

 micromachines-14-02190

micromachines-14-02190

Micromachines 2023, 14(12), 2190; doi:10.3390/mi14122190

Article

Flash-Based Computing-in-Memory Architecture to Implement High-Precision Sparse Coding

Yueran Qi 1, Yang Feng 1, Hai Wang 1, Chengcheng Wang 1, Maoying Bai 1, Jing Liu 2, Xuepeng Zhan 1, Jixuan Wu 1, Qianwen Wang 1 and Jiezhi Chen 1,*

1

School of Information Science and Engineering, Shandong University, Qingdao 266237, China

2

Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China

*

Correspondence: chen.jiezhi@sdu.edu.cn

Citation: Qi, Y.; Feng, Y.; Wang, H.; Wang, C.; Bai, M.; Liu, J.; Zhan, X.; Wu, J.; Wang, Q.; Chen, J. Flash-Based Computing-in-Memory Architecture to Implement High-Precision Sparse Coding. Micromachines 2023, 14, 2190. https://doi.org/10.3390/mi14122190

Academic Editor: Aiqun Liu

Received: 11 November 2023 / Revised: 27 November 2023 / Accepted: 28 November 2023 / Published: 30 November 2023

Abstract

:

To address the concerns with power consumption and processing efficiency in big-size data processing, sparse coding in computing-in-memory (CIM) architectures is gaining much more attention. Here, a novel Flash-based CIM architecture is proposed to implement large-scale sparse coding, wherein various matrix weight training algorithms are verified. Then, with further optimizations of mapping methods and initialization conditions, the variation-sensitive training (VST) algorithm is designed to enhance the processing efficiency and accuracy of the applications of image reconstructions. Based on the comprehensive characterizations observed when considering the impacts of array variations, the experiment demonstrated that the trained dictionary could successfully reconstruct the images in a 55 nm flash memory array based on the proposed architecture, irrespective of current variations. The results indicate the feasibility of using Flash-based CIM architectures to implement high-precision sparse coding in a wide range of applications.

Keywords:

computing in memory; sparse coding; image reconstruction; online training; flash memory

1. Introduction

Frequent data transportation between the memory unit and the computing unit causes huge power consumption and low processing efficiency. Computing-in-memory (CIM) technology was proposed to address the aforementioned issues and has been widely used in various applications, such as neural networks [1,2], scientific computing [3], image processing [4,5,6,7], etc. As an important part of image processing, the image reconstruction technique has been utilized in image super-resolution reconstruction [8], face recognition [9], and dynamic video anomaly detection [10]. Sparse coding is an unsupervised learning method that is usually used in machine learning because it is a powerful approach to high-efficient data representation [11,12,13,14,15,16,17], wherein the main goal is to find an overcomplete set of basis vectors to represent the input vector as a linear combination of basis vectors. In sparse coding, complex data can be transformed into a more simplified and meaningful form; however, the data size is ultra-large, and processing efficiency is a challenge. Fortunately, CIM-based sparse coding provides a promising solution to this.

So far, the relevant research has been implemented in memristor-based CIM architectures. Sheridan et al. [13] proposed the winner-take-all (WTA) method to train the dictionary on memristors, achieving image reconstruction via sparse coding, and then adopted the stochastic gradient descent (SGD) method for on-chip dictionary training [14]. By combining sparse coding and a single-layer perceptron (SLP) network, Cai et al. [15] demonstrated the use of an integrated memristor chip to recognize a breast tumor, checking malignancy or benignity; Kang et al. [16] proposed a cluster-type CBRAM device model to complete color image reconstruction; Dong et al. [17] proposed a training method (CP) with a threshold-type memristor model based on sparse coding in the super-resolution reconstruction of images. For images with high resolution, the data need to be stored and manipulated in a large memory array, which is a challenge for memristor-based CIMs. Additionally, the data have to be divided into small slices [18,19]. Flash memory demonstrates good performance in durability, speed, and cost-effectiveness, which provides a promising candidate for large-scale and high-precision computing. Previously, Flash-based CIMs have been reported in various applications [20,21,22], demonstrating their capabilities in large-scale data processing.

In this work, we propose an online algorithm based on a novel design of flash arrays to implement sparse coding and high-robust color image reconstruction. The major contributions of this work are as follows:

	
A novel flash-based CIM array is proposed to implement forward and backward calculations. By treating the flash cells as resistors and connecting the inputs and outputs to the rows and columns, the forward and backward calculations are implemented in the same flash array, which is helpful in reducing the array area and improving processing efficiency.

	
A new training method is proposed to reduce iteration numbers for low power consumption. The discrete cosine transform (DCT) dictionary was introduced in the initialization to train the overcomplete dictionary. According to the characterization results, it is shown that the new initialization method can improve training efficiency and reconstruction accuracy effectively.

