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Abstract: With its unique computer paradigm, the Ising annealing machine has become an emerging
research direction. The Ising annealing system is highly effective at addressing combinatorial
optimization (CO) problems that are difficult for conventional computers to tackle. However, Ising
spins, which comprise the Ising system, are difficult to implement in high-performance physical
circuits. We propose a novel type of Ising spin based on an electrically-controlled magnetic tunnel
junction (MTJ). Electrical operation imparts true randomness, great stability, precise control, compact
size, and easy integration to the MTJ-based spin. In addition, simulations demonstrate that the
frequency of electrically-controlled stochastic Ising spin (E-spin) is 50 times that of the thermal
disturbance MTJ-based spin (p-bit). To develop a large-scale Ising annealing system, up to 64 E-spins
are implemented. Our Ising annealing system demonstrates factorization of integers up to 264 with
a temporal complexity of around O

(√
n
)
. The proposed E-spin shows superiority in constructing

large-scale Ising annealing systems and solving CO problems.

Keywords: spintronics; spin-transfer torque magnetic tunnel junctions (STT-MTJ); Ising annealing
system; combinatorial optimization problem

1. Introduction

Combinatorial optimization problems have long been a tangled mess for conventional
computers. With the scale of the problem increasing, the consumption of time and hardware
resources increases exponentially. Heuristic search techniques, such as the simulated
annealing algorithm, have been utilized to search for a solution within a limited time.
However, their search effectiveness remains unsatisfactory. It is anticipated that quantum
annealing [1,2] would surpass the calculating limit of conventional computers. However,
the quantity of Q-bits, the requisite cryogenic environment, and the decoherence generated
by the environment’s interface severely restrict the system’s scalability.

Ising annealing was offered as an alternative scenario between classical computing and
quantum computing. Ising annealing is a novel non-von Neumann computing architecture
that specializes in CO problems [3–6]. There have been numerous proposals to construct
Ising systems with physical entities, including superconductive qubits [7] and degenerate
optical parametric oscillators (DOPOs) [3,8–11]. However, the above methods are hampered
by their integration complexity and stringent working conditions. Other methods, such as
complementary metal–oxide–semiconductor (CMOS) circuits [12–14] and LC oscillators [5],
are constrained by circuit area. New devices such as insulator-to-metal phase transition
nano oscillators (IMT-NOs) [15] and nano-magnet (p-bit) [16] have been investigated as
Ising spins. When manufactured on a wide scale, discrepancies caused by device instability
and process variation remain a hurdle. Due to the low computer capability, only 10-bit
integer factorization was supported [16]. Therefore, a novel type of Ising spins that are easy
to integrate and an efficient Ising annealing algorithm is urgently required.
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This paper proposes an electrically-controlled stochastic-MTJ-based Ising spin (E-spin)
and an E-spin-based probabilistic Ising annealing algorithm (QFactor). The E-spin has good
thermal stability, compact size, true randomness, and high controllability. In addition, the
E-spin significantly achieves a 92.2% smaller area and 2% power consumption reduction
compared to LFSR [17] based digital Ising spins [16]. Based on the electrically-controlled
stochastic MTJ, we introduced a new stochastic Ising annealing algorithm named QFactor.
The QFactor outperforms various stochastic or heuristic techniques, including the simulated
annealing algorithm and the Ising annealing algorithm, when factoring up to 64-bit integers
as a demonstration. The proposed approach is easily extensible to numerous additional
CO problems.

2. Spin-Transfer Torque Magnetic Tunnel Junctions and E-Spin
2.1. Mechanism of the Spin-Transfer Torque Magnetic Tunnel Junctions

The spin-transfer torque magnetic tunnel junctions (STT-MTJs) possess the property
of stochastic switching [18–20], and their switching probability is dependent on the applied
current. According to prior research [21–23], the switching characteristics of STT-MRAM
can be roughly seen as a sigmoidal function of the current magnitude. The schematic
diagram of MTJ’s switching probability is depicted in Figure 1b, and it is written as follows:

psw = 1− exp

{
− t

τ0
exp

[
−∆
(

1− I
Ic0

)2
]}

(1)

where τ0, t, ∆, I, and Ic0 are respectively the attempt time, the duration time of the current
pulse, the thermal stability parameter, the applied current, and the critical switching current
at 0 K. While t and I are variables that can be changed after fabrication, parameter τ0, ∆,
and Ic0 are process-related parameters and cannot be altered. Applying various current
pulses of suitable amplitude and length allows us to change the switching probability [22,24].
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Figure 1. (a) Diagrammatic representation of the Double-MTJ employed in this investigation.
(b) Switching probability of Double-MTJ under various current and pulse duration conditions.
(c) Process of operation. Pulses for reset, excite, and read are applied in that order.

