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Abstract: Natural organic materials such as protein and carbohydrates are abundant in nature,
renewable, and biodegradable, desirable for the construction of artificial synaptic devices for emerging
neuromorphic computing systems with energy efficient operation and environmentally friendly
disposal. These artificial synaptic devices are based on memristors or transistors with the memristive
layer or gate dielectric formed by natural organic materials. The fundamental requirement for these
synaptic devices is the ability to mimic the memory and learning behaviors of biological synapses.
This paper reviews the synaptic functions emulated by a variety of artificial synaptic devices based
on natural organic materials and provides a useful guidance for testing and investigating more of
such devices.

Keywords: natural organic materials; memristor; transistor; artificial synaptic device; neuromorphic
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1. Introduction

Currently, the von Neumann bottleneck limits conventional computing from meeting
the demands of energy-intensive applications such as blockchain, artificial intelligence,
etc., i.e., the energy issue. Moreover, computing hardware components, when disposed,
produce electronic waste that can be toxic and not biodegradable and, therefore, harmful to
the environment, i.e., the environment issue. A potential solution to address the energy
issues is by emerging neuromorphic computing which mimics the brain by processing and
storing data in the same unit [1] for energy-efficient operation. Among different types of
electronic devices, memristor and transistor based artificial synaptic devices have emerged
as potential hardware components for neuromorphic computing systems because of their
capabilities of mimicking synaptic connections between neurons. These devices, if made
from environmentally friendly natural organic materials [2], have also the potential to solve
the environment issue.

A variety of natural organic materials, mainly protein and carbohydrates such as
chitosan [3–6], Aloe Vera and polysaccharide [7–13], zein from maize [14], gelatin [15],
honey [16–22], lignin [23,24], collagen [25], trypsin [26], ι-carrageenan [27,28], dextran [29,30]
sodium alginate [31], wood-derived cellulose nanopapers [32], biomass-based hydrogel [33],
casein [34], pectin [35,36], carotene [37], lipid [38], natural acidic polyelectrolyte [39],
chicken albumen [40,41], etc., are currently under investigation for making memristor-
and transistor-based artificial synaptic devices. These natural organic materials have
the advantages of being renewable, sustainable, biodegradable, environmentally friendly,
etc., making them an attractive alternative to other inorganic metal oxide and polymer
materials [42] for artificial synaptic devices. Neurons and synapses are basic building blocks
of the human brain, with memory and learning behaviors achieved by modulating ion
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flows in them, which results in the transmission of neurotransmitters from the presynaptic
neuron to the postsynaptic neuron. As shown in Figure 1, both synaptic memristor [20] and
transistor [43] resemble biological synapses. Memristor has the metal-insulator-metal (MIM)
structure that resembles the biological synapse as in Figure 1a, where the top electrode is
analogous to the presynaptic neuron, the bottom electrode to the post-synaptic neuron,
and the memristor thin film in between, which is processed from natural organic material,
mimics the synaptic cleft. The current flow in the memristor emulates the excitatory
postsynaptic current (EPSC), which is used to represent synaptic strength and elicited
by stimulation in the presynaptic neuron and recorded in the postsynaptic neuron. In
a synaptic transistor, the bottom-gate electrode and top source/drain electrodes with
the channel layer are analogous to the presynaptic neuron and the postsynaptic neuron,
respectively, as shown in Figure 1b. The natural organic film is regarded as the synaptic
cleft and the channel current as EPSC.
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Figure 1. Resemblance to biological synapses of artificial synaptic devices based on (a) memristor [20]
and (b) transistor [43].

Artificial synaptic devices need to be capable of emulating biological synaptic plas-
ticity [44], one of the most important neurochemical foundations of learning and memory.
Synaptic plasticity is the ability to strengthen or weaken synapses over time in response
to increase or decrease in their activity. Important forms of synaptic plasticity include
short-term plasticity (STP), long-term plasticity (LTP), neural facilitation and depression,
spike-timing-dependent plasticity (STDP), spike-rate-dependent plasticity (SRDP), etc. In
STP, the excitatory postsynaptic potentials (EPSPs) in synapses are directly affected by
presynaptic spikes [45,46]. The basic STP includes short-term depression and short-term
potentiation, and neural facilitation and depression [45,46]. STP can transit to LTP due to
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the structural change in synapse [47] such as the size increase of the synapse, additional
release of neurotransmitters by the presynaptic neuron, and higher gain of receptors by the
postsynaptic neuron [48]. STDP and SRDP play important roles in the development and
refinement of neuronal circuits during brain development [49–51]. They are responsible for
learning processes in the brain and retaining new information in neurons, and serve as the
synaptic weight modification rule for neural network [52] via learning protocols such as
the Hebbian learning rule that “those who fire together, wire together” [53].

This paper reviews different forms of synaptic behaviors that have been emulated
by memristor- and transistor-based artificial synaptic devices made from natural organic
materials.

2. Analog Memristive Behaviors

Analog memristive behaviors are the fundamental property of artificial synaptic
devices for emulating synaptic plasticity. To characterize analog memristive properties,
the device is tested under DC voltage sweeps, with voltage controlled carefully to prevent
direct digital switching. During the test, consecutive voltage sweeps are first applied to
make the current in the device increase in an analog fashion and then consecutive voltage
sweeps in the opposite polarity are applied so that the current level decreases but in the
same analog fashion. Such analog fashion of increase and decrease in current is similar to
synaptic potentiation and depression of biological synapses. Memristors based on a variety
of natural organic materials have demonstrated analog memristive behaviors.

