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Abstract: Ankle joint flexion and extension movements play an important role in the rehabilitation
training of patients who have been injured or bedridden for a long time before and after surgery.
Accurately guiding patients to perform ankle flexion and extension movements can significantly
reduce deep vein thromboembolism. Currently, most ankle rehabilitation devices focus on assisting
patients with ankle flexion and extension movements, and there is a lack of devices for effectively
monitoring these movements. In this study, we designed an ankle joint flexion and extension
movement-monitoring device based on a pressure sensor. It was composed of an STM32 micro-
controller, a pressure sensor, an HX711A/D conversion chip, and an ESP8266 WiFi communication
module. The value of the force and the effective number of ankle joint flexion and extension move-
ments were obtained. An experimental device was designed to verify the accuracy of the system. The
maximum average error was 0.068 N; the maximum average relative error was 1.7%; the maximum
mean-squared error was 0.00464 N. The results indicated that the monitoring device had a high
accuracy and could effectively monitor the force of ankle flexion and extension movements, ultimately
ensuring that the patient could effectively monitor and grasp the active ankle pump movement.

Keywords: ankle pump movement; ankle joint flexion and extension movement monitoring; pressure
sensor; STM32

1. Introduction

Many injuries, and the prolonged bed rest before and after surgery, can easily lead to
lower limb deep vein thromboembolism, which greatly affects a patient’s life and can even
result in death. Ankle joint flexion and extension movements can effectively avoid this situ-
ation. Ankle joint flexion and extension movements are effective measures for preventing
venous thromboembolism [1], and they refer to the flexion and extension movements of
the ankle joint [2]. A schematic of ankle joint flexion and extension movements is shown in
Figure 1. First, the patient lies flat on a bed, exerts maximum force on his/her toes (flexion
movement), moves his/her toes towards the outside of his/her body, and maintains this
position for 10 s; then, he/she uses force to hook his/her feet up (back extension movement)
and move his/her toes towards the inside of his/her body, holding this position for another
10 s. These steps are then repeated continuously for 10 min. The above steps are the
complete process for patients performing ankle flexion and extension movements.
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(a) (b)

Figure 1. Schematic diagram of ankle joint flexion and extension movement. (a) flexion movement;
(b) extension movement.

Traditional ankle flexion and extension movements generally require medical staff
to assist patients in completing them; however, this method has a few drawbacks, such
as one medical staff member can only perform ankle flexion and extension movements
for one patient at a time, which results in lower efficiency. When patients perform ankle
flexion and extension movements, there is a distinction between comfort and maximal
strength. Different populations and people in different rehabilitation stages have different
maximum strengths. Therefore, it is necessary to monitor the effectiveness of the ankle
flexion and extension movements to help patients better complete the ankle flexion and
extension movements.

Currently, the research on ankle flexion and extension mainly focuses on ankle pump
rehabilitation devices; there is relatively little research on ankle pump movement monitor-
ing. G. Westrich et al. used an Acuson 128XP/10 dual-function ultrasound device with a
5 MHz linear array probe to measure the rate of the pressure rise and the maximum pres-
sure reached during ankle flexion and extension movements to evaluate the peak venous
velocity and venous volume [3]. However, this device can only measure the maximum
pressure and cannot display the real-time pressure value during ankle joint flexion and
extension movements, and there are also issues such as the high equipment costs. Yoon
J. Y. et al. used a goniometer to measure the angles of extension and flexion during ankle
flexion and extension movements [4]. Kim et al. compared the ankle joint angles measured
using wearable devices with the ankle joint angles obtained using movement-capture
systems during running and verified the ability of inertial measurement units (IMUs) to
accurately measure ankle joint angles, thereby detecting the effectiveness of ankle joint flex-
ion and extension movements [5]. Knyazev A. A. et al. developed an ankle joint mechanical
treatment device based on a parallel robotic arm. The measuring instrument built into the
device platform monitors the interaction force between the foot and the platform at three
points. The movement control unit of the mobile platform generates a control voltage based
on the reference model, corrects stress, and compares the changes in the ankle physiological
parameters during rehabilitation to effectively monitor the ankle flexion and extension
movements [6].