The construction of the Double-MTJ employed in this work is depicted in Figure 1a.
MgO makes up the tunnel barrier and the cap layer, while CoFeB makes up the free layer.
The additional CoFeB/MgO interface raises the energy barrier of STT-MTJ [25].
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The process of operation is shown in Figure 1c. First, we must perform the “reset”
operation, which involves forcing the MTJ into a low resistance state by applying a strong
reverse pulse. We call this state the ‘initial state’. After that, to set the probability of MTJ
in a high resistance state as the desired probability p, we must deliver the proper pulse
according to (1). This process is called the ‘excite’ operation. A probability sequence with a
p probability of a high voltage level is created by carrying out the reset and excite operations
in order, then reading the resistance of the MTJ after each excite operation. The pulse given
to the MTJ during excite operation determines the probability of a high voltage level in the
probability sequence.

2.2. Schematic Diagram, Operation Paradigm, and Simulation of the E-Spin

The proposed E-spin was constructed based on the stochastic STT-MTJ, shown in
Figure 2a.
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Figure 2. (a) Schematic diagram of the E-spin. (b) Operation paradigm of the E-spin. (c) The layout of
the MTJ’s film stack. The technology node of our logic circuit was 40 nm. The MTJ was fabricated
on the top layer of the logic circuit. (d) The applied voltage for the reset, excite, and read operations.
(e) The parameters of MTJ were measured at 300 K. The low resistance was 2.75 KΩ and the high
resistance was 7.425 KΩ. The TMR (Tunnel Magneto Resistance) was 170%. The switch error rate
of the MTJ was correlated with the write voltage and pulse width. The minimum write voltage and
pulse width were 100 mV and 2 ns, respectively. (f) Time-averaged Vout, <Vout>. <Vout> is the function
of the applied input voltage VWL and pulse width. The pulse width is 5 ns in this illustration. The
function is fitted to the sigmoidal function. Each data point shown in this figure was averaged for
300 sampling points. (g) Time snapshots of the MTJ’s resistance after each excite operation for various
input voltage VWL (0.6 V, 0.75 V, and 0.9 V). The MTJ’s resistance was sampled 300 times for each VWL.
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The n-type metal–oxide–semiconductor (NMOS) transistor is a current source that
supplies the electrically-controlled stochastic STT-MTJ with an appropriate amount of
current. Depending on the direction and amount of current passing through it, the
STT-MTJ may change its state (high or low resistance), altering the voltage of INP. As-
suming that the high-resistance MTJ corresponds to VINP = VINP−low and the low-
resistance MTJ corresponds to VINP = VINP−high, then the voltage of reference INN is set to
(VINP−low + VINP−high)/2. The comparator compares the difference between INN and ref-
erence INP and output 1 (0) to distinguish the high (low) resistance state of stochastic MTJ.

The circuit’s current direction is depicted in Figure 2b. The top metal (TM), top via
(TV), top electrode (TE), MTJ, bottom electrode (BE), bottom via (BV), and bottom metal
(BM) are shown in Figure 2c as the stack structure of the MTJ’s arrangement.

Figure 2d shows the operation paradigm applied to the E-spin. In a single cycle,
there are three operational modes: reset, excite, and read. The input of the E-spin (VWL)
is sufficiently large during the reset period to supply enough current to reset the MTJ to
a low resistance state. The direction of the current flowing through the MTJ is reversed
during the excite period. As illustrated in Figure 2e,f, a larger VWL corresponds to a higher
probability of switching to a high resistance state, in accordance with (1). The comparator,
which senses the voltage variation caused by the fluctuation of the MTJ state during the
read period, reads out the probability of E-spin.