	
A variation-sensitive training (VST) algorithm is proposed to address array variations. Different training methods have different sensitivities to the degree of device variation, and the proposed VST method can achieve good reconstruction results by setting the training share of various training algorithms to the variation level.

	
The mapping method is optimized to store the matrix with positive/negative weights. In comparison to the traditional method of storing positive/negative weights in a differential pair or separate arrays, the normalized mapping method enables array area reduction.

2. Materials and Methods

2.1. Flash Memory

The conventional von Neumann architecture cannot always meet the increasing demand for efficient data processing since the frequent data transmission between the memory unit and computational unit costs too much energy rather than computation. The emergence of computing-in-memory (CIM) technology can largely reduce power consumption and delay costs during data transmission. For certain computations, such as matrix and vector multiplication (MVM), the calculation process can be performed on the memory device [23,24]. Therefore, there is no need to transmit data to the computing unit to complete calculation tasks, saving a significant amount of energy. In particular, based on the current characteristics in the saturation region of flash, the drain current is independent of the drain-source voltage and determined solely by the gate voltage, which means that the flash cell can be considered a gate bias control variable resistance device. In MVM, each input vector element needs to be multiplied with the corresponding matrix element, and then, the products are summed to obtain the results, which can be easily realized via a single-read operation on a flash memory array. That is, all the matrix elements can be mapped into the flash array in the form of the threshold voltage (Vth) according to specific mapping rules. With the voltage proportional to the input vector elements applied at the word line (WL), the charge per column of the array calculated by integrating the current at the bit line (BL) is the actual result of MVM. The entire process obeys Ohm’s law and Kirchhoff’s law.

2.2. Sparse Coding

Sparse coding is a technique for data compression and feature extraction that can reduce the data dimensionality and complexity by extracting the essential features and representing the data as a linear combination of features [25,26]. The whole process is similar to human brain computing, in which we only need to mobilize as few brain areas as possible to consume the least amount of energy to achieve the calculation task for a familiar knowledge point, and the calculation speed increases at the same time, which is the benefit of sparse coding [27]. Its mathematical meaning is to train a set of basis vectors D = d 1 , d 2 , … , d n ϵ ℝ m × n , n > m , which can be considered a dictionary set; d n is the n t h basis vector, called the n t h feature dictionary in other words. As a result, all input data x can be represented as a linear combination of these basic dictionaries.

 x = D a ,

(1)

where a = a 1 , a 2 , ⋯ , a m T ϵ ℝ m is the sparse set of coefficients, and only a small fraction of the elements is non-zero.

Then, to obtain the solution, the problem can be simplified and expressed as finding the optimal solution that minimizes the energy function if D is known as follows:

 min a ‖ x − D a ‖ 2 2 + λ ‖ a ‖ 1 ,

(2)

where x is the input signal, a is the neuronal activity coefficient, λ is the adjustment parameter, ‖ · ‖ 1 denotes the L 1 norm, and ‖ · ‖ 2 denotes the L 2 norm, governing the sparse representation error and sparsity, respectively. L 1 norm and L 2 norm are considered jointly to achieve the best representation of the input vector with fewer features.

To solve the problem above, the local competition algorithm (LCA) has been proven to be an efficient algorithm [28] and has shown its ability to solve sparse approximation problems on FPGA [25]. The basic idea of LCA is to divide the search space into several local regions, each region having its share of competing individuals who compete and cooperate to find the local optimal solution. While in the global search process, each local region competes and cooperates to find the optimal global solution. Its mathematical expression is shown as follows:

 d u d t = 1 τ p − u − D T D − I a ,

(3)

 a = T u , λ = u , u > λ 0 , u ≤ λ

(4)

where u is the neuronal membrane potential, p = x T D is the projection of input signal x onto the dictionary, τ is the time parameter that controls the response rate of the neuron, and I is the unit matrix. The first term in Equation (3) can be regarded as the positive stimulus of the membrane potential, the − u term as the leakage term, and the − D T D − I a term as the lateral inhibition of other neurons. The value of D T D can measure the similarity of each neuron to ensure that similar neurons are not active at the same time via lateralizing inhibition. The coefficient a is defined according to the thresholding function defined in Equation (4).

Since the major operations in Equation (3) are based on MVM, as discussed above, it fits well with the design of the flash array. To avoid the matrix and matrix multiplication terms, D T D , x r = D a T is introduced instead; then, the whole formula can be converted into the following format with only addition, subtraction, and matrix-vector multiplication:

 d u d t = 1 τ − u + x − x r T D + a ,

(5)

2.3. Flash Memory Array Design

After eliminating the matrix and matrix multiplication terms that are not easily implemented in the array, the entire formula can be carried on the flash array. The dictionary D is mapped to the flash array and stored as Vth, and input x is mapped as the applied pulse, with the pulse time adjusted according to the input value at a fixed amplitude. Then, the computation of x r becomes the pivotal issue. In fact, a needs to be inputted into the array where the transpose of D is stored, so it requires two arrays to store the data of D and the transpose, respectively, which increases the device area. Since D is already stored in the array, we can implement this process by re-inputting a into the original output side, i.e., back input. However, the conventional flash memory array has difficulties in realizing back input, so we designed a new array where forward input and back forward input can be carried on in the same array to save the additional energy consumption of two arrays. The specific process is shown in Figure 1.

