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Abstract: In Micromachines, like any mechanical system, friction compensation is an important topic
for control design application. In real applications, a nonlinear control scheme has proven to be an
efficient method to mitigate the effects of friction. Therefore, a new regulation control method based
on a simple dynamic optimizer is proposed. The used optimizer has a finite-time convergence to the
optimal value of a given performance index. This dynamic process is then modified to produce a
new control scheme to resolve the regulation control statement. A stability test is also provided along
with numerical simulations to support our approach. We used the Lyapunov theory to confirm the
stability, in finite-time, of the obtained closed-loop system. Furthermore, we tested this controller in
a scenario where the reference signal was a time-varying function applied to a micromachine with
friction. Numerical experiments showed acceptable performance in mitigating the effects of friction
in the mechanism. In the simulations, the well-known LuGre friction model was invoked.

Keywords: regulation control design; dynamic optimizer; micromachines; LuGre friction model;
finite-time stability

1. Introduction

Micromachines for micro-position control using piezoelectric actuators have been
an important technology in some precision engineering applications [1–3]. Piezoelectric
actuators are commonly used in micromachine control due to their infinite displacement
resolution and low heat generation, among other factors [1,3]. However, these actuators
exhibit hysteretic friction, which plays an important role in control design [1,3,4]. Regarding
this point, many control strategies have been proposed. Among these, we have those based
on PID schemes [3], modern control theory [2], robust analysis [5,6], neuronal theory
together with terminal sliding mode control [7], and so on. Here, we propose a new control
scheme based on a kind of dynamic optimizer [8].

For several years, control design using optimal mathematical tools has been a well-
known control theory approach [9–11]. Even so, among the different methods, the ex-
tremum seeking technique remains a current control methodology in some engineering
applications [12–14]. This control approach has gained considerable popularity after the
publication cited in [15]. Essentially, the extremum seeking control scheme was proposed
as a tool for model-less stable dynamical systems [16]. It is well known that real-time opti-
mization integrated into a control scheme can improve closed-loop system performance.
Furthermore, it can also help stabilize an unstable system [17]. A disadvantage of this tech-
nique is that it requires a disturbance signal [13]. This limits the convergence of the system
and complicates the adjustment of the control system parameters [13]. On the other hand, a
dynamic optimizer with convergence in finite-time was given in [8]. This optimizer did not
require any disturbance signal. Therefore, the main objective of this article was to adapt
this scheme to a dynamic system and satisfy the regulation control problem statement. We
used Lyapunov theory for the finite-time stability test. In addition, numerical experiments
were carried out to support our main contribution. For the numerical experimentation
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we used the Xcos application of the Scilab software. Both regulation and tracking control
issues were numerically analyzed. This includes the application of a micromachine with the
phenomenon of hysteretical friction captured by the LuGre micromachine friction model,
reported in [1]. According to numerical experimentation, our control approach presented
an acceptable performance. In summary, the control design challenges are shown in Table 1.

Table 1. Main challenges for control design.

Challenge Strategy Evidence

Incorporate a dynamic optimizer in a
closed-loop system

Search for a structure where the control signal
is integrated to reduce the vibration that the

optimizer and the plant could produce
Through numerical experiments

Closed-loop stability test Invoke the theory of stability in the sense
of Lyapunov

Verifying that the conditions of Lyapunov’s
theory are met

To test control performance in a frictional
micromachine using an experimentally

validated system model
Use of numerical experiments From numerical data, observe

acceptable performance

Even though the technology is rapidly increasing in micronized devices, the phe-
nomenon of friction is still present [18]. This happens because friction is highly dependent
on the operating conditions of the system under control [18,19]. Furthermore, mitigating the
effects of friction in microelectromechanical systems (MEMS) is still a great challenge [19].
On a small scale, friction is far from being represented mathematically. This is due, for ex-
ample, to the fact that the normal force represented as a constant proportional to the ground
reaction force is no longer fully fulfilled for micro devices [19,20]. In fact, at low microscales,
friction is represented mathematically using an empirical law and also including an aging
algorithm [21]. Furthermore, in some micromachines, the friction phenomenon exhibits hys-
teresis in a rate-dependent nonlinear behavior [22]. Therefore, a friction compensator that
does not fully depend on friction modeling is a great challenge for micromachine control.

We report on contributions in regard to friction compensation for micromachines.
Among the different control techniques, non-singular terminal sliding mode control repre-
sents an important control design for friction micromachines [23]. However, this technique
is based on a well-identified friction model [23]. Techniques based on data training require
many stages of experimentation for friction compensation design [6]. Other techniques
require a pre-digital filter design, based on fitting system parameter data through experi-
mentation [24]. Our control technique approach is not based on the mathematical model of
friction or prolonged experimentation, and the simplicity of the obtained controller goes
beyond that given by the sliding mode control theory. Therefore, our main contribution is a
simple discontinuous control algorithm, based on an optimizing method, and applied to
micromachine devices, capable of mitigating friction effects.