When six consecutive positive and negative voltage sweeps of ±0.07 V were ap-
plied on a cellulose-memristor [54], as shown in Figure 2a, the absolute current levels
gradually increased from curve 1 to 6 after negative voltage sweeps, and then gradually
decreased after each positive sweep from curve 7–12. Both increasing and decreasing
curves followed the analog stepwise fashion. Potentiation and depression characteristics
for a total of 10 consecutive sweep cycles in the DC sweep mode of a memristor based
on zein [14] that is extracted from natural maize are shown in Figure 2b, in which the
current gradually increased and decreased over each DC sweep. To avoid any abrupt
change in the current, the voltages were chosen to be smaller than the threshold voltage.
Besides cellulose and zein, memristors based on other natural organic materials such as
honey [17], lignin [24], trypsin [26], collagen [25], dextran [29,30], chicken egg albumen [40],
etc., have also demonstrated analog memristive characteristics. Some representative results
are shown in Figure 2c–e.

Besides applying DC voltage sweeps to realize the continuous and gradual change
in the current level, analog memristor behaviors were also investigated by transient elec-
trical characterization by applying input voltage pulses to the device and recording the
current response with time. Such pulse tests have been reported by memristors based on
aloe polysaccharide [10], honey [17], lignin [24], dextran [30], chicken egg albumen [40],
cellulose [54], bombyx mori silk [55], etc., as shown in Figure 2f–m. When 10 consecutive
pulses (±0.10 V, 30 ms) with opposite polarities were applied on a cellulose-memristor [54],
the increase of current values upon five successive negative bias pulses demonstrated
the potentiation of the conductance states, while the decrease of current values upon five
successive positive bias pulses showed the depression of the conductance of the device. A
honey-memristor [17] was also tested by eight consecutive voltage pulses with a frequency
of 0.05 Hz and amplitude of 0.6 V, first in positive polarity and followed by negative
polarity. The time evolution and amplitude of the current under each voltage pulse are
shown in Figure 2g,h. The amplitude of the current steadily increased with the positive
voltage pulses, indicating synaptic potentiation. When the voltage pulses changed to
negative polarity, amplitude of the current decayed until the last negative voltage pulse, a
behavior analogous to synaptic depression. Three test cycles in Figure 2g,h proved that the
honey-memristor has not only analog memristive behaviors to mimic biological synapses
but also excellent repeatability.
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Figure 2. Analog switching characteristics of synaptic memristors based on natural organic mate-
rials of (a) cellulose nanocrystal [54], (b) zein from maize [14], (c) trypsin [26], (d) lignin [24], and
(e) honey [17]. Current-time responses with applied voltage pulses of opposite polarity for memris-
tors based on (f) cellulose nanocrystal [54], (g,h) honey [17], (i–k) bombyx mori silk [55], and (l,m)
lignin [24]. In (k,m), # is the number of pulses. In (m), black dots are for potentiation and red dots for
depression.

3. Synaptic Plasticity
3.1. Short Term Memory and Long Term Memory

In neuroscience, short-term memory (STM) and long-term memory (LTM) are two
forms of memory behaviors according to the retention time. The memory level in the
human brain usually depends on the learning intensity and memory frequency. STM can
be converted to LTM through a rehearsal learning process. STM and LTM have been widely
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studied in artificial synaptic devices based on natural organic materials [4,9,14,15,17,27,29–
31,33,35–39,41,43,56,57], etc. They were tested by applying consecutive pulses (voltage or
light) on the gate electrode of a transistor or one of the electrodes of a memristor as the
external stimuli, and the nonvolatile current flow in the device was recorded as the memory
level.

Figure 3a shows the current conduction behaviors of two Aloe polysaccharide memris-
tors [9] with Ag and Al top electrode, respectively. When 10 pulses of 0.5 V with a uniform
pulse width of 200 ms and pulse interval of 20 s were applied on both devices, the current
flowing decayed almost instantaneously after each pulse, and the final current level did
not increase after 10 pulses, leading to the STM, which was attributed to the weak filament
formation by the stimuli. When the input pulse interval was shortened to 0.5 s, the current
level in both devices increased clearly after each pulse, and after three or four pulses, the
current stayed at a higher level so the increment in current was retained [Figure 3b], which
is the LTM characteristic. Shortening pulse interval is an effective method to achieve STM-
to-LTM transition, and it is also demonstrated by the honey-memristor [17], as shown in
Figure 3c,d. Another effective method is increasing the number of pulses. When electrical
pulses at a frequency of 667 Hz and an amplitude of 0.6 V were used as stimuli and applied
on the ι-carrageenan-memristor [27], the device demonstrated STM after 10 of such pulses
and transited to LTM after 30 pulses, as reported in Figure 3c,d.

