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Abstract: With the aim of increasing the model accuracy of lithium-ion batteries (LIBs), this paper
presents a complex-order beetle swarm optimization (CBSO) method, which employs complex-order
(CO) operator concepts and mutation into the traditional beetle swarm optimization (BSO). Firstly, a
fractional-order equivalent circuit model of LIBs is established based on electrochemical impedance
spectroscopy (EIS). Secondly, the CBSO is used for model parameters’ identification, and the model
accuracy is verified by simulation experiments. The root-mean-square error (RMSE) and maximum
absolute error (MAE) optimization metrics show that the model accuracy with CBSO is superior
when compared with the fractional-order BSO.

Keywords: FO equivalent circuit; parameter identification; beetle swarm optimization

1. Introduction

Electric vehicles (EVs) are proving to be a viable alternative to internal combus-
tion engine-powered vehicles [1,2]. Among all types of fuel cells, the LIB is one of the
most promising energy sources, because of its high energy capacity and Coulombic per-
formance [3–7], with great potential in EV applications. LIBs are a complex nonlinear
time-varying system with multiple real-time changing quantities [8–13], including state
of charge, state of health, state of power, and state of energy. State estimations are all
dependent on accurate battery models. In general, a good battery model should accurately
describe the static and dynamic battery behavior; involve low computational resources;
and be relatively simple to implement in battery management systems [14]. However, a
simple and precise battery model is not readily available. Commonly used battery models
include electrochemical models [15], neural networks [16], thermal models [17], and equiv-
alent circuit models (ECMs) [18]. ECMs are made of capacitances and resistances and are
mainstream due to their low computational burden. Moreover, fractional-order ECMs have
attracted growing attention in the arena of battery modeling, demonstrating better fitting
capability relative to their integer-order counterparts [19,20].

Fractional-order models (FOMs) have many parameters that cannot be directly mea-
sured, such as fractional order [21,22]. Regardless of whether the model parameter values
are regarded as constant or time-varying, parameter identification for the original model
is necessary for equivalent models of batteries [23]. Parameter identification methods,
required for the characterization of LIBs, have been widely investigated. For example, the
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least square method [24], particle swarm optimization (PSO) [25], computational intelli-
gence techniques [26], and genetic algorithms [27] use the statistical characteristics of the
battery transient behaviors as the principle of optimization to find the most suitable battery
parameters that can fit the battery transient characteristics well.

The BSO algorithm is a new meta-heuristic algorithm, and its effectiveness and su-
periority have been verified [28]. Embedding the CO operators concept in the core of the
optimization algorithms leads to superior performance during the search process. This
is due to the fact that the particles’ memory is captured by the CO derivative [29]. For
another, mutation operations prevent the algorithm from entering local minima. In view
of the advantages of both, the above two methods are applied to BSO to obtain CBSO.
Furthermore, the proposed CBSO is employed to identify the model parameters of LIBs,
and the numerical experiments show that the CBSO can improve model accuracy.

The paper is organized as follows: The preliminary concepts about fractional calculus
are introduced in Section 2. Section 3 provides details about the mathematical deduction
of the FOM for LIBs. In Section 4, combined with the experimental results, the algorithm
performances are discussed, and comparisons with other algorithms are included. Finally,
Section 5 concludes the paper.

2. Preliminaries

Fractional-order (FO) differential and integral are expressed as follows, where q repre-
sents the fractional order (non-integers):

Dqx(t) =


dq

dtq x(t), q > 0

x(t), q = 0
dq

dtq = Iqx(t), q < 0

(1)

There are mainly three definitions of fractional-order calculus (FOC): the Grünwald–
Letnikov (GL), Riemann–Liouville (RL), and Caputo definitions [30]. Generally speaking,
the RL definition is commonly used in theoretical analysis research. The Caputo derivative
is suitable for the description and discussion of initial value problems of fractional order.
The GL definition is suitable for problems that require discretization. Herein, the GL
definition is adopted due to its straightforward computational implementation. The GL
operator is given by

Dqx(t) = lim
T→0

1
Tq ×

[t/T]

∑
j=0

(−1)j〈q, j〉x(t− jT)

for (n− 1 < q < n), and 〈q, j〉 stands for Newton binomial coefficient with the follow-
ing definition:

〈q, j〉 = Γ(q + 1)
Γ(j + 1)Γ(q− j + 1)

(2)

where Γ() represents the Gamma function.
We can obtain the two following operators by grouping the conjugate order derivatives [29]:

ϕ1(α, β)( f ) =
Dα+jβ + Dα−jβ

2
( f )

ϕ2(α, β)( f ) =
Dα+jβ − Dα−jβ

2j
( f ), (3)
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where f ∈ R is a function. Using the Taylor expansions of order r in the neighborhood of
z = 0, we can obtain

ϕ1(α, β) = 1− αz−1 +
1
2
(α2 − α− β2)z−2

− 1
6
[α3 − 3α2 + α(2− 3β2) + 3β2]z−3 + . . .