The organization of the rest of the document is as follows. Section two provides the
description of the dynamic optimizer set in [8]. Section three presents our main contribu-
tion by adapting this optimizer to a regulation control scheme, together with numerical
experiments. Mathematical proof of the closed-loop system is also provided by using
Lyapunov’s theory. The application of our control scheme to a frictional micromachine
device, along with numerical experiments, is given in Section four. Finally, sections five
and six present the conclusions and future work, respectively.

2. The Benchmark Dynamic Optimizer

The goal of this section is to show the dynamic optimizer described in [8]. It is
described in the following theorem:

Theorem 1 (Dynamical optimizer). Given a smooth concave function f (x) with a single max-
imum point at x = a, and k being a given positive constant value, the dynamic optimizer given
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in Figure 1 produces a finite-time convergence of x(t) to a. That is, there exists value Ts < ∞,
such that:

lim
t→Ts

x(t) = a. (1)

Proof. See [8].

Obviously, the following assumptions are inherent:

• There is only one maximum point of the function.
• The function is concave.

Moreover, the parameter k controls the speed of convergence of the optimizer output
response. Finally, a numerical example is shown in Figure 2 with f (x) = −(x− 1)2, where
the extremum of the function is located at x = 1.

Figure 1. Dynamical optimizer.

Figure 2. A numerical example using Xcos from Scilab application, where the numerical integration
method used was RK54. The concave function is f (x) = −(x− 1)2. Note that the notation for the
signum function sgn(·) in the Xcos environment is sign(·).
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3. The Recent Control Scheme

The main objective of this section is to introduce our new approach to the regulation
control statement using our dynamic optimizer, as seen in Figure 3. Finite-time convergence
was also a goal. We considered the system to be stabilized was linear with an input and an
output, and of a second order, given by:

ẋ(t) = Ax(t) + bu(t), (2)

y(t) = Cx(t), (3)

where x ∈ R2 is the state vector of the system, and u ∈ R and y ∈ R are the input and
output of the system, respectively. Additionally, the proposed model (2) and (3) is expressed
in its canonical format:

A =

[
0 1
α1 α2

]
, b =

[
0
β

]
, C =

[
1 0

]
, (4)

and

x(t) =
[

x1(t)
x2(t)

]
. (5)

Therefore, α1, α2, and β are the system parameters, and all are assumed to be constant
values. On the other hand, we considered that the performance index f (x) was, instead,
a convex function, and given by f (x1(t)) = 1

2 (x1(t)− a)2 . The parameter a was a given

constant value. Hence, ∂ f (x1(t)
∂x1

= x1(t)− a = y(t)− a, as seen in Figure 3.
Next, is our main result.

Figure 3. A recent control scheme using a dynamic optimizer. The parameter τ in the derivative
estimator block was assumed to be small. This is a well-known derivative block (see, for instance,
reference [25], p. 495).

Theorem 2 (Control scheme). The closed-loop system, shown in Figure 3, was globally-stable
having finite-time convergence of y(t) to a bounded set. That is, there existed a constant Ts < ∞,
such that:

lim
t→Ts

| y(t)− a |= Ω, (6)

where Ω = {y(t) ∈ R/ | y(t)− a |≤ δ}, and a ∈ R is a constant value representing the reference
command signal, if the following conditions are satisfied:

• There is a real constant value ku such that α1 − βku = −ε1 < 0, with ε1 ∈ R+,
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• There is a real constant value kd such that α2 − βkd = −ε2 < 0, with ε2 ∈ R+,
• There is a real constant value k such that βk = −ε0 < 0, with ε0 ∈ R+.

The next closed-loop system parameters setting was as follows:

• The parameter ε2 was sufficiently large with respect to ε1 (ε2 >> ε1),
• The relation ε0

ε1
was sufficiently small ( ε0

ε1
<< 1).