The retention of current (memory level) in the device after stimulation is an impor-
tant property for STM and LTM and was investigated by different stimulation parame-
ters. Figure 4a shows the retention time of currents when input voltage pulses with the
same 1s width but different amplitudes were applied on the gate of a chicken albumen-
transistor [43]. The nonvolatile current increased clearly with the gate voltage pulse
amplitude from 2 V to 8 V, indicating that a stronger gate pulse can lead to a higher memory
level. The effect of pulse voltage amplitude on current retention was also investigated in a
honey-memristor [17]. With the same 1s pulse width but increased voltage amplitude from
1 V to 8 V, the peak retention currents nearly doubled, and the retention time increased
significantly from 2 s to 700 s, as shown in Figure 4b. Besides stimulation strength, pulse
width can also increase current retention time. When the chicken albumen-transistor is
tested by applying gate pulses with the same amplitude of 6.0 V but different pulse widths
from 100 ms to 1 s [43], both peak and retention current increased clearly as in Figure 4c,
indicating that the longer pulse width would also result in a higher memory level, which
is similar to that observed in our brain [58]. A similar effect of pulse width was also
demonstrated in a maltose-ascorbic acid electrolyte (MAE) gated transistor (Figure 4d) [56]
and a honey-memristor (Figure 4e) [17]. Notably, not only are the input pulse amplitude
and width, the current retention and memory level also increase with the pulse number,
i.e., repeated stimulation. This effect was tested by applying a pulse train with the same
amplitude and pulse width but different pulse numbers, with the retention current recorded
after the last stimuli of each pulse train. As shown in Figure 4f–h, from the measurements
on a honey-memristor [17], a zein-memristor [14], and a chicken albumen-transistor [43],
the current level and retention time were greatly improved by increasing the number of
stimulation pulses. This result is similar to that in a biological neural system where repeated
rehearsal transforms short-term memory to long-term memory.
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Figure 3. STM, LTM, and STM-to-LTM transition in synaptic devices based on (a,b) Aloe polysaccha-
ride [9] and (c,d) honey [17] achieved by shortening the time interval between stimulation pulses and
(e,f) ι-carrageenan [27] achieved by increasing the pulse number.
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Figure 4. Current (memory) level and retention time affected by input pulse amplitude, which
was demonstrated in (a) a chicken albumen transistor [43] and (b) a honey-memristor [17], pulse
width, which was demonstrated by (c) a chicken albumen transistor [43], (d) a maltose-ascorbic acid
electrolyte (MAE) gated transistor [56], and (e) a honey-memristor [17], and pulse number, which
was demonstrated by (f) a honey-memristor [17], (g) a chicken albumen transistor [43], and (h) a
zein-transistor [14].

Besides electrical stimulation, optical pulses have also been tested on synaptic devices
to achieve STM, LTM, and the transition from STM to LTM. Figure 5a,b shows the effect of
optical pulse numbers and pulse widths on a chlorophyll-a based synaptic transistor [57].
Similar to electrical stimulation, optical pulse number and pulse width mimic the number
of rehearsal occurrences and learning time, respectively. As shown in Figure 5a, the current
levels increased with the number of optical pulses, indicating that the memory level in the
device was strengthened by repetitive optical stimuli and the device achieved the STM-
to-LTM transition. The optical pulse width also impacts the memory level. As depicted
in Figure 5b, the recorded current peaks and retention times increased by increasing the
optical pulse width.
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(b) pulse width in a chlorophyll-a based synaptic transistor [57].

STM and LTM have also been demonstrated via pattern memorization by a variety of
natural organic synaptic device arrays based on chitosan [4], zein [14], ι-carrageenan [27],
wool keratin [59], and chlorophyll-a/cellulose [60], etc., which proved the potential for the
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construction of neural networks. The representative results are shown in Figure 6 from a
5 × 5 ι-carrageenan artificial synapse array [27]. During the tests, two sets of stimuli were
applied on the pixels to store two images, respectively, in which the first set consisted of
10 voltage pulses at a low frequency of 69 Hz and an amplitude of 0.6 V to form the “P”
image, while the second set consisted of 30 voltage pulses at a high frequency of 667 Hz
and an amplitude of 0.6 V for the “T” image. All 25 ι-carrageenan synapses were in the
low conductance state (off-state) before the stimuli were applied. When the conductance of
those ι-carrageenan synapses increased by the first stimuli set, the “P” image was stored
temporarily in the synaptic array but forgotten after 60 s and returned back to the off-state,
indicating STM. When the second stimuli sets with the higher strength was applied, ι-
carrageenan synaptic pixels changed to the high conductance state (on-state) and retained
after 60s with an elongated time, indicating LTM. This result proved that the transition
from STM to LTM depends on input parameters such as the number and frequency of
stimuli in ι- carrageenan synapses.
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array [27] when two sets of stimuli with different pulse number and frequency were applied. (a) Let-
ters of ‘P’ and ‘T’ are memorized on a 5 × 5 l-car memristor array by inputting the letter of ‘P’ for 10
times at a low frequency and ‘T’ for 30 times at a high frequency, respectively. (b) Applied stimulus
and current response of the l-car memristor array before stimulus, at the last stimulus, and after 60 s.