2.4. Grey Patch Reconstruction

A significant application of sparse coding is image processing. An image can be represented as a set of sparse coefficients that are full of information about the appearance features after the sparse coding process. These coefficients can be used for tasks such as image classification, target detection, and image reconstruction.

To demonstrate the flash-based sparse coding system, an image reconstruction task is applied to the flash CIM array. Specifically, the LCA is implemented for validating the proposed CIM architecture. Using the commercial 55 nm flash memory technology, the reconstruction results of small-size images with black and white pixels are simulated. The dictionaries used during reconstructing images (Figure 2) were mapped to Vth of the array with the structure shown in Figure 1; then, the grayscale images to be reconstructed were converted to column vectors and applied to the array as fixed amplitude pulses with a duration proportional to the gray value. By iterating the forward and backward inputs, the results integrating at the output called “the membrane potential” will reach dynamic stability, at which time the dictionaries corresponding to the neurons whose potential is above the threshold will form the reconstructed image. The reconstruction results are shown in Figure 2, confirming the great performance of flash-based CIM architecture with “back input” operation.

Then, to investigate the effect of the threshold parameter λ in LCA, we simulated the reconstruction results with various λ values. The membrane potential changes during the reconstruction are shown in Figure 3. It is observed clearly that when the membrane potential is below the threshold, the neurons corresponding to the dictionaries that reassemble the original image are charged rapidly until above the threshold. At the same time, the lateral inhibition is activated to reduce the membrane potential, and the correct neurons reach stability in the constant alternation of charging and inhibiting while the membrane potential of several irrelevant neurons starts to decrease. Also, it is noticeable that the value of λ affects the reconstruction outcome. As shown in Figure 3, neurons 1, 5, 8, 14 all remain active when λ is 40, only neurons 8 and 14 are selected when λ is 60, and only neuron 8 is selected when λ is 150, from which we can deduce that λ affects the number of active dictionary neurons, that is, sparsity in reconstruction.

2.5. Color Image Reconstruction

The same architecture is used to implement color image reconstruction tasks with the entire process described in Figure 4. The first issue that needs to be addressed is the selection of dictionaries, which could greatly influence the reconstruction results. Once the basis dictionary is selected, all other inputs can be uniquely represented as linear combinations of dictionaries. The dictionary is usually trained using iterative algorithms that allow the dictionary elements to gradually adapt to the features of the input data. Various training methods have been proposed, and the comparative analysis of different dictionaries is performed on image reconstruction, focusing on three training algorithms: winner-take-all (WTA) algorithm, CP method [17], and stochastic gradient descent (SGD) algorithm.

2.5.1. WTA

The winner-take-all (WTA) algorithm is an effective approach in selecting the most relevant features in input data and reducing the computational complexity of the neural network. This algorithm chooses the most active neuron amongst a layer of the network and inhibits all other neurons within that layer, resulting in the suppression of their activation levels. This process enables the network to quickly identify the most important features of the data, thereby discarding any irrelevant information. Therefore, the WTA algorithm improves the efficiency and accuracy of the neural network by prioritizing the significant features of the data. Therefore, instead of using the LCA algorithm to extract image features, the WTA algorithm directly updates the neurons that are most similar to the input image. The specific algorithm flow and the weight update equation can be found in [13].

However, one limitation of the WTA algorithm is that it can only update a single neuron with each input. This means that if there are multiple features that are equally likely, the algorithm may not be able to accurately identify the true feature.

2.5.2. CP

This is an efficient training method proposed by [17], which we briefly call the CP method (the abbreviations ‘C’ and ‘P’ extracted from the training computation formula). Unlike WTA, this method requires the feature data extracted via LCA first, and then the weights are updated according to the formula in [17].

2.5.3. SGD

The stochastic gradient descent (SGD) algorithm is a commonly used method in model training. As with the CP method, we need to extract features using LCA and then update neuron weights according to the SGD’s weight update formula in [13]. Specifically, the SGD algorithm only updates the weights of neurons that are active at the current input.

3. Results

In general, there are positive and negative trained dictionary weights, which are against the physical characteristics of flash memory devices. Previous work mostly deals with negative values by difference pairs, that is, using a pair of matrices, where one stores the positive part of the weight while the absolute value of the negative part of the weight is stored in the other one. Thus, the actual result can be obtained by subtracting the output of the two arrays. This method is feasible with increasing array area. To reduce the array area and power consumption, a new optimized mapping method is proposed to eliminate negative weights, reducing the array area as well.