Proof. From the block diagram shown in Figure 3, we could obtain:

e(t) = y(t)− a = x1(t)− a. (7)

Its time derivative, using the system model (2) and (3), yielded:

ė(t) = ẏ(t) = ẋ1(t) = x2(t). (8)

Once again, the time derivative of the above equation, using the system data (2) and
(3), resulted in:

ë(t) = ẋ2(t) = α1x1(t) + α2x2(t) + βu(t). (9)

From Figure 3, we obtained:

u(t) = ua(t)− kue(t)− kdẏ(t)

= k
∫

sgn(e(t))dt− kue(t)− kdẏ(t)

= k
∫

sgn(e(t))dt− kue(t)− kd ẋ1(t). (10)

Then, Equation (10) into (9) produced:

ë(t) = α1x1(t) + α2x2(t) + βk
∫

sgn(e(t))dt− βkue(t)− βkd ẋ1(t). (11)

Next, by taking into account that x2(t) = ė(t), x1(t) = e(t) + a, and ẋ1(t) = ė(t), the
equations are reduced to:

ë(t) = (α1 − βku)e(t) + (α2 − βkd)ė(t) + βk
∫

sgn(e(t))dt + α1a. (12)

Thereupon, if:

• α1 − βku < 0→ α1 − βku = −ε1; ε1 ∈ R+,
• α2 − βkd < 0→ α2 − βkd = −ε2; ε2 ∈ R+,

then Equation (12) gives:

ë(t) = −ε1e(t)− ε2 ė(t) + βk
∫

sgn(e(t))dt + α1a. (13)

In the next place, the time-derivative of (13) shows:

...
e (t) = −ε2 ë(t)− ε1 ė(t) + βksgn(e(t)). (14)

Later on, taking into account that βk < 0→ βk = −ε0; εo ∈ R+, we have:

...
e (t) + ε2 ë(t) + ε1 ė(t) + ε0sgn(e(t)) = 0. (15)

Let us define:
z̈(t) = ė(t) +

ε0

ε1
sgn(e(t)). (16)

Then, the system (15) yields:
...
e (t) + ε2 ë(t) + ε1z̈(t) = 0. (17)
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Double time integration of (17) results in:

ė(t) + ε2e(t) + ε1z(t) = 0→ ė(t) = −ε2[e(t) +
ε1

ε2
z(t)]. (18)

Now, if ε2 is large enough, the system (18) has a fast dynamic converging to:

e(t) = − ε1

ε2
z(t), (19)

where z(t), the slow dynamic, is the solution to (16) by using (18) and (19):

z̈(t) = ė(t) +
ε0

ε1
sgn(e(t))→ z̈(t) = − ε0

ε1
sgn(z(t)). (20)

System (20) represents a stable oscillator (See chapter 2 in [26]) with its amplitude
proportional to the initial conditions of the system, and its oscillating frequency related to
ε0
ε1

. A numerical example is displayed in Figure 4 with ε0
ε1

= 10. The stability of this system
(20) can be verified by invoking the next Lyapunov function:

V(t) =
ε0

ε1
| z(t) | +1

2
ż2(t), (21)

where its time derivative along the system trajectory (20) yields:

V̇(t) = 0, a.e., (22)

implying stability of the cited system. This also concludes that all signals in the closed-
loop system are bounded. Finite-time stability is assured, due to the convergence of the
closed-loop system to its internal oscillator dynamic, and related to (19).

Figure 4. Numerical example of the oscillator dynamic (20). (Top): the Xcos block diagram of the
system. (Bottom): the system response z(t) versus time. We use ż(0) = 1 and z(0) = −1.
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Regarding proof development, it was assumed that the signum function is given by:

sgn(·) =
{

1 if · ≥ 0
−1 if · < 0.

(23)

To give numerical examples, let us use the following system related to (2) and (3):

A =

[
0 1
1 1

]
, b =

[
0
1

]
, C =

[
1 0

]
. (24)

It was clear that this system was unstable. It could be verified that the conditions
demanded by Theorem 2 were satisfied with kd = 20, ku = 100, and k = −2. On the other
hand, in the derivative estimator, we set the time-constant τ = 0.01. Figures 5 and 6 showed
the obtained numerical results. In both numerical experiments, the initial conditions were
x1(0) = 1.2 and x2(0) = 0. The simulations were carried out using the application Xcos
from the Scilab open source platform. Additionally, in this application, we used the
integration method called RK45-Rungekutta(4/5). Obviously, the parameter a was used
here as the command signal. It was assumed constant for control design only, and we
demonstrated the performance of the controller by allowing it to be a time-varying signal.
Additionally, a zoom in version of the Figure 5 is shown in Figure 7.

Figure 5. Numerical example: A pulse reference signal case. The green line is the reference signal
a(t), and the black line is the system response y(t).
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Figure 6. Numerical example: A sinusoidal reference signal case. The green line is the reference
signal a(t), and the black line is the system response y(t) .