3.2. Paired Pulse Facilitation

Neural facilitation, also known as paired-pulse facilitation (PPF), is an important
short-term plasticity [61] for neural tasks such as learning, information processing, auditory
or visual source localization [3], etc. When a stimulus is applied on a presynaptic neuron,
it causes an influx of produced ions, and as a result, neurotransmitters get released in
the biological synapse when an action potential is achieved [45]. This process amplifies
the synaptic transmission to the postsynaptic neuron for a certain time. The excited ion
concentration requires time for the synapse to return to the original state prior to the first
stimulation. If a second identical stimulus is applied before the synapse returns to its
original state, the postsynaptic neuron response to the second stimulation is larger than
its initial response. This effect is defined as PPF [23,24]. To emulate PPF, two stimulation
pulses with a time interval mimicking presynaptic spikes are applied on the synaptic device,
with the resulted current spikes (A1 and A2) in the device mimicking EPSC. The ratio of
the absolute amplitudes of the first and second current spike, i.e., the PPF index (A2/A1),
is used to quantify the PPF effect. Memristors and transistors based on a few natural
organic materials such as gelatin [15], honey [19,20], lignin [24], ι-carrageenan [27], sodium
alginate [31], biomass-based hydrogel [33], pectin [35,36], carotene [37], natural acidic
polyelectrolyte [39], chicken albumen [43], silk [55], chlorophyl-a [57], wool keratin [59],
cellulose [60], etc., have been reported to successfully mimic the PPF effect.

With movable ions in the gelatin-hydrogel electrolyte layer [15], gelatin-based synaptic
transistor demonstrated PPF behaviors successfully. During the test, stimulation of two
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consecutive presynaptic voltage spikes (amplitude: −2 V, pulse width: 30 ms) and time
interval (∆T) were applied as a gate bias when drain-source voltage VDS was fixed at −1 V.
The ions triggered by the first spike did not have adequate time to diffuse back to the
gelatin-hydrogel layer before the second spike arrived, to which the second EPSC was
increased by the residual ions. As a result, the second EPSC (A2) was higher than the first
EPSC (A1) as shown in Figure 7a, which is the PPF behavior observed in the biological
system. With an increased ∆T, a decrease in the current was observed. A maximum PPF
index (A2/A1) of ~250% was achieved at ∆T = 60 ms as in Figure 7b, and it gradually
declined towards 100% for ∆T above 3000 ms. Emulation of PPF by a chicken albumen-
based synaptic transistor [43] was tested by applying two successive presynaptic voltage
spikes (amplitude: 0.5 V, pulse width: 10 ms) with the time intervals (∆tPre) from 10 ms to
1500 ms. As shown in Figure 7c,d, the second EPSC is larger than the first EPSC as expected
by PPF. The PPF index (A2/A1) reached the maximum value of ~205% at ∆tPre = 10 ms and
decreased gradually with the increase of ∆tPre, a similar behavior to the gelatin-transistor.

Besides electrical synaptic transistors stimulated by voltage spikes, photonic synaptic
transistors based on natural organic materials have also reported the emulation of PPF
behaviors by applying presynaptic optical pulses. In a chlorophyll-a based photonic synap-
tic transistor [57], when two consecutive excitatory optical pulses (wavelength: 665 nm,
power: 0.5 mW/cm2, pulse width: 1 s) with an interval of 1 s were applied, the EPSC value
(A2) stimulated by the second spike was larger than that of the first one (A1), as shown in
Figure 7e, which confirmed the PPF behavior of the device. The PPF index (A2/A1) also
decreased when the interval time increased [Figure 7f], similar to the electrical synaptic
transistors.
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(a,b) gelatin [15], (c,d) chicken albumen [43], (e,f) chlorophyll-a [57].

Synaptic memristors based on a variety of natural organic materials have also demon-
strated PPF behaviors. Figure 8a shows that when a pair of input voltage pulses (amplitude:
3 V, pulse width: 100 ms) with the time interval ∆t of 20 ms were applied on a honey-
memristor [20] with the Al top electrode, the amplitude of the second EPSC pulse was
enhanced compared to the first EPSC pulse. The PPF index under the pulses with dif-
ferent time intervals were also measured and modeled by a double exponential decay:

= c1e−
∆t
τ1 + c2e−

∆t
τ2 + 1, where c1 and c2 are initial facilitation amplitude of the rapid phase

and slow phase, and τ1 and τ2 are characteristic relaxation times of the rapid phase and
slow phase, respectively. The PPF index and fitting curves on two honey-memristors
with the honey films dried under two different conditions are shown in Figure 8b [20],
with calculated values of c1, c2, τ1, and τ2 reported. Figure 8c,d show the PPF index by
memristors based on silk [55] and wool keratin [59].

Similar to PPF, a post-tetanic potentiation (PTP) effect was reported by an aloe
polysaccharide-memristor [10] and a lignin-memristor [24]. PTP represents the grad-
ual increase in synaptic transmission when, instead of two stimulation spikes, multiple
sequential stimulation spikes are applied within a short time. In this test, 10 consecutive
stimulation voltage pulses were applied on the lignin-memristor, with EPSC recorded after
each pulse. The changes in current were evaluated by the difference of the EPSC amplitude,
where (I2–I1) is for PPF and (I10–I1) is for PTP. As represented in Figure 8e, both PPF
and PTP results confirmed that synaptic weight in the lignin-memristor can be adjusted
by controlling the spike rate when sequential spikes with the appropriate spike rate are
applied on the device. The PTP effect was also demonstrated by a cellulose-memristor [54],
as shown in Figure 8f, in which the increased current in the form of change in current (∆I)
was calculated by subtracting the current (IN, N = 1, 2, 3, 4, . . . , 10) from I1 with various
intervals between input voltage spikes.
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3.3. Spike-Timing-Dependent Plasticity