The output of the ith stochastic MTJ (mi) is refreshed during the read period accord-
ing to:

mi = ϑ[δ(Ii)− r] (2)

where input Ii and output mi can be represented as:

mi = Vout,i/VDD (3)

Ii = VWL,i/VDD (4)

r is a random number with range [0, 1]. δ(x) is the sigmoidal function, and ϑ(x) is the
unit step function. As a result, the time-averaged output of the E-spin coincides with the
sigmoidal curve, as shown in Figure 2f.

2.3. Advantages of the E-Spin

Table 1 shows the characteristics of three MTJ-based random sources, including the
spin dice, thermal disturbance MTJ-based spin (p-bit) [16], and our E-spin.

Table 1. Characteristics of the three random sources.

Indicators Spin Dice [26] p-bit [16] E-Spin (This Work)

probability Fixed adjustable adjustable

randomness TRNG TRNG TRNG

operation mode electric thermal electric

reliability good poor good

large-scale integration easy hard easy

For the spin dice, Psw was set to the fixed value of 50%, while we used the entire
domain of the sigmoidal function (see Figure 1) in our design, which broadens the range of
its applications.

The temperature, which is determined by the surroundings and operating conditions,
has a direct impact on the switching frequency for thermal disturbance MTJ (p-bit) [16].
However, the E-spin, based on Double-MTJ and having a greater thermal stability fac-
tor ∆ [25], could counteract the probability skew brought on by temperature variation.
Because of this, our proposed electrical operation to adjust probability has better stability.
By precisely controlling the current, the dependability and accuracy of the E-spin are
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considerably enhanced. Additionally, Double-MTJ arrays can be incorporated thanks to
the scalability of spin-torque switching, offering significant prospects for novel spintronics-
based large-scale integrated circuits [25].

2.4. Endurance of the E-Spin

According to the spin operation modes mentioned in Figure 2, repetitive reset, excite,
and read operations are required during work. Consequently, the endurance analysis of
the spin is required.

In the existing non-volatile memories, the endurance of MRAM is an obvious ad-
vantage compared to RRAM and PCRAM. The endurance of STT-MTJ with multiple
CoFeB/MgO interfaces could theoretically reach up to 1015 ∼ 1016, which is higher than
traditional MTJ [25]. Constructing spins using such STT-MTJ could reach over three years of
lifetime at the working frequency of 10 MHz~100 MHz, satisfying the needs of most usage
scenarios. Figure 3 shows the lifetime of such an STT-MTJ at various working frequencies.
If the MTJ has an endurance of 1 × 1015, it can operate at the frequency of 10 MHz for
3.17 years. The endurance can be increased even more if the SOT-MRAM is included [27].
Because the current is not passed directly through the MTJ in SOT-MRAM, the MTJ is
clearly protected, increasing the endurance to almost infinite levels.
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3. Large-Scale Ising Annealing System for Solving CO Problems Using E-Spins
3.1. Steps of Ising Annealing System Solving CO Problems

The Ising system is composed of Ising spins and their interconnections. The Hamilto-
nian of the Ising system is:

H = −∑
〈i,j〉

Jijσiσj − µ ∑
j

hjσj (5)

where spin σi,j ∈ {+1,−1}, and Jij, hj, µ are the coupling parameter between spins i and j,
the magnitude of the external magnetic field, and the Bohr magneton, respectively.

By mapping the task function into the Ising Hamiltonian and mapping the best answer
to the lowest value of the acquired Ising Hamiltonian, the task can be transformed into
searching for the lowest energy state of the Ising system. After the annealing procedure,
the system energy will gradually descend and reach the low energy state. At this point, a
workable solution is discovered.
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3.2. Mapping Integer Factorization Problem to Ising Annealing System

An illustration of the combinatorial optimization problem is the integer factorization
problem. The integer factorization problem, which is still challenging for traditional
computers, is now widely used in the RSA (Rivest–Shamir–Adleman) encryption technique.