 D n = 1 μ D − D m i n ,

(6)

where D n is the dictionary matrix after the mapping process, μ = d m a x − d m i n , D m i n = d m i n × ones size D , d m a x and d m i n are the maximum and minimum values of the dictionary matrix, respectively, the ones size D n term means a matrix with the same size as D , and all elements in it are one.

Then, the actual result can be attained via

 y = μ y n + D m i n x ,

(7)

where y n is the output result, and the last term D m i n x can be obtained by summing over the input x .

The array occupation caused by positive and negative matrices is solved, and the ability of flash arrays to implement online training has been proven [29]. Based on the above three algorithms, three online training methods were investigated; the reconstructed effect of different color pictures is illustrated in Figure 5 and Table 1. For comparison, we concentrated on three main parameters in the field of image processing: peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and mean absolute error (MAE). These parameters are given via the following equations:

 P S N R = 10 × l o g 255 2 M S E , M S E = 1 m n Σ i = 0 m − 1 Σ j = 0 n − 1 O i , j − R i , j 2

(8)

 S S I M O , R = 2 μ O μ R + C 1 2 σ O R + C 2 μ O 2 + μ R 2 + C 1 σ O 2 + σ R 2 + C 2 ,

(9)

 M A E = 1 m n Σ i = 0 m − 1 Σ j = 0 n − 1 O i , j − R i , j ,

(10)

where O i , j and R i , j are pixel values of m × n sized original image and reconstruction image, respectively. μ is the average grayscale, and σ is the grayscale standard deviation.

Taking three different color images into consideration, the dictionaries trained with the SGD algorithm can all maintain good reconstruction results, while the results obtained using the WTA algorithm are generally noisy, and the results of the CP algorithm have a slight detail loss problem. It can be inferred that the dictionary trained using the SGD algorithm contains richer information about the image base.

4. Discussion

However, a large number of online training leads to multiple programming and erasing of the array and increases power consumption. Since each sparse dictionary can also be treated as a sparse representation of the ‘dictionary of dictionaries’ [30], which means that each element in a sparse dictionary can be treated as a weighted combination of several DCT dictionary elements, we introduce the discrete cosine transform (DCT) matrix to replace the randomly given initial values in the original training method. It should be noted that DCT dictionaries are usually the size of n 2 × n 2 , while the dictionaries needed in the dictionary reconstruction process are overcomplete dictionaries, i.e., with the size of n 2 × 2 n 2 , to ensure good reconstruction results. Thus, the reconstruction effect of ‘Lena’ with different sizes of DCT matrices is investigated firstly to replace the random initial values. From Figure 6, it is concluded that the replacement of the original random dictionaries leads to an enhancement in the quality of the reconstruction results obtained. On the other hand, we can also draw the conclusion that by introducing the DCT matrix to replace the original random initialization matrix, the original good reconstruction effects could be achieved with a reduced number of training epochs, which implies a significant amount of power consumption saving during online training.

For a more comprehensive measurement of the on-chip training results of the three methods, the robustness of the three methods to noise was also investigated due to the presence of current disturbances caused by the device itself and the environment in the on-chip training and sparse coding reconstruction process.

First, the effect of the noise during on-chip reconstruction on the results is focused. Figure 7a shows that the dictionary trained using the SGD method maintains a good reconstruction when the current disturbance is below a certain level, while the one trained via the CP algorithm is superior when the disturbance reaches a relatively large level since, during each SGD update, only one sample is used. Taking the disturbances during online training into consideration, the final results are shown in Figure 7b. Similar to the case where variation during online training is not taken into account, the SGD method still suffers from reduced robustness in the presence of a high variation level. To overcome this limitation, a variation-sensitive training (VST) method is proposed.

As described in Algorithm 1, the training iteration number of the second training algorithm (CP) should be increased when the current variation is larger. And in the opposite case, the training iteration number of the first algorithm (SGD) should be increased.

To verify the feasibility of this algorithm, the effect of the current variation on the newly proposed algorithm with the optimized initialization was investigated, as shown in Figure 7 (blue line). The reconstructed images suffering different current variation rates are displayed in Figure 8. The reconstruction results maintained a good state regardless of the current variation, with or without taking variation during online training into consideration. Overall, we have demonstrated that flash arrays can be used for sparse coding applications, and the feasibility of the VST algorithm with DCT initialization conditions and optimized mapping method on flash arrays have also been illustrated; enhanced robustness and better reconstruction effects can be achieved as well as less array area.