Research has been conducted on the monitoring of ankle flexion and extension move-
ments. Al-Quraishi et al. used electromyography signals for pattern recognition, which
was mainly divided into four stages: signal detection and preprocessing, feature extraction,
dimensionality reduction, and classification. They used three classifiers (linear discriminant
analysis, K-nearest neighbors, and multilayer perceptron) to classify four types of ankle
joint movements [7]. Hideki Toda et al. used a device that can achieve affected ankle joint
stretching by using the angle of the healthy ankle joint as a trigger to move the foot plate
connected to a linear actuator. They used two acceleration sensors to measure the ankle
joint rotation angle on the affected and healthy sides. Compared to the previously used
button control, healthy side control can achieve a smooth and stable process of pressing
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the affected side’s sole. The proposed system does not require a physical therapist during
the treatment process, making it possible for the ankle joint to self-recover [8]. Zheten-
bayev et al. provided a portable handheld device for ankle movement training during
rehabilitation [9]. This portable device is based on the extensive movement of the human
ankle provided in rehabilitation. A numerical model was used to study the motion am-
plitude of the ankle joint as a specific motion feature in order to monitor the flexion and
extension of the ankle joint. However, there are currently no devices that monitor forces
during flexion and extension on the market and in research.

Currently, pressure sensors are widely used in human motion monitoring. Zhang et al.
assembled and designed a pressure sensor composed of micro-convex polydimethylsilox-
ane, MXene nanosheets/Ag nanoflower films, and flexible interdigital electrodes to monitor
the wearer’s movement status and physiological signals [10]. They developed an intelligent
glove through a straightforward method, integrating it with a 3D model for wireless and
precise detection of hand gestures. However, this type of pressure sensor tends to be expen-
sive, making it less suitable for widespread applications. Yang et al. designed a shoe inner
sensor pad attached to the shoe lining based on a friction electric nanogenerator, which was
used to monitor the stress distribution on the foot in real-time and monitor the pressure
generated by humans during movement [11]. Yu et al. designed a piezo-triboelectric
pressure sensor based on a triboelectric nanogenerator and piezoelectric nanogenerator for
real-time monitoring of human joint bending motion [12]. Lee et al. developed nanomesh
pressure sensors capable of monitoring finger pressure without detectable effects on human
sensation [13]. Wu et al. designed a low-cost flexible pressure sensor with a positive
resistance–pressure response based on laser scribing graphene, enabling the detection
of various physiological signals and human movements [14]. Gerlach et al. selected a
multiwalled carbon nanotube–polydimethylsiloxane composite material as the pressure
sensorto monitor changes in plantar pressure during human movements [15]. Xiong et al.
developed a flexible and highly sensitive capacitive pressure sensor, making significant
progress in monitoring physiological signals and robot gripper movements [16]. Liu et al.
used a large-area all-textile-based pressure sensor to monitor finger movements and recog-
nize gestures [17]. Yang et al. applied a flexible microfluidic pressure sensor based on the
frictional charge at the liquid–solid interface during liquid flow in microfluidic channels to
monitor finger movement [18].

The force value is an important standard for evaluating the effectiveness of the an-
kle joint flexion and extension movements. However, there is a shortage of pertinent
monitoring research and products. Moreover, there is currently a mismatch between the
demand for monitoring devices for ankle joint flexion and extension movements and the
medical resources available for a large number of long-term bedridden patients. There is
an urgent need to design a low-cost and easy-to-monitor ankle joint flexion and extension
movement-monitoring device to assist long-term bedridden patients in rehabilitation train-
ing. Pressure sensors have not been utilized for monitoring ankle joint flexion and extension
movements. Therefore, this paper proposes an active ankle joint flexion and extension
movement-monitoring device based on pressure sensors. The monitoring system offers
the following advantages: (1) It accurately monitors force values during the ankle joint
flexion and extension movements process, assisting users and medical staff in observing
and evaluating movements and rehabilitation status and facilitating timely adjustments for
improved recovery. (2) The monitoring device is cost-effective, significantly reducing the
manufacturing costs.