ϕ2(α, β) = −βz−1 − 1
2

β(1− 2α)z−2

− 1
6

β[3α2 − 6α− β2 + 2]z−3 − . . . , (4)

In addition, we can define the operators ψ1(z−1) and ψ2(z−1) such that

ψ1(α, β) =
1

Tα
{ϕ1(z−1)cos[βln(T)]

+ ϕ2(z−1)sin[βln(T)]}

ψ2(α, β) =
1

Tα
{ϕ2(z−1)cos[βln(T)]

− ϕ1(z−1)sin[βln(T)]}, (5)

If the sampling time T is equal to one, then we can obtain ψ1(z−1) = ϕ1(z−1) and
ψ2(z−1) = ϕ2(z−1).

3. Fractional-Order Modeling of LIBs

The most popular battery model is ECMs, which utilize the ideal resistors, capaci-
tors, and voltage sources to describe battery characteristics. The ECMs include integer-
order ECMs and fractional-order ECMs. The FOM uses fractional impedance elements
(e.g., constant-phase element (CPE) and Wahlberg element) to describe the electrochem-
ical processes such as charge transfer reaction, electron layer effects, mass transfer, and
diffusion of LIBs with sufficiently high accuracy. The phase shift of a FO capacitor is called
a phasance [31], and it is an important characteristic parameter of the Nyquist plot in
Figure 1. As illustrated, it consists of three sections: (1) a straight line with a constant slope
at low frequencies, (2) a semicircle at medium frequencies, and (3) an inductive tail at high
frequencies. In particular, the phasance of a Wahlberg element represents the slope of the
low-frequency straight line, while for a resistor–capacitor (RC) network, it is related to the
shape of the medium-frequency semicircle. Moreover, an ideal Warburg element has a
fractional order of 0.5, which produces a straight line with a 45◦ slope in the Nyquist plot.
Therefore, the differentiation order of the Wahlberg element is fixed at 0.5 in our work.

The typical second-order RC models employ a parallel RC circuit to simulate the
impedance spectra of the medium-frequency region. However, ideal capacitors cannot
accurately simulate the double-layer effect. Moreover, the low-frequency region of the
impedance spectrum is not represented by any electronic components [32]. Therefore,
based on the electrochemical process described by the EIS of LIBs, FO impedance elements
are introduced to improve model accuracy. Based on the above discussion, a FOM is shown
in Figure 1. In the model, the OCV represents the open circuit voltage, I represents the
discharge current, V0 represents the terminal voltage, R0 represents the ohmic internal
resistance, C1, C2, and W are the CPE coefficients, R1 and R2 are the resistances on the two
RC branches, V1 and V2 represent, respectively, the voltages on the two RC branches, and
V3 are the Warburg-like element voltage.
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The corresponding battery model formulation can be established based on Kirchhoff’s
current and voltage laws. The governing equations of the model can be given by

Dα1 x1(t) = −
V1(t)
R1C1

+
1

C1
u(t),

Dα2 x2(t) = −
V2(t)
R2C2

+
1

C2
u(t),

D0.5x3(t) =
1

W
u(t),

D1x4(t) = −
η

Qn
u(t),

y(t) = OCV(x4(t))− x1(t)− x2(t)− x3(t)− R0u(t).

(6)

where u(t) is the input current; the state vector is defined as x(t)=[V1(t), V2(t), V3(t), SOC(t)]T;
and y(t) represents the output voltage. Moreover, Qn denotes the battery nominal capacity
with the unit of ampere-hour (Ah), and η is the Coulomb efficiency. A fourth-order
polynomial is used to characterize this nonlinear relationship between OCV and SOC.

OCV = a0 + a1SOC + a2SOC2 + a3SOC3 + a4SOC4, (7)

where ak (k = 0, 1, · · · , 4) are the coefficients of the polynomial.
The symbol Qn can be expressed as follows:

Qn = 3600 ·QAH · C1 · T1, (8)

where QAH represents the standard capacity of the battery, C1 is the correction factor of
the battery cycle life, and T1 stands for the correction factor of the battery temperature. In
this paper, we do not consider the impact of the battery cycle life or the temperature on the
battery capacity. Thus, we set C1 = T1 = 1.