According to [28], the Ising Hamiltonian (or system energy, cost function) of the integer
factorization problem is:

H = (X×Y− F)2 (6)

where X, Y, and F are odd integers. X and Y can be represented in binary form as:

X =
P−1

∑
p=0

2pxp (7)

Y =
Q−1

∑
q=0

2qyq (8)

with x0 = y0 = 1. P and Q donate the number of bits needed to represent X and Y. Suppose
F is an N-bit integer. Then we have:

N = P + Q (9)

We use E-spins to represent each bit of X and Y. The LSBs (least significant bits) of X
and Y are fixed to ‘1’; then, only P− 1 and Q− 1 E-spins are needed to represent X and Y,
respectively. Then we have:

X =
P−1

∑
n=1

2nmn + 1 (10)

Y =
N−2

∑
n=P

2n−P+1mn + 1 (11)

Since the two variables X and Y are discrete, H is a discontinuous function. Figure 4
demonstrates an example of the energy distribution of the system H = (X×Y− Fi)

2. Here,
Fi = 45,431. It can be inferred from the picture that there are lots of local minimums along
the hyperbola ` : (X×Y− F)2 = 0.
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The integer factorization problem differs from other combinational problems in that
the former requires the optimal solution, whilst the latter just requires a good enough
response. In other words, the output answer must meet higher standards because it will
not be legitimate if the product of two factors does not exactly equal the number F.
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3.3. Stochastic Ising Annealing Algorithm Based on E-Spin

Figure 5 demonstrates the flowchart of the proposed QFactor, a stochastic Ising an-
nealing algorithm. The first step is problem mapping. Section 3.2 has shown the procedure
of mapping the integer factorization problem to the problem of finding out the minimum
value of the discrete function H = (X×Y− F)2.
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Making the non-continuous function into a continuous function is one of the effective
ways to address discrete optimization problems since it speeds up the process of conver-
gence to the local minimum. Therefore, in the second step, the discrete function H was
transformed into its continuous function form H′ = (X′ ×Y′ − F)2, where X′ and Y′ are
continuous variables. The problem was converted to obtaining the minimum value of the
continuous function H′.

In the third step, gradient descent was employed to reach the local minimum, as
deep learning algorithms do in neural networks. Variable X′ and Y′ are updated by
X′ = X′ + λ· ∂H′

∂X′ and Y′ = Y′ + λ· ∂H′
∂Y′ , where parameter λ is the stride length.

Fourthly, the continuous variable X′ and Y′ are approximated as integers X′′ and Y′′ .
Lastly, verify that H is equal to 0. H = 0 indicates that we have arrived at the

right answer.
If H 6= 0, then we must use the subsequent stages to discover a different solution:

• Map X and Y to the corresponding spin xi and yi using Equations (7) and (8).
• If the calculated xi or yi equals value “1”, the MUX outputs VH to the corresponding Ii.

Then, the E-spin provides a strong likelihood of an output value “1”. The VH is the
parameter that can be adjusted. In this experiment, we set VH to be around 0.95 V and
VL to be 0.55 V. The random flips of E-spin do not frequently occur, so the gradient
descent procedure is dominant in most cases.

• Accordingly, if xi or yi equals ‘0’, the MUX outputs VL to the corresponding E-spin Ii.
Then the E-spin provides a high probability of output value “0”.

Repeat step 2 to step 5 until the correct solution is found.
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3.4. The Overall Diagram of the Proposed Ising Annealing System

The overall diagram of the proposed Ising annealing system is shown in Figure 6.
The gradient-descent-based Ising annealing algorithm (QFactor) supplies an input signal
for the E-spins through multiplexers (MUXs). If xi (or yi) equals ‘1’, then the input of
E-spin equals VH . Otherwise, if xi (or yi) equals ‘0’, then the input of E-spin equals VL.
Stochastic E-spins generate the sequenced stochastic bit streams according to the MUXs’
output voltage (VH or VL).
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Figure 6. The overall diagram of the proposed Ising annealing system (QFactor). It comprises an
E-spin array with 64 E-spins, a digital circuit to implement the QFactor annealing algorithm, and
analog MUXs.

The key to obtaining a better solution for an Ising annealing system is jumping
out of the local optimal solution. Therefore, randomness is required in the annealing
procedure to escape the local minimum. A significant difference between QFactor and
other Ising annealing algorithms is the production of randomness. The QFactor algorithm
fully utilizes the stochastic nature of E-spin, negating the need to use another randomness
as the motivation of the annealing procedure.

In addition, QFactor employs randomness differently than traditional heuristic search
algorithms, such as simulated annealing, which selects a random number of X and Y for the
following annealing cycle. While X and Y are denoted in QFactor as X = ∑P−1

n=1 2nmn + 1
and Y = ∑N−2

n=P 2n−P+1mn + 1, which means that any random flip of xi will deviate X by
the length of 2ixi.