Memory can be regarded as the strength of synaptic connections, i.e., synaptic weights.
Spike-timing-dependent plasticity (STDP) is defined as the modification of synaptic weight
when successive postsynaptic and presynaptic action potentials with a time interval (∆t)
are applied on the neurons. The STDP is closely correlated with the relative timing of
action potentials (or spikes) of the presynaptic neuron and postsynaptic neuron. The
synaptic weight increases (decreases) when the presynaptic spike reaches the synapse a
few milliseconds before (after) the postsynaptic spikes, which strengthens (weakens) the
synaptic connection and leads to potentiation (depression) of the synapse. As shown in
Figure 9a [18], in a STDP measurement, a pair of stimulation voltage pulses with different
time intervals ∆t between presynaptic and postsynaptic spikes is applied on the memristor
to modulate the conductance of the natural organic film, with one pulse on the top electrode
and the other pulse on the bottom electrode to emulate presynaptic and postsynaptic spikes,



Micromachines 2023, 14, 235 14 of 26

respectively. EPSC and synaptic weight are mimicked by the currents in the memristor.
The change of the synaptic weight ∆w is defined by ∆w = (Iafter − Ibefore)/Ibefore × 100%
= (Gafter − Gbefore)/Gbefore × 100% [62,63], where Ibefore and Iafter are currents and Gbefore
and Gafter are conductance in the memristor before and after presynaptic and postsynaptic
voltage pulses (Vpre and Vpost) are applied.

Memristors based on honey [18], trypsin [26], collagen [25], casein [34], bombyx
mori silk [55], wool keratin [59], etc., have reported STDP learning behavior as shown in
Figure 9b–i. When a pair of stimuli with the time internal ∆t was applied on these memristor
devices, similar STDP behaviors were demonstrated. When the interval ∆t was greater than
0, which indicated that the presynaptic neuron stimulation occurred before the postsynaptic
neuron stimulation was applied, the synaptic weight increased since the presynaptic spike
induced postsynaptic depolarization and, therefore, the potentiation. In contrast, when the
interval ∆t was less than 0, in which the presynaptic neuron stimulation was behind the
postsynaptic neuron stimulation, the synaptic weight decreased, and depression occurred.
It was also observed in Figure 9b–f that the weight modification decreased when the time
interval ∆t between the presynaptic and postsynaptic spikes increased, and the greatest
change in synaptic weight occurred when ∆t was in the ±10 ms scale.

Trypsin-memristor [26] has reported four STDP rules based on the ratio of conductance
∆G/G0 as the modification of synaptic weight. The asymmetric Hebbian is a combination
of long-term potentiation occurring at ∆t > 0) and long-term depression occurring at
(∆t < 0), as in Figure 9f. This rule has also been demonstrated by other natural organic
materials in Figure 9b–e. Asymmetric anti-Hebbian STDP learning rule was mimicked
by changing the polarity of the applied spikes as in Figure 9g. The device also mimicked
the symmetric Hebbian learning rule, which generally occurs in neuromuscular junction
where potentiation and depression occur at ∆t ~ 0 and as ∆t moves away from 0, as shown
in Figure 9h. When depression occurs for all ∆t values between the presynaptic and
postsynaptic spikes, such learning rule is known as symmetric ani-Hebbian, which was
mimicked by a trypsin-memristor, as shown in Figure 9i.
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Figure 9. (a) Schematic diagram of memristor analogous to a biological synapse and STDP measure-
ment [18]. STDP learning emulation by memristors based on various natural organic materials of
(b) collagen [25], (c) bombyx mori silk [55], (d) honey [18], (e) cross-linked wool keratin [59]. (f–i)
Four STDP learning rules: (f) asymmetric Hebbian, (g) asymmetric anti-Hebbian, (h) symmetric
Hebbian, and (i) symmetric anti-Hebbian reported by trypsin-memristor [26].
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3.4. Spike-Rate-Dependent Plasticity

Spike-rate-dependent plasticity (SRDP) is another important synaptic learning func-
tion in human neural networks, especially for brain cognitive behaviors [64,65]. It is the
frequency-dependent plasticity, in which the synaptic weight is modulated according to
the firing frequency (or rate) of the presynaptic spikes applied on the presynaptic neu-
rons. A higher frequency or rate leads to synaptic potentiation. Unlike STDP tests in
which stimulation was applied on both electrodes of a memristor that mimics presynaptic
and postsynaptic neurons, in the SRDP test, stimulations, usually a voltage pulse train,
is applied only on one of the electrodes to mimic presynaptic spikes with the recorded
current response in the memristor to emulate EPSC and synaptic weight. For synaptic
transistors, the pulse train is applied on the gate electrode. As shown in Figure 10, synaptic
devices made from chitosan [5], honey [18], collagen [25], pectin [35], natural acidic poly-
electrolyte [39], cellulose [54], wool keratin [59], etc., have reported the emulation of SRDP
learning successfully.