Figure 7. An enlarged view of the Figure 5.
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4. Application to a Micromachine Device

A schematic model of a piezoelectric positioning mechanism with friction is shown in
Figure 8, where m = 1.33 Kg, b = 9.5× 103 Ns/m, and km = 1.57× 106 N/m. See details
in [1]. With these data, the system had the following information related to (2) and (3):

A =

[
0 1

−1.18× 106 −7.14× 103

]
, b =

[
0

0.75

]
, C =

[
1 0

]
. (25)

Additionally, the LuGre friction model (see Figure 8), was experimentally verified
in [1], given by

h(ẋ(t)) =
13.1 + 7.3e−(ẋ(t)−0.001)2

8.96× 105 , (26)

ż(t) = ẋ(t)− | ẋ(t) | z(t)
h(ẋ(t))

, (27)

and

FH(t) = (8.96× 105)z(t) + 481.65ẋ(t)− 480
| ẋ(t) | z(t)

h(ẋ(t))
. (28)

On the other hand, FL(t) represented load variations and uncertainties due to modeling
and external perturbations [1]. Here, in realizing our friction model, we used the estimation
of the velocity information of the mechanism. Therefore, there existed model uncertainty,
such that FL(t) was indirectly induced in our numerical experimentation. Ke was the
gain converting the applied voltage to the piezo-positioning micromachine to Newton
force. Figure 9 shows the implementation of our controller for this friction micromachine
using Scilab, as was previously invoked. Zero initial conditions on the plant was realized.
Figure 10 shows the numerical experimental results. In Figure 9, notice that we used a gain
block of ka = 0.00001 to scale for the readout. This same gain block for data acquisition is
also called in [3]. Finally, to measure the performance of the control action, we performed
the following time-error calculation in t ∈ [0, 200] s:

M =

∫ T
0 | e(t) | dt

T
=

∫ 200
0 | e(t) | dt

200
, (29)

yielding M = 2.15 µm. Obviously, this value was in the micros-scale of micromachine
devices. The maximum absolute error in the steady-state response was 0.41 µm. Compared
to [1], the maximum absolute error obtained was approximately 0.5 µm for the tracking
control case. Additionally, the control parameter kd affected the damping closed-loop
dynamic behaviour, ku and k regulated the amplitude and the settling-time of the oscillating
steady-state error signal. See Table 2 for a particular discussion . Finally, Figure 11 shows
the final part of a long-term simulation.

Figure 8. Model of a piezo-positioning mechanism with friction.
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Figure 9. A control scheme for the positioning micromachine system using Xcos.

Figure 10. Results of numerical experiments. Top left: the green line is the reference signal a(t) and
the black line is the position response of the micromachine y(t). Top right: control signal u(t). At the
bottom: Error signal between system output and reference command e(t).
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Figure 11. Results of numerical experiments. Error signal between system output and reference
command e(t). The final part of a long-term simulation.

Table 2. Effects of the controller parameters on the dynamics of the closed-loop system (data obtained
from numerical experimentation by independently increasing each control parameter).

Control Parameter Steady-State Error Transient Time Duration

k – ↓
ku ↑ ↓
kd ↑ –

Some additional comments. Mathematical modeling of piezo-positioning microma-
chines is not unique. First, because there are many friction models [7]. Second, the
parametric identification is not unique for a given system [2]. Finally, a tracking error is
observed in our numerical experiments, as well as in [3].

5. Future Work

Our control approach was based on the self-generation of a high frequency signal of
small amplitude but without chattering. For some time, designing a sliding mode controller
without chattering has been, amd still is, an important issue [27–29]. Our control scheme
can be classified as a switching controller, because of the signum function where chattering
is absent. Therefore, one option to improve our control performance is to incorporate
more complex switching signals, as evidenced, for instance, in [30]. On the other hand,
our control method implicitly generates the dynamics of an oscillator but its amplitude
depends on its initial conditions. However, another option is to use an oscillating system
with an asymptotically stable limit cycle, for example, as the one shown in [31,32]. Finally,
another way to improve control performance is to add a friction compensator to the control
law [33–35].

As future work, we aime to develop our control scheme by means of low cost elec-
tronics. This is because our control scheme can be fully assembled using only operational
amplifiers (op-amps). Even the derivative estimator block in Figure 3 can be realized using
op-amps. Op-amps are low-cost electronic units. Therefore, we have in mind to do this in
our laboratory.

6. Conclusions

Based on a dynamic optimizer scheme with finite-time stability, a recent control
approach was developed. In this approach, a self-oscillating signal was generated to meet
the control statement objective. The control structure obtained seemed simple, and was
even achievable through the use of analog electronics, such as operational amplifiers. In
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addition, the stability of the closed-loop system followed a recent point of view. Finally,
controller performance was numerically evaluated by using a realistic LuGre friction model
for micromachines.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The author declares no conflict of interest.
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