	Algorithm 1: The Variation-Sensitive-Training Algorithm

	INPUT: x : a set of sample pics;

	 D : initial dictionary, i.e., threshold voltage;

	 i t e r 1 : the iteration number of first training process;

	 i t e r 2 : the iteration number of last training process;

	 i t e r 3 : the LCA iteration number;

	 λ , τ : parameters of training;

	OUTPUT: D : trained dictionary;

	Initial C = P = 0 , u = a = 0 ;

	#LCA

	for l = 1 t o i t e r 1

	for i = 1 t o i t e r 3

	 B = D T x ;

	#threshold judgment

	if u > λ

	 a = u ;

	 else

	 a = 0 ;

	end if

	 x r = D a T ;

	 H = x − x r T D ;

	 d u = 1 τ − u + H + a ;

	 u = u + d u ;

	end for

	#update weight (less noise)

	 Δ ∅ T = β x − D T a ⊗ a ;

	for l = i t e r 1 + 1 t o i t e r 2

	 c l = c l − 1 + a l a l T ;

	 p l = p l − 1 + x l a l T ;

	#update weight (greater noise)

	 D j = 1 max ‖ ϕ j ‖ 2 , 1 ϕ j ;

	 ϕ j = 1 c j , j p j − D c j + D j ;

	end for

	end for

5. Conclusions

Sparse coding holds crucial significance across various domains, ranging from signal compression and denoising in signal processing to extracting essential patterns for improved model generalization in machine learning, even extending to neuroscience. To address the limitations in the exploration of sparse coding applications on flash memory, we present a flash memory-based array designed for sparse coding implementation that enables on-chip training and image reconstruction, demonstrating the ability of flash memory to implement sparse coding. The effects of three dictionary training methods used in the image reconstruction process were investigated, and the performances of these three dictionaries in image reconstruction were analyzed, while a new mapping method was introduced to reduce the array area. In addition, we investigated the effect of device variation on the reconstruction result, and the VST method with a novel initialization condition to implement a color image reconstruction process combining the advantages of both algorithms was proposed. Based on 55 nm technology flash memory, good reconstruction effects were achieved, as well as enhanced robustness to noise.

Author Contributions

The work presented here was completed in collaboration between all authors. Conceptualization, Y.Q.; methodology, Y.Q.; software, Y.Q. and Y.F.; validation, Y.Q., Y.F. and H.W.; formal analysis, Y.Q.; investigation, Y.F., J.W. and C.W.; resources, Y.F. and M.B.; writing—original draft, Y.Q. and Y.F.; writing—review and editing, J.C.; supervision, J.C. and Q.W.; project administration, J.C.; funding acquisition, J.W., X.Z., J.L. and J.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China (Nos. 62034006, 92264201, and 91964105), the Natural Science Foundation of Shandong Province (ZR2020JQ28, ZR2020KF016), and the Program of Qilu Young Scholars of Shandong University.

Data Availability Statement

The data presented in this study are available upon request from the corresponding author. The data are not publicly available due to privacy restrictions.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Wang, R.; Shi, T.; Liu, M. Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization. Nat. Commun. 2022, 13, 2289. [Google Scholar] [CrossRef]

	

Feng, Y.; Sun, Z.; Qi, Y.; Zhan, X.; Zhang, J.; Liu, J.; Kobayashi, M.; Wu, J.; Chen, J. Optimized operation scheme of flash-memory-based neural network online training with ultra-high endurance. J. Semicond. 2023, 45, 1–5. [Google Scholar]

	

Zidan, M.A.; Jeong, Y.; Lee, J.; Chen, B.; Huang, S.; Kushner, M.J.; Lu, W.D. A general memristor-based partial differential equation solver. Nat. Electron. 2018, 1, 411–420. [Google Scholar] [CrossRef]

	

Haj-Ali, A.; Ben-Hur, R.; Wald, N.; Ronen, R.; Kvatinsky, S. Imaging: In-memory algorithms for image processing. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 4258–4271. [Google Scholar] [CrossRef]

	

Jiang, D.; Liu, L.; Chai, H. Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform. Signal Process. 2021, 188, 108220. [Google Scholar] [CrossRef]

	

Zayer, F.; Mohammad, B.; Saleh, H.; Gianini, G. RRAM crossbar-based in-memory computation of anisotropic filters for image preprocessing. IEEE Access 2020, 8, 127569–127580. [Google Scholar] [CrossRef]

	

Sun, Z.; Feng, Y.; Guo, P.; Dong, Z.; Zhang, J.; Liu, J.; Zhan, X.; Wu, J.; Chen, J. Flash-based in-memory computing for stochastic computing in image edge detection. J. Semicond. 2023, 44, 054101. [Google Scholar] [CrossRef]

	

Yang, J.; Tang, H.; Ma, Y.; Huang, T. Face hallucination VIA sparse coding. In Proceedings of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 1264–1267. [Google Scholar]

	