Generally, a FO system can be expressed as follows:{
Dαx(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(9)

where the A, B, C, and D are the coefficient matrices, and α = [α1, α2, ..., αn] is the
differentiation-order vector. Meanwhile, the system (9) can be discretized in the time
based on the GL definition, for k ≥ 1

x(k + 1) = [Tα A + diag(α)I]x(k)

−
L+1

∑
j=2

(−1)j Γ(α + 1)
Γ(j + 1)Γ(α− j + 1)

x(k + 1− j) + TαBu(k). (10)

and for k = 0

x(k + 1) = [Tα A + diag(α)]x(k) + TαBu(k). (11)
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Figure 1. The EIS-FOM representation of LIBs.

Based on Equations (10) and (11), the FO system (6) in its discrete-time representation
at the time step k can be expressed in the following form (k ≥ 1):

x(k + 1) = [(∆T)α A + diag(α)I]x(k)

−
L+1

∑
j=2

(−1)j
(

α
j

)
x(k + 1− j)

+ (∆T)αBu(k),

y(k) = OCV(x4(k))− x1(k)− x2(k)

− x3(k)− R0u(k).

(12)

where

(∆T)α = diag((∆T)α1 , (∆T)α2 , (∆T)0.5, ∆T), (13)

(
α
j

)
= diag(

(
α1
j

)
,
(

α2
j

)
,
(

0.5
j

)
,
(

1
j

)
), (14)

A =


− 1

R1C1
0 0 0

0 − 1
R2C2

0 0
0 0 0 0
0 0 0 0

, B =


1

C1
1

C2
1

W
− η

Qn

. (15)

4. Model Parameter Identification and Validation

After the battery model is established, the model parameters need to be identified. An
accurate model is the guarantee of battery state estimation. In this section, a novel CBSO
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algorithm is used for model parameter identification, and the model accuracy is verified by
simulation experiments.

Meta-heuristic algorithms have become very popular in model parameter identi-
fication because of their stability and flexibility and their ability to better avoid local
optimization. The BSO is a new meta-heuristic algorithm and can enhance the performance
of swarm optimization through beetle-foraging principles. The BSO is an extension of the
beetle antennae search (BAS) algorithm and PSO, and its search efficiency has significant
advantages over PSO. This is due to an incremental factor produced by the beetle search,
which allows for an effective local search. Therefore, the BSO can alleviate the issues of poor
stability and the algorithm falling into local optima [33]. However, it uses little historical
information and few measurements. To cope with this problem, the CO operator concept
given in Equations (3)–(5) is applied to the BSO. The CBSO embeds this concept in the
velocity adaptation laws, and the CO velocity update formulas are as follows:

ϕ1(αv, βv)(vk+1
i ) = R1(Pk

besti
− xk

i ) + R2(Gk
besti
− xk

i ),

xk+1
i = xk

i + λvk
i + (1− λ)ξk

i . (16)

where Pk
besti

is its best position found so far, Gk
besti

is the best position of the swarm, λ is the

proportional constant, and ξk
i denotes the increment factor.

Then, using the CO operators concept given in Equations (3)–(5), one has

vk+1
i = αvvk

i −
1
2
(α2

v − αv − β2
v)v

k−1
i

+
1
6
[α3

v − 3α2
v + αv(2− 3β2

v) + 3β2
v]v

k−2
i

− 1
24

[α4
v + β4

v − 6(α3
v − 3αvβ2

v)

+ 11(α2
v − β2

v)− 6αv]vk−3
i

+ c1(Pk
besti
− xk

i ) + c2(Gk
besti
− xk

i ),

xk+1
i = xk

i + λvk
i + (1− λ)ξk

i , (17)

where the velocity update formula uses historical information on velocity based on the
CO operator concept. Therefore, it is able to capture the past memory of the particles’
velocity. The updating of the position in each iterative process relies on the individual
historical optimal solution and on the optimal global solution of the BSO algorithm. The ξk

i
is updated by

ξk+1
i = δkνk

i · sign( f (xk
ir)− f (xk

il)),

δk+1 = ε · δk. (18)

where δk denotes the step size of the k-th iteration, sign(·) represents a signum function, ε is
equal to 0.95, and f (xk

ir)− f (xk
il) represent the scent intensity difference between the right

antennae position xk
ir and the left antennae position xk

il of beetle i. The search behaviors of
the right antenna and the left antenna are, respectively, expressed as follows:

xk+1
ir = xk

i + vk
i ·

dk

2
,

xk+1
il = xk

i − vk
i ·

dk

2
.