A memristive device based on cellulose nanocrystals mixed with Ag nanoparticles
(Ag|AgNPs-TCNC|FTO) [54] has shown SRDP when the device was tested for comparison
by applying five sets of 10 voltage pulse trains with the same amplitude of −0.10 V
and pulse width of 30 ms but different frequency by various intervals of 50 ms, 100 ms,
500 ms, 1s, and 5s. As shown in Figure 10a, the measured EPSC current response with
each pulse number shows clearly rate-dependent, as when the interval time between the
consecutive pulses was less than 500 ms, an increment in the current level was observed,
while when the pulse interval was 1 s and 5 s, the recorded current response did not
increase noticeably. Other natural organic memristors [3,5,18,25] demonstrated similar
SRDP with rate-dependent synaptic potentiation [Figure 10b–f]. It is worth mentioning
that a honey-memristor demonstrated both potentiation and depression [18], as shown in
Figure 10f. When a voltage spike train with 30 repetitive stimulation pulses (amplitude: 1 V,
frequency: 25 Hz, pulse width: 20 ms) was applied on the top Cu electrode, the magnitude
of the currents increased, indicating a synaptic potentiation with increased synaptic weight.
Following the positive voltage spike train, a negative voltage spike train of 30 repetitive
pulses with the same frequency and pulse width but an amplitude of −0.8 V was applied to
modulate the synaptic weight of the honey memristor. The obtained currents demonstrated
synaptic depression behavior with the decreasing current magnitude.
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Figure 10. SRDP test results on various biomaterials-based synaptic devices, (a) cellulose-
memristor [54], (b) chitosan-transistor [5], (c) collagen-memristor [25], (d,e) chitosan-memristor [3],
and (f) honey-memristor [18].

3.5. Dynamic Filtering

Since the synaptic weight is activity-dependent, synapses can act as dynamic filters
for information transmission [66,67]. Depending on the stimuli frequency, synapses can act
as high (low) pass filters when the synapse selectively responds to high (low) frequency
signals due to the short term synaptic facilitation (depression). When a biological synapse
exhibits high pass filtering, a threshold must be met by the stimuli in order for an action
potential to travel to the next synapse, whereas those stimuli that do not meet the threshold
are blocked. Therefore, dynamic filtering function is important for neural computation as it
can selectively augment the synaptic response by high frequency inputs and reduce the
impact of low frequency inputs. A dynamic high pass frequency filter-like synaptic device
has potential for applications in neural network and algorithm level such as non-linear
autonomous learning component in neuromorphic systems [68].

Dynamic filtering has been mimicked by a memristor based on honey [19], and a
synaptic transistor based on gelatin [15], sodium alginate [31], wood-derived cellulose
nanopapers [32], biomass-based hydrogel [33], casein [34], chicken albumen [43], etc.
During the dynamic filtering tests, a spike train with multiple voltage pulses at different
frequencies is applied on one of the electrodes of the memristor or the gate of the synaptic
transistor as the presynaptic stimuli, while the current flow in the device is recorded as the
EPSC response. As shown in Figure 11a, from a gelatin transistor [15], in which each spike
train consisted of 10 voltage pulses, it is clearly showed that the EPSC remained unchanged
when the 10 presynaptic spike pulses had a low frequency of 1.67 Hz but increased rapidly
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with an increase of pulse frequency. Figure 11b summarizes the EPSC gain, which refers to
the ratio of the amplitudes between the last EPSC peak and the first EPSC peak at different
frequencies. Such increase of the EPSC gain with the increase of the presynaptic spike
frequency indicates that the synaptic device acts as a high pass filter. Similar dynamic
filtering has also been demonstrated by a chicken albumen [43] gated synaptic transistor
and a honey-memristor [19], as shown in Figure 11c–f.
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3.6. Spatial Summation

Synaptic integration is an important neural information process. It refers to the sum-
mation of the EPSCs in the postsynaptic neuron that were evoked by the input signals in
the multiple presynaptic neurons [69]. The combined effects of excitatory and inhibitory
signals from multiple inputs will determine whether an action potential will be gener-
ated in the postsynaptic neuron. Summation between neurons has two forms: spatial
summation and temporal summation [70–72]. In spatial summation, the input spikes are
applied on multiple presynaptic neurons, while the temporal summation sums the EPSC
response in the postsynaptic neuron when repeated inputs are applied on the presynaptic
neuron. During the test, two or more input pulses are applied on the in-plane gates of
the synaptic transistor or top electrodes of the memristor, which mimics the presynaptic
input terminals, with the channel conductance or memristive film conductance emulating
the synaptic weight. For those two input pulses, positive input pulses emulate excitatory
post-synaptic potential (EPSP) of the excitatory synapse and negative input pulses mimic
inhibitory post-synaptic potential (IPSP) of the inhibitory synapse. These input stimuli
could be optical pulses or electrical (voltage) pulses. In biological neurons, if the EPSC
summation results in a depolarization with sufficient amplitude to raise the membrane
potential above the threshold, then the postsynaptic neuron will produce an action potential.
Synaptic summation has been reported by a honey-memristor [17], wood-derived cellulose
nanopapers [32], a chicken albumen-gated synaptic transistor [43], a chlorophyll-a-gated
synaptic transistor [60], sodium alginate transistor [31], etc.

Synaptic summation was demonstrated by a chlorophyll-a-gated synaptic transis-
tor [60] when employing two presynaptic optical stimuli with an inter-spikes time interval
(∆tL2–L1). The EPSC pulses evoked by the two optical input spikes were superimposed,
which led to an increase of the final postsynaptic EPSC. The strength of spatial summation
was evaluated by the synaptic weight change (∆W), which was defined as the ratio of the
peak current spike difference to the first peak current. It was found that ∆W is dependent
on ∆tL2–L1, as illustrated in Figure 12a. The maximum superimposition ∆W in the post-
synaptic neuron was achieved when optical spikes 1 and 2 were applied simultaneously
(∆tL2–L1 = 0) and reduced symmetrically as |∆tL2–L1| increased.