Wright, J.; Yang, A.Y.; Ma, Y. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef]

	

Annamalai, L.; Chakraborty, A.; Thakur, C.S. EvAn: Neuromorphic Event-Based Sparse Anomaly Detection. Front. Neurosci. 2021, 15, 699003. [Google Scholar] [CrossRef]

	

Hahn, W.E.; Lewkowitz, S.; Barenholtz, E. Deep learning human actions from video via sparse filtering and locally competitive algorithms. Multimed. Tools Appl. 2015, 74, 10097–10110. [Google Scholar] [CrossRef]

	

Bahadi, S.; Rouat, J.; Plourde, É. Adaptive Approach for Sparse Representations Using the Locally Competitive Algorithm For Audio. In Proceedings of the 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP), Gold Coast, Australia, 25–28 October 2021; pp. 1–6. [Google Scholar]

	

Sheridan, P.M.; Du, C.; Lu, W.D. Feature Extraction Using Memristor Networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2327–2336. [Google Scholar] [CrossRef] [PubMed]

	

Sheridan, P.M.; Cai, F.; Lu, W.D. Sparse coding with memristor networks. Nat. Nanotechnol. 2017, 12, 784–789. [Google Scholar] [CrossRef] [PubMed]

	

Cai, F.; Correll, J.M.; Lu, W.D. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat Electron. 2019, 2, 290–299. [Google Scholar] [CrossRef]

	

Kang, J.; Kim, T.; Jeong, Y. Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing. Nat. Commun. 2022, 13, 4040. [Google Scholar] [CrossRef]

	

Dong, Z.; Lai, C.S.; Qi, D. Single Image Super-Resolution via the Implementation of the Hardware-Friendly Sparse Coding. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 8132–8137. [Google Scholar]

	

Zhou, J.; Kim, K.-H.; Lu, W. Crossbar RRAM arrays: Selector device requirements during read operation. IEEE Trans. Electron Devices 2014, 61, 1369–1376. [Google Scholar] [CrossRef]

	

Zidan, M.; Strachan, J.; Lu, W. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]

	

Chen, B.; Kong, Y.; Chen, J. High-to-Low Flippling (HLF) Coding Strategy in Triple-levell-cell (TLC) 3D NAND Flash Memory to Construct Reliable Image Storages. In Proceedings of the 2022 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Oita, Japan, 6–9 March 2022; pp. 336–338. [Google Scholar]

	

Ha, R.Z.; Huang, P.; Kang, J. A Novel Convolution Computing Paradigm Based on NOR Flash Array with High Computing Speed and Energy Efficient. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar] [CrossRef]

	

Kim, M.; Liu, M.; Everson, L.R.; Kim, C.H. An Embedded nand Flash-Based Compute-In-Memory Array Demonstrated in a Standard Logic Process. IEEE J. Solid State Circuits 2022, 57, 625–638. [Google Scholar] [CrossRef]

	

Li, J.; Ren, S.-G.; Li, Y.; Yang, L.; Yu, Y.; Ni, R.; Zhou, H.; Bao, H.; He, Y.; Chen, J.; et al. Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 2023, 9, eadf7474. [Google Scholar] [CrossRef]

	

Guo, X.; Bayat, F.M.; Bavandpour, M.; Klachko, M.; Mahmoodi, M.R.; Prezioso, M.; Likharev, K.K.; Strukov, D.B. Fast, Energy-Efficient, Robust, and Reproducible Mixed-Signal Neuromorphic Classifier Based on Embedded NOR Flash Memory Technology. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 151–154. [Google Scholar]

	

Fair, K.L.; Mendat, D.R.; Andreou, A.G.; Rozell, C.J.; Romberg, J.; Anderson, D.V. Sparse coding using the locally competitive algorithm on the TrueNorth neurosynaptic system. Front. Neurosci. 2019, 13, 754. [Google Scholar] [CrossRef]

	

Kim, E.; Onweller, C.; O’Brien, A.; McCoy, K. The interpretable dictionary in sparse coding. arXiv 2020, arXiv:2011.11805. [Google Scholar]

	

Wang, Z.; Yang, J.; Zhang, H.; Wang, Z.; Huang, T.S.; Liu, D.; Yang, Y. Sparse Coding and Its Applications in Computer Vision; World Scientific: Singapore, 2015. [Google Scholar]

	

Rozell, C.J.; Johnson, D.H.; Olshausen, B.A. Sparse Coding via Thresholding and Local Competition in Neural Circuits. Neural Comput. 2008, 20, 2526–2563. [Google Scholar] [CrossRef]

	

Feng, Y.; Zhang, D.; Chen, J. A Novel Array Programming Scheme for Large Matrix Processing in Flash-Based Computing-in-Memory (CIM) With Ultrahigh Bit Density. IEEE Trans. Electron Devices 2022, 70, 461–467. [Google Scholar] [CrossRef]

	

Rubinstein, R.; Zibulevsky, M.; Elad, M. Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation. IEEE Trans. Signal Process. 2010, 58, 1553–1564. [Google Scholar] [CrossRef]

[image: Micromachines 14 02190 g001]

Figure 1. Schematic of the newly designed flash array for forward and backward input process. Forward calculation (red) can be implemented by applying the fixed amplitude voltage to the drain side and integrating the current at the source, while the back–forward calculation (blue) is the opposite. Each row or column (green) means a dictionary element of the dictionary set.