The remainder of this paper is organized as follows. Section 2 introduces the im-
plementation method for monitoring the force values during ankle flexion and extension
movements based on a pressure sensor. Section 3 presents the experiment and accuracy
analysis. Finally, Section 4 concludes the paper.
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2. Method

The system’s composition is shown in Figure 2 and includes an STM32 microcon-
troller (STMicroelectronics, Paris, France), a pressure sensor [19], an HX711 A/D signal
conversion module (AVIA Semiconductor, Shenzhen, China) [20], an ESP8266 module
(Guangzhou Xingyi Electronic Technology Co., Ltd., Guangzhou, China) [21], and an
upper computer module.

Figure 2. Structure of an active ankle flexion and extension movement system based on pressure sensors.

The STM32 microcontroller was the STM32F103ZET6, renowned for its rich peripheral
interfaces, low-power design, and security features. The ESP8266 module is an ultra-low-
power module specifically designed for serial WiFi communication, boasting characteristics
such as low power consumption, high stability, and excellent integration. The HX711 A/D
signal conversion module’s function is to convert the pressure signal from the pressure
sensor. It offers advantages such as high integration, rapid response speed, and robust
anti-interference capabilities. The pressure sensor employed was a resistance strain sensor,
leveraging the resistance strain effect to induce changes in the conductor’s resistance with
mechanical deformation. It possesses characteristics such as a wide measurement range,
high resolution and sensitivity, high accuracy, and strong anti-interference capabilities,
making it well-suited for ankle flexion and extension movement monitoring and efficient
force value detection. The selected pressure sensor in this article has an accuracy of 0.01 N.
The circuit diagram of the pressure sensor is depicted in Figure 3.

Figure 3. Internal circuit diagram of pressure sensor.
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As shown in Figure 3, the pressure sensor primarily consists of a Wheatstone bridge.
When the output end of the bridge is connected to an infinite load resistance, the output end
can be considered as an open circuit. In this scenario, the DC bridge is referred to as a volt-
age bridge, exclusively providing voltage output. By disregarding the internal resistance of
the power supply, Formula (1) can be obtained from the principle of voltage division:

Uo = Ui(
R1

R1 + R4
− R2

R2 + R3
)

= Ui(
R − ∆R

R − ∆R + R + ∆R
− R + ∆R

R + ∆R + R − ∆R
)

= Ui(
R − ∆R

R − ∆R + R + ∆R
− R + ∆R

R + ∆R + R − ∆R
)

= εUi

(1)

In Formula (1), Uo represents the output voltage, Ui represents the input voltage, R
represents the resistance value of the resistance, ∆R represents the change in the resistance
value of the resistance strain gauge when the pressure sensor is under force, and ε represents
the sensitivity coefficient of the resistance strain gauge.

To ensure that force values during ankle flexion and extension movements, particularly
during extension movements, can be accurately applied to the pressure sensor, the monitor-
ing device was securely affixed to a wall. A foot was fastened to a non-elastic strap, which,
in turn, was linked to a spring. The other end of the spring was anchored to the pressure
sensor device. As a patient executed ankle flexion and extension movements, the ankle
compressed or stretched the spring, thereby compressing or pulling the pressure sensor.

The workflow diagram of the system is shown in Figure 4. Initially, the hardware
components, comprising a microcontroller, an HX711 A/D conversion module, an ESP8266
WiFi communication module, and a pressure sensor, were initialized. Upon receiving the
start command via the WiFi module, the STM32 microcontroller triggers the HX711 module
to gather electrical information produced by the pressure sensor. Simultaneously, the A/D
signal-conversion module collects the force value of the ankle joint flexion and extension
movements. The microcontroller then processes the pressure values corresponding to the
patient’s flexion movement, the pulling force during extension movement, and the effective
number of movements. Finally, the microcontroller utilizes the WiFi communication
module to upload the collected data to the server. The mobile app accesses these data
from the server’s cloud platform, enabling real-time monitoring of ankle joint flexion and
extension movements. Both users and medical staff can monitor and evaluate real-time
and historical data through the server or mobile app, facilitating timely adjustments for
enhanced recovery.