Synaptic summation in natural organic memristors and transistors by electrical stimuli
were also reported. Honey-memristors [17] demonstrated both sublinear summation and
linear summation when two voltage input pulses were applied. The sublinear spatial
summation occurred when the amplitude (50 µA) of the final postsynaptic EPSC was
smaller than the mathematical summation (60 µA) of the amplitude of the two EPSC pulses
(30 µA, respectively) evoked by the two voltage input pulses with the same pulse width and
amplitude, which were applied on the memristor, as shown in Figure 12b. The linear spatial
summation occurred when two voltage input pulses of the same pulse width but different
amplitudes were applied, in which the amplitude (68 µA) of the resulted postsynaptic
EPSC was close to the mathematical summation (64 µA) of the amplitude of the two EPSCs
(26 µA and 40 µA) evoked by the input voltage pulses, as shown in Figure 12c. Supralinear
spatial summation was observed in chicken albumen-gated synaptic transistors [43]. When
two presynaptic voltage spikes with the same pulse width and amplitudes were applied
on the two gates separately, the measured postsynaptic EPSC peak (105.1 nA) was much
larger than the sum (21.3 nA) of the two EPSC peaks (8.8 nA and 12.5 nA) evoked by the
inputs (Figure 12d).

Inhibitory synapses also impact signal processing in the brain by limiting the flow of
information and suppressing unwanted signals. When EPSP and IPSP are applied on the
presynaptic neurons, shunting inhibition [73] occurs with the resulted EPSCs in the postsy-
naptic neuron canceled, so the postsynaptic neuron will remain silent. Such effect was also
reported by honey-memristors [17] and chicken albumen-gated synaptic transistors [43],
as shown in Figure 12e,f. When a positive voltage pulse (EPSP) and a negative voltage
pulse (IPSP) with the same width and amplitude were applied simultaneously, shunting
inhibition resulted in almost no postsynaptic EPSC in the device.
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4. Device Fabrication

Table 1 summarizes the fabrication process of some representative synaptic devices.
In general, natural organic materials are prepared by a low-cost solution-based process
to form memristive devices and synaptic transistors. The natural organic materials are
either in liquid form, such as cellulose hydrogel, chicken albumen, honey, etc., or in powder
form dissolved in DI water, such as lignin, collagen, etc. The solution forms the natural
organic film by either spin-coating or drop-casting onto the flexible or rigid substrate
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with pre-deposited and patterned bottom electrodes. The film needs to be completely
dried in vacuum or at elevated temperate. The baking temperature and duration are
specific for each organic material. Top electrodes are deposited and patterned on top
of the natural organic film through a shadow mask to complete device fabrication. The
materials for top and bottom electrode are also specific for each organic material. Such a
solution-based microfabrication process allows devices based on natural organic materials,
including honey and chicken albumen, to be fabricated on flexible substrates that are
compatible with flexible microelectronics. To scale up the devices, a crossbar configuration
has been applied with demonstration of natural organic synaptic device arrays based on
diverse materials such as chitosan [4], zein [14], ι-carrageenan [27], wool keratin [59], and
chlorophyll-a/cellulose [60], etc.

Table 1. Fabrication process of synaptic devices made from some representative natural organic
materials.

Ref.
Natural
Organic
Material

Substrate
Material Solution

Film
Coating
Method

Film Baking
ElectrodesTemperature

(◦C)
Time
(min) Ambient

[3] Chitosan Polyimide rGO and Chitosan in
DI water Drop-casting 150 90 Ar Ti/Au;

Ti/Au

[4] Chitosan Glass Chitosan and C3N4 in
DI water Drop-casting RT _ Air IZO; ITO

[5] Chitosan Glass rGO and Chitosan in
DI water Spin-coating RT _ Air IZO; ITO

[14] Zein Glass Zein in various
solvents Spin-coating 50 30 Air Al; ITO

[15] Gelatin Si Gelatin powder in DI
water Spin-coating RT 300 Vacuum Au; Au

[17] Honey Glass Honey in DI water Spin-coating 90 540 Air Ag; ITO

[24] Lignin PET
Lignin powder in

NH4OH and distilled
water

Spin-coating RT 48h _ Au; ITO

[25] Collagen PET Collagen powder in DI
water Spin-coating 60 90 Vacuum Mg; ITO

[26] Trypsin Glass Trypsin powder in
Tris-Cl buffer Drop-casting RT 48h Air Au; FTO

[27] ι-car SiO2/Si ι-car powder in acetic
acid and distilled water Spin-coating RT 360 Air Ag; Pt