Figure 1. Schematic of the newly designed flash array for forward and backward input process. Forward calculation (red) can be implemented by applying the fixed amplitude voltage to the drain side and integrating the current at the source, while the back–forward calculation (blue) is the opposite. Each row or column (green) means a dictionary element of the dictionary set.

[image: Micromachines 14 02190 g001]

[image: Micromachines 14 02190 g002]

Figure 2. (Left): the given dictionary set. (Right): reconstruction results of small-size grayscale images.

Figure 2. (Left): the given dictionary set. (Right): reconstruction results of small-size grayscale images.

[image: Micromachines 14 02190 g002]

[image: Micromachines 14 02190 g003]

Figure 3. The trend diagram of membrane potential (a) when λ is 40, (b) when λ is 60, and (c) when λ is 150.

Figure 3. The trend diagram of membrane potential (a) when λ is 40, (b) when λ is 60, and (c) when λ is 150.

[image: Micromachines 14 02190 g003]

[image: Micromachines 14 02190 g004]

Figure 4. Schematic diagram of the architecture of image reconstruction.

Figure 4. Schematic diagram of the architecture of image reconstruction.

[image: Micromachines 14 02190 g004]

[image: Micromachines 14 02190 g005]

Figure 5. The reconstruction results of different image reconstruction targets: (a) Lena, (b) Barbara, and (c) Kid. From left to right, the original image and the results of the WTA method, CP method, and SGD method are shown, respectively. The sparsity of the Lena image reconstructions, i.e., the percentage of non-zero elements in a , with (d) CP and (e) SGD methods.

Figure 5. The reconstruction results of different image reconstruction targets: (a) Lena, (b) Barbara, and (c) Kid. From left to right, the original image and the results of the WTA method, CP method, and SGD method are shown, respectively. The sparsity of the Lena image reconstructions, i.e., the percentage of non-zero elements in a , with (d) CP and (e) SGD methods.

[image: Micromachines 14 02190 g005]

[image: Micromachines 14 02190 g006]

Figure 6. (a) Different initial situations. (b) The results of CP and SGD algorithms with different initialization conditions are compared in the reconstruction of Lena.

Figure 6. (a) Different initial situations. (b) The results of CP and SGD algorithms with different initialization conditions are compared in the reconstruction of Lena.

[image: Micromachines 14 02190 g006]

[image: Micromachines 14 02190 g007]

Figure 7. (a) Effects of different current variation rates during the reconstruction process on the results are displayed. (b) Effects of variations during both the online training and the reconstruction process are taken into consideration.

Figure 7. (a) Effects of different current variation rates during the reconstruction process on the results are displayed. (b) Effects of variations during both the online training and the reconstruction process are taken into consideration.

[image: Micromachines 14 02190 g007]

[image: Micromachines 14 02190 g008]

Figure 8. VST-based reconstructions with different variation rates.

Figure 8. VST-based reconstructions with different variation rates.

[image: Micromachines 14 02190 g008]

Table 1. The reconstruction effects of different methods on three different images.

Table 1. The reconstruction effects of different methods on three different images.

	
Method

	
PSNR (dB)

	
SSIM (a.u.)

	
MAE (a.u.)

	
Lena

	
Barbara

	
Kid

	
Lena

	
Barbara

	
Kid

	
Lena

	
Barbara

	
Kid

	
WTA

	
27.7296

	
29.0198

	
30.5530

	
0.9991

	
0.9995

	
0.9996

	
0.1323

	
0.1037

	
0.0811

	
CP

	
32.7659

	
32.8162

	
31.4524

	
0.9995

	
0.9995

	
0.9990

	
0.0747

	
0.0722

	
0.0875

	
SGD

	
38.4365

	
40.4555

	
39.9035

	
0.9998

	
1.0000

	
0.9999

	
0.0398

	
0.0291

	
0.0336

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Check ACS Ref Order

Check Foot Note Order

Check CrossRef

media/file13.jpg
SSIM() PSNR(B)

MAEGuu)

Toining & Romsruction

o SGD beter CPbeter
W = =
S | 15T combies he s af b

SGD beter c

G0 bt

O WTAandom)
- crocn

- sepoc)
o Crutandom)
- scpimanion)
o ist00n)

2| SGDbeter cPrter

Variation Rate(%)

@

Nariation Rate(%)

(b)

media/file4.png
D1 D2 D3 D4 ps 4, S~ CTT-TTTTTSTTSTTTTTTTSTSTSSTSTSSSSSESSESESSESESESESESESE S SEE S ESST |
[] . . '
- Original :
- e Image |
— ' '
S — |
[
|
[
|
[
|

Reconstruction

Image

nav.xhtml

 micromachines-14-02190

 		
 micromachines-14-02190

media/file16.png

media/file2.png
| Stage 1: Forward Input |

e/ /8

|

Control Voltage

AT

L

Ty

.

i

)

<

L.