Except for Ising annealing algorithms and heuristic search algorithms, there are other
traditional methods to solve integer factorization problems, such as numerical calculation
algorithms. The General Number Field Sieve (GNFS) method is the most effective numerical
computation algorithm for solving the integer factorization problem at present. However,
because of the operation’s complexity, hardware optimization is challenging. Nevertheless,
GNFS is a specific algorithm for a single purpose. The QFactor algorithm provides an
easy-to-implement way to solve more general discrete optimization problems.
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4. Results
4.1. Integer Factorization Results
4.1.1. Examples of Factoring Integers

Figure 7a,b show the hardware simulation waveform of factoring 24-bit integers
14019841 and 14166761 using Vivado circuit simulator software. The entire system is
simulated using all-digital circuitry for the convenience of larger-scale simulation. The
behavior of the E-spin is simulated by the CMOS-based stochastic Ising spin. The 2-way
digital MUXs, instead of the analog MUXs in Figure 6, select the input of E-spins.
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Figure 7. Examples of factoring 24-bit integers 14019841 (a) and 14166761 (b) using Vivado. m10∼1

and m22∼11 represent {x10, . . . , x1} and {y10, . . . , y1}, respectively. The clock period in this front-end
circuit simulation is 500 ns. (c) Schematic view of CMOS-based stochastic Ising spin. It comprises a
32-bit LFSR, a piecewise linear approximation module, and a 16-bit comparator. The behavior of the
CMOS-based stochastic Ising spin is the same as described in Equation (2). (d) Schematic view (left)
and circuitry (right) of a digital MUX.
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The schematic view of the CMOS-based stochastic Ising spin is shown in Figure 7c.
To better simulate the true-randomness property of the E-spin, we use 32-bit LFSR in our
simulation because the 32-bit LFSR counter has a repetition time of up to (232−1) clock
periods. We used the high 16 bits of the 32-bit LFSR, which helps to reduce the overall
hardware complexity and simulation time. The piecewise linear approximation module
approximates the sigmoidal function using 16-segment polylines. The behavior of the
MTJ-based E-spin described in Equation (2) is the same as the CMOS-based stochastic Ising
spin. Figure 7d shows the schematic view and circuitry of 2-way digital MUXs. During the
annealing process, it is proper to reach a balance between gradient descent and random
exploration. Therefore, the value of the 4-bit parameter a in Figure 7d is 4 to 6. Suppose that a
equals 5, the probability that an E-spin changes its state is 1

1+e5 = 0.0067. The probability that

at least one E-spin changes its state in the 22 E-spin system is 1− (1− 0.0067)22 = 0.1373,
which indicates that there is a 13.7 percent chance that the E-spins will randomly choose
another solution. The value of λ is the other hyperparameter to determine the appropriate
stride length for X′ and Y′, which is closely related to the bit width n. In this experiment,
λ is roughly 6.5× 10−16 when n equals 24. a and λ are the only two hyperparameters used
in the QFactor, and there is no need to adjust them when factoring different integers with
the same n.

Since the LSB of the two factors X and Y is 1, only 22 E-spins are needed. Whenever
the system energy H = (X×Y− F)2 equals 0, the ‘success’ signal is high. At this time, a
successful factorization is reached.

4.1.2. Comparations for Simulated Annealing, Trial Division, and Ising
Annealing Algorithm

Figure 8 shows the averaged cycles needed by the simulated annealing algorithm [12],
Ising annealing algorithm [16], trial division [29], and the QFactor to factor integers with
n bit widths. The performance of the simulated annealing algorithm was evaluated by
mapping the factorization optimization problem into the minimum energy state, carrying
out the pseudo-annealing procedure, and selecting the optimal sets of parameters in our
trial. Accordingly, the performance of the Ising annealing algorithm was evaluated through
our recurrence of the code. The trial division algorithm traverses all numbers from 2 to

√
n

until a factor is discovered. The four algorithms were tested using the exact integers. All
values on the graph were tested more than five times.

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 16 
 

 

Accordingly, the performance of the Ising annealing algorithm was evaluated through 

our recurrence of the code. The trial division algorithm traverses all numbers from 2 to 

√𝑛 until a factor is discovered. The four algorithms were tested using the exact integers. 