(19)

where dk is the distance between the left and right antenna, dk = δk

c , and c = 2.
In addition, the mutation operation generated by adding a Gauss perturbation on the

swarm’s best position when the global best position of the swarm remains constant many
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times is added into the CBSO to prevent premature convergence. In this way, the algorithm
can find a better solution in the solution space, reducing the possibility of falling into local
optima. The perturbation equation is shown as follows:

Gbest = Gbest(1 + normrnd). (20)

The parameter identification objective is to optimize the model parameters so as to
minimize the error between the measured voltage V0(k) and the predictive voltage V̂o(k).
The optimization objective can be described as

min f (·) =
M

∑
k=1

[Vo(k)− V̂o(k)]2, (21)

where f (·) is the fitness function, and M is the number of sampling points.
It should be noted that the boundary conditions of the algorithm influence parameter

identification. Indeed, if the boundary conditions are set too small, then the algorithm may
miss the optimal solution. If the boundary conditions are set too large, then the accuracy of
the algorithm may be reduced.

To show the superiority of the novel CBSO algorithm, FBSO is chosen to compare
with the proposed algorithm. The fitness value evolution curves of the two algorithms are
shown in Figure 2. The red dotted line represents FBSO, and the black solid line represents
CBSO. It can be derived that the convergence speed of CBSO is faster than of FBSO. The
identification results of the OCV-SOC polynomial coefficients are listed in Table 1, and the
results of the identification of the model parameters are listed in Table 2. The parameter
identification results are shown in Figure 3. The red and blue lines stand for FBSO and
CBSO, respectively. Furthermore, the two algorithms are compared with the measurement
value represented by a black line. The absolute error (AE) and relative error (RE) of the
two algorithms are shown in Figure 3b,c, respectively. It can be inferred that the maximum
AE values of the two methods are 0.0435 V and 0.0372 V, and the maximum RE of the two
methods are 1.15% and 1.00%, respectively. These numerical results show that CBSO not
only has fast convergence speed but also has high precision.

Two metrics with RMSE and MAE were used to further evaluate algorithm accuracy.
The RMSE and MAE of the two methods are summarized in Table 3. It can be derived that
the metrics of CBSO are better than FBSO. The RMSE for the two methods is 11.7 mV and
10.8 mV, and the MAE is 9.3 mV and 8.6 mV, respectively. These results further show that
the proposed method has higher accuracy, and they demonstrate the effectiveness of CBSO.

Table 1. The parameter identification results for the coefficients of OCV-SOC polynomial.

OCV-SOC a0 a1 a2 a3 a4

FBSO 3.8787 1.2571 2.3615 −0.8781 −0.0717
CBSO 3.8765 1.1046 0.8815 −0.2153 −2.0480

Table 2. The results of parameter identification with FBSO and CBSO.

Resistors Capacitors Fractional Orders

FBSO
Ro = 0.0701 C1 = 1059.9037 α1 = 0.9678
R1 = 0.8583 C2 = 842.9402 α2 = 0.1351
R2 = 1.1919 W = 1041.3675

CBSO
Ro = 0.0719 C1 = 1133.0955 α1 = 0.9627
R1 = 0.7084 C2 = 1038.1398 α2 = 0.5013
R2 = 1.0577 W = 1705.1727
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Table 3. The RMSE and MAE of the results of model parameter identification.

Metrics RMSE (mV) MAE (mV)

FBSO 11.7 9.3
CBSO 10.8 8.6
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Figure 2. The fitness curves of the FBSO and CBSO.
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Figure 3. (a) Model accuracy verification with the FBSO and CBSO; (b) output terminals voltage
absolute error; (c) output terminals’ voltage relative error.

5. Conclusions

In this article, the CBSO was proposed to improve the accuracy of the battery model
by employing the CO operator concept and mutation operation based on the BSO. The
FOM was adopted for battery modeling based on the EIS. The CBSO updates the velocity
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formula based on the CO operator concept and introduces the mutation operation into
the BSO algorithm, which can capture the particles’ memory and alleviate the issue of the
algorithm falling into local optima. The maximum AE and RE of the CBSO are 0.0372 V
and 1.00%, while the RMSE and MAE are 10.8 mV and 8.6 mV, respectively. The numerical
experiment proves that the proposed method can significantly improve the LIBs model
accuracy. The complex order will affect the efficiency and effectiveness of the identification
of model parameters. In future work, we will address the impact of different parameter
settings on identification accuracy.
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