...|||'_?’ D,

L,

iy

|

¢

il

&

i)

il

L
‘ ¢
'

il

il

L

.

i

el

y

e

W) W/
W, / / ’I Y

| ‘Z'/“Z‘/Eﬂ "

e

il

H

"ol

L

il

; ﬂ.‘?ﬂ/ﬂ'ﬂ@

vz Neuron Acﬂviz— 7

forward process and backward process carried on the same array

| Stage 2: Backward Input |

| Control Voltage

) '~|||f,'~||ﬂ.'~||ﬁ?

Iy

i

/ﬂ«ﬂ qelHCTH

L -

T HICHC

DT DT- R
il

«mﬂ

&
h 4

i

e jC AL, -

4L

i
0

media/file5.jpg
Result

3
- a=1s0 [T o
g 1 H
W - Sparsity # | 2
[L—
Keep charging

@ eeration Number 8) Meration Number (©) Hteration Number

[y rew—

media/file3.jpg

media/file1.jpg

media/file7.jpg
Dictionary Training

Diide nto 5
Dictionary Dy
1 as ntal 1=

s input - Multiply Dictionary

3
i
£
)
£

i match the set
training number

Trained Dictionary D,,

Compose results |
based on active
neurons.

output

media/file10.png
Sparsity

cp

(d)

 25. 00%

- 21.25%

r17.50%

r13.75%

r 10. 00%

I 6. 250%

Sparsity
fd- 32. 30%

- 26. 24%
- 20. 18%
r14.12%

r 8. 060%

I 2. 000%

media/file12.png
0.07 t cP CP
el sGp Beter ! DCTcp | 09999
=5 0.05 / ®| (DCTI =
= (Ran.)SGD Q| [W] el S 09998 | —
<003 | [~| ey 2| (2| 3] | 7 >
= Q[| & 1° S| | & &
002 1|35 & 0.9997 | |
0.01 | Sl|g H
0 0.9996

0.9998 |

DCTs and DCTl represent DCT 16 X 16 and DCT 16 X 25, respectively.

(b)

©

PSNR(dB)
W W W ww
Gr OO N O

W
N

39.4921 |

40.8172 |

| 35.1459

36.8526 |

media/file9.jpg
e &2 Y
a: il ﬂﬁ 4

media/file0.png

media/file17.png

media/file14.png
Only Reconstruction

Training & Reconstruction

) e e | Py
=
= : < Q- CP(DCT)
_ { >-0-0-0 o-0——9
% 32 : SGD better CP better d CP & SGD(I)CT)
2 ol 1 D | SGD better beiter| | @ CP(Random)
g - VST combines the advantages of both -“@- SGD(Random)
1 -O- 1'ST(DCT)

~~ 0.9995 |Il| I .I$l—n

= 0.999

r CP

E 0.9985 SGD better better

= 0,568 ‘ etier

% 0.9975 SGD better t

0.997 {
0.9965
0.3 ¢
= 025 i L
"-;’ o | : \‘(; [) b;"f{g’l' (wP hc}‘h’-}' SGD better CP
better
¢

12345678 9101112131415161718

0
1 234567 8 9101112131415
Variation Rate(%)

Variation Rate(%o)

(a) (b)

media/file8.png
Dictionary Training

Divide into

little patches Random

Dictionary D,

‘ asinitial D,i=0
Multiply Dictionary)

by input

—_—

s input

Pick dictionary by
WTA/LCA

\

Update chosen
dictionary by
algorithm flow

New Dictionary D,,

i match the set
training number

| Training numberi =i+ 1

Trained Dictionary D,,

. -
f »‘ =p LCA sparse coding
a1

Compose results
based on active
neurons

output

Image Reconstruction

\————————————

media/file11.jpg
L1

2t =l

media/file6.png
Membrane Potential

The original image

140

Result

Result

120

100

80

60

40 (-

20 |

: | L L L

Lateral inhibition beg

i Keepfﬁﬁﬁ’"w

A determined according
to the balance between
sparsity and accuracy

Result

0 20 40 60

80 100

(a) Iteration Number

20 40 60 80 100
(b) Ite