All values on the graph were tested more than five times. 

 

Figure 8. The required cycles to factor 𝑛-bit integers. Nc in the Y axis represents the number of 

required cycles. The four algorithms are simulated using MATLAB software. 

For instance, the averaged number of cycles needed to factor 32-bit integers using the 

simulated annealing, Ising annealing, and trial division methods, respectively, is 5 × 105, 

5 × 103, and 33 times greater than the QFactor. Additionally, the QFactor further extended 

its advantage as the integer bit width increased, remarkably outperforming other stochas-

tic algorithms. 

As the integer bit width (𝑛) increases linearly, the size of the search space expands at 

the rate of 2𝑛. However,  shows that the required cycles of the QFactor only grow at the 

rate of 2√𝑛, which not only shortens annealing cycles but also remarkably outperforms 

other stochastic algorithms. The required cycles of trial division increase at the rate of 2√𝑛 

as well. The QFactor only employs the multiply operation, in contrast to the trial division 

method’s use of divide operations. The hardware complexity of the divide operation is 

much higher than the multiply operation, especially as the problem’s size increases. 

Therefore, implementing the trial division method in hardware is much more complicated 

than implementing the QFactor. 

4.2. Analysis Results of the E-Spin 

There are several technology roadmaps to implement the stochastic Ising spin. The 

CMOS-based stochastic Ising spin uses LFSR to build a pseudo-random-number-genera-

tor (PRNG). The thermal disturbance MTJ-based spin (p-bit) utilizes thermal-controlled 

unstable MTJ to realize a true-random-number-generator (TRNG). 

Figure 9 shows the layout view of a single CMOS-based stochastic Ising spin and a 

single MTJ-based E-spin. The area of the CMOS-based stochastic Ising spin is 3546 μm2. 

The CMOS-based stochastic Ising spin’s power is 142.6 μW at the frequency of 333 MHz, 

according to the results provided by the Design Compiler. 

Figure 8. The required cycles to factor n-bit integers. Nc in the Y axis represents the number of
required cycles. The four algorithms are simulated using MATLAB software.



Micromachines 2023, 14, 258 11 of 15

For instance, the averaged number of cycles needed to factor 32-bit integers using the
simulated annealing, Ising annealing, and trial division methods, respectively, is 5 × 105,
5× 103, and 33 times greater than the QFactor. Additionally, the QFactor further extended
its advantage as the integer bit width increased, remarkably outperforming other stochas-
tic algorithms.

As the integer bit width (n) increases linearly, the size of the search space expands
at the rate of 2n. However, Figure 8 shows that the required cycles of the QFactor only
grow at the rate of 2

√
n, which not only shortens annealing cycles but also remarkably

outperforms other stochastic algorithms. The required cycles of trial division increase at
the rate of 2

√
n as well. The QFactor only employs the multiply operation, in contrast to the

trial division method’s use of divide operations. The hardware complexity of the divide
operation is much higher than the multiply operation, especially as the problem’s size
increases. Therefore, implementing the trial division method in hardware is much more
complicated than implementing the QFactor.

4.2. Analysis Results of the E-Spin

There are several technology roadmaps to implement the stochastic Ising spin. The
CMOS-based stochastic Ising spin uses LFSR to build a pseudo-random-number-generator
(PRNG). The thermal disturbance MTJ-based spin (p-bit) utilizes thermal-controlled unsta-
ble MTJ to realize a true-random-number-generator (TRNG).

Figure 9 shows the layout view of a single CMOS-based stochastic Ising spin and a
single MTJ-based E-spin. The area of the CMOS-based stochastic Ising spin is 3546 µm2.
The CMOS-based stochastic Ising spin’s power is 142.6 µW at the frequency of 333 MHz,
according to the results provided by the Design Compiler.
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Figure 9. Layout view of a single CMOS-based stochastic Ising spin (left) and a single MTJ-based
E-spin (right). The layout of the CMOS-based stochastic Ising spin is automatically generated by
EDA (electronic design automation) software DC (Design Compiler) and ICC (IC Compiler). The
layout of the MTJ-based E-spin is a customized design using Virtuoso.