As shown in Figure 5, the directions of flexion and extension movements are exactly
opposite; thus, there are positive and negative values for the movement force. A positive
force value represents the direction of flexion movement, and a negative force value repre-
sents ankle joint extension movement. We set the effective number of flexion movements
as Dcount and the effective number of extension movements as Tcount. The maximum
force value for each user is not the same, and the user can first record the absolute value
of his/her maximum force value (because the force value is positive or negative) as a
threshold. In subsequent movements, when the absolute value of the force value is greater
than the threshold and the duration exceeds 10 s, the plantar flexion or back extension
movement is considered effective, and the corresponding number of effective times Dcount
is increased by 1. In contrast, if the absolute value of the movement force is less than the
set threshold or the duration of the movement does not meet the conditions, the value of
Dcount remains unchanged.
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Figure 4. Flow chart of ankle joint flexion and extension movement-monitoring system based on
pressure sensor.

(a) (b)

Figure 5. Schematic diagram of ankle joint flexion and extension movement. (a) flexion movement;
(b) extension movement.
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3. Experiment and Accuracy Analysis
3.1. Analysis of Extension Movement Accuracy

The extension movement involves hooking the foot upward with force, and the
pressure sensor is in a pulled state. To verify the accuracy of monitoring the back extension
movement, the force value of the back extension movement was simulated using a pulley
device. As shown in Figure 6, it included a bracket, fixed pulley, weight, string, and ankle
joint flexion and extension movement-monitoring device. The pulley was fixed to a bracket.
One end of the thin rope (without elasticity) was connected to a weight, and the other
end was connected to the monitoring device. Simultaneously, the device was fixed to a
desktop. To simulate the different force values of back extension movements, five weights
with different masses were used to complete the experiment. The weights were 100 g
(1 N), 200 g (2 N), 300 g (3 N), 400 g (4 N), and 500 g (5 N), respectively. Because of the
influence of its own weight, the weight will pull the string to move, thereby pulling the
spring and generating a pull force. Based on relevant physical knowledge, it can be seen
that the pull force applied to the monitoring device was equal to the mass of the weight.
Ten experiments were performed for each weight, and the relevant data were recorded.
The weight mass and force values of the monitoring device were used to calculate the
average and mean-squared errors, respectively. The results are summarized in Table 1.

Table 1. Experiment data and accuracy analysis of the extension force value.

Weight
Mass

First
Force
Value

(N)

Second
Force
Value

(N)

Third
Force
Value

(N)

Fourth
Force
Value

(N)

Fifth
Force
Value

(N)

Sixth
Force
Value

(N)

Seventh
Force
Value

(N)

Eighth
Force
Value

(N)

Ninth
Force
Value

(N)

Tenth
Force
Value

(N)

Average
Error
(N)

Average
Relative

Error
(%)

Mean-Squared
Error (N)

100 g (1 N) 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.001 0.1 1 × 10−5

200 g (2 N) 1.97 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.99 2.00 0.018 0.9 3.8 × 10−4

300 g (3 N) 3.03 3.04 3.01 3.00 3.01 3.00 3.00 3.00 3.00 2.99 0.01 0.27 2.8 × 10−4

400 g (4 N) 3.95 4.00 4.02 4.03 4.00 3.98 3.99 3.98 3.96 3.97 0.022 0.3 7.2 × 10−4

500 g (5 N) 4.97 4.96 5.01 4.99 5.02 4.97 5.00 4.97 5.00 5.05 0.023 0.12 7.5 × 10−4

Figure 6. Experimental device diagram for analyzing the monitoring accuracy of extension force value.

From Table 1, it can be seen that the monitoring accuracy of the extension movement
was high, with an average error of 0.023 N at the maximum and 0.001 N at the minimum.
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The maximum and minimum average relative errors were 0.9% and 0.1%, respectively.
The maximum and minimum mