect densities at optimized thickness
and temperature for CdS ETL.

4. Conclusions

This research article presents the optimization of the thickness of the absorbing layer
with two different electron transport layers (CdS) numerically using the SCAPS simulator
for the planar FTO/CdS/Cs2TiI6−XBrX /CuSCN structure. The results indicate the per-
formance of the device (PCE, VOC) and maximum power conversion (PMAX) are better
between 0.5 and 1 µm. Through further observations, we have seen that optimization of
the device temperature lies between 10 ◦C and 60 ◦C and defect densities between 1010

and 1014 cm−3 for the different absorbing materials. During the simulation process, it was
observed that defect densities have a great impact on the charge recombination rate. This
research work has not covered the recombination rate in different interfaces of the solar cell
device, which include the ETL/perovskite and perovskite/HTL interfaces.
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