The MTJ is simulated by a Verilog-A model with 7.425 KΩ high resistance and 2.75 KΩ
low resistance. The Verilog-A model is used to simulate the behavior of MTJ under various
voltages, which is shown in Table 2.
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Table 2. The relationship between the voltage drop of the MTJ and the probability of switching from
a low-resistance state to a high-resistance state.

Voltage Drop (mV) 1 Switching Probability

[0,144) 0%
[144,171) 7%
[171,212) 20%
[212,275) 32%
[275,342) 48%
[342,428) 66%
[428,584) 81%
[584,718) 93%
[718,731) 98%

[731,1100] 100%
1 In this table, the voltage pulse widths are 5 ns.

The current-time simulation of the E-spin is shown in Figure 10. The applied WL, BL,
and SL voltages are shown in Figure 2d. In this illustration, VWL,excite = 0.75 V. Reference
voltage VINN is 250 mV. VSS2, VSS3, and VSS1 are the total current under reset, excite, and
read operation modes. The reset, excite, and read operations of the stochastic MTJ last
5 ns, 5 ns, and 10 ns, respectively, with currents of 323.55 µA, 131.60 µA, 51.86 µA. Power
consumption data (see Table 2) are calculated by multiplying the time-averaged current
and VDD (1.1 V).
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Table 3 lists the critical indicators of the three stochastic Ising spins.

Table 3. Critical indicators of three stochastic Ising spins.

Indicators CMOS-Based
Stochastic Ising Spin

Thermal Disturbance
MTJ-Based Spin (p-bit) [16] E-Spin (This Work)

Area (µm2) 1600 NA 280

Speed (MHz) 333 <1 50

Power (µW) 142.6 20 139.7

Technology node 40 nm NA (discrete) 40 nm

Randomness PRNG TRNG TRNG

The primary shortage of LFSR is that it is not a truly random source. The random
number generated by an n-bit LFSR will loop for a maximum of 2n cycles. That means
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the size of LFSR must be sufficient to simulate the characteristics of a truly random source.
There are some applications that LFSR is incapable of, such as encrypted communication
and Monte Carlo simulation.

The primary defect of thermal disturbance MTJ is the intricate voltage offset operation
requirement for each bit, which restricts the application in large-scale issues.

The proposed E-spin outperforms the p-bits in stability, speed, and large-scale inte-
gration. Firstly, the E-spin adapts the electrical operation, which helps in precise control.
Meanwhile, the p-bit uses the thermal-disturbance-controlled MTJ, the frequency of which
is influenced by the operating temperature. As a result, the frequency of p-bit is unpre-
dictable, which could cause problems if interconnected with other modules. Additionally,
the p-bit is in demand of the voltage offset for each bit. As a result, building an array out of
p-bits is challenging.

Secondly, the electrical operation also permits the E-spin to operate with a high
frequency. The minimum pulse width of the read/write operation is 2 ns. The frequency
of the E-spin could reach higher than 50 MHz. In comparison, the frequency of p-bit is
less than 1 MHz. The working frequency of the E-spin is considerably higher.

Lastly, the E-spin could easily integrate with logic circuits. We demonstrate the
fabrication of 64 E-spins with logic circuits under the 40 nm technology node, which
shows great potential in large-scale integration. Nevertheless, ref [16] only demonstrates
eight p-bits, which are selectively chosen from discrete devices. Additionally, the working
conditions of each p-bit have to be carefully adjusted. The peripheral circuits for adjusting
p-bit working conditions are a considerable expense when manufactured on a large scale.

5. Conclusions

This paper proposes a stochastic Ising spin (E-spin) based on the electrically-controlled
STT-MTJ. The probabilistic Ising annealing algorithm (QFactor) is based on the E-spins.
The E-spin has true randomness, excellent stability, fine control, high frequency, com-
pact size, and is simple to integrate thanks to its electrical operation. Using the gradient
descent algorithm and E-spins to escape the local minimum is a novel approach to solv-
ing optimization problems. The E-spin achieved 50 times the frequency of p-bit. Up to
64 E-spins are implemented to construct a large-scale Ising annealing system. Factoriza-
tion of integers up to 264 is demonstrated using our Ising annealing system, with a time
complexity of roughly O

(√
n
)
. This work shows the enormous application potential of

the electrically-controlled STT-MTJ, which is also instructive for further research on new
computing paradigms.
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