[30] Dextran Si Dextran in DI water Spin-coating 70 60 Air Au; Au

5. Mechanisms

The mechanisms governing synaptic current and conductance change can be classified
based on transistors and memristors and natural organic materials they are made from.
For electrically-driven synaptic transistors [3–5,15,29–36,43,56], an electric double layer
(EDL) effect is responsible for current conduction, in which the migration of charged mobile
carriers towards and away from the interface between the channel and natural organic film
modulates the corresponding electron concentrations in the channel and, therefore, the
channel conductance. The charged carriers in the natural organic films are either protons in
materials such as in chitosan, albumen, maltose, etc. [3–5,29–36,43,56], or ions in gelatin [15],
with their migration induced by drain or gate bias depending on the bias configuration.
When proton or ion migration is triggered by presynaptic spikes applied on the drain or
gate electrode, channel current is produced with amplitude adjusted by the concentration
of protons or ions at the channel and natural organic film interface. Such a process is similar
to the spike-modulated movement of the neurotransmitters in biological synapses.
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For photonic synaptic transistors [39,57,60], the light-tunable synaptic plasticity is
by photoexcitation in the light-sensitive natural organic film. For natural acidic polyelec-
trolyte [39], photogenerated electrons transfer from natural organic layer to trapped levels,
while photogenerated holes are unpaired and induced by gate electric field and accumulate
in the conducting channel. This hole accumulation is promoted by the large EDL capaci-
tance induced by the high proton concentration in the light-sensitive layer, which enhances
photoelectric sensitivity of synaptic transistors. After light irradiation turns off, electrons
in shallow defect levels are released to recombine with holes, leading to the rapid decay
of postsynaptic current. Current change in chlorophyll-a based synaptic transistor [57]
is attributed to the energy transfer from chlorophyll-a to incorporated single walled car-
bon nanotubes. For a cellulose nanopaper-based optoelectronic synaptic transistor [60],
migration of ions such as sodium ions in the film is responsible for the synaptic current.

Current conduction in memristors is mainly due to the formation of conductive paths
in natural organic films. In zein [14] and lignin [24] memristors, conductive paths are
carbon-rich conductive filaments formed due to the pyrolysis process induced by the
local Joule heating in the film under an external bias. Such carbon-rich filaments can be
ruptured by increased thermal driving due to negative bias. Conductive paths can also be
formed by metal conductive filaments due to redox reaction of the metal atoms from the
metal electrode such as in honey [17] and cellulose [54] memristors, or from incorporated
metal nanomaterials such as carboxymethyl ι-carrageenan [28] and silk fibroin [55] with
Ag nanoclusters. Metal atoms are oxidized to metal ions that migrate towards the other
electrode under the electrical field and are reduced to metal atoms when reaching the other
electrode. Such metal atoms accumulate between two electrodes to form metal conductive
filaments for current conduction. The constituents of some natural organic materials are
either charged or ionized, such as Mg ions in collagen [25] or positively charged lysine and
arginine in trysin [26]. Such charged carriers drift under bias and form conductive paths in
the natural organic film, analogous to neurotransmitters in biological synapses.

6. Future Prospects

The emulation of synaptic functions has been demonstrated by memristors and tran-
sistors with the memristive film and gate dielectric made from a variety of natural organic
materials. Natural organic materials have the advantages of being renewable, abundant in
nature, biodegradable, eco-friendly, etc., together with the capabilities of mimicking the
synaptic plasticity and functionalities of biological synapses and neurons. Natural organic
artificial synaptic devices offer a new avenue for the construction of essential hardware
components for emerging neural networks and neuromorphic computing systems with
energy efficiency, biodegradability, sustainable source of material, low cost fabrication, and
environmentally friendly disposal, which is promising for solving the energy, sustainability,
and electronic waste issues currently faced by hardware made from conventional inorganic
materials. Besides these prospects, there are still opportunities for natural organic synaptic
devices in more applications for neuromorphic computing. Natural organic materials have
the potential to make flexible electronic devices for flexible neuromorphic systems, but so
far only a limited number of materials including lignin [24], collagen [25], carboxymethyl
ι-carrageenan [28], dextran [30], silk fibroin [55], wool keratin [59], etc., have been used
to fabricate flexible artificial synaptic devices. Another opportunity exists in photonic
synaptic devices activated by optical stimulations. Most of the current natural organic
synaptic devices rely on electrical signals, which are suitable for the integration of an
artificial neural network (ANN) with high density [74], but may limit the operating speed
with bandwidth-connection-density trade-off [57]. Instead, photonic synaptic devices are
promising for ultrafast neuromorphic computing systems [75–77] by advantages [60] such
as interference immunity, high bandwidth, low power computation, etc. Furthermore, more
investigations are needed to explore more synaptic properties demonstrated by devices
based on other organic materials, such as complementary synapse by a synaptic transistor
made from organic graphene-ferroelectric copolymer P(VDF-TrFE) in which the analog
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weight update can be positive or negative [78–80]. With these benefits and potential appli-
cations, more natural organic materials could be explored for photonic synaptic devices
besides chlorophyll-a [57,60].

7. Conclusions

This paper reviews synaptic functions demonstrated by memristor- and transistor-
based artificial synaptic devices made from natural organic materials, mainly carbohydrates
and protein. Some elements of fundamental synaptic plasticity including short-term
and long-term memory, neural facilitation, spike-timing-dependent plasticity, spike-rate-
dependent plasticity, high pass and low pass dynamic filtering, and spatial summation
were emulated by a variety of natural organic synaptic devices. The testing processes
for each synaptic function were described, with representative testing results reported.
This review provides as a useful guidance for investigating high performance synaptic
memristors and transistors based on natural organic materials toward the development
of sustainable, biodegradable, and eco-friendly neuromorphic computing systems in the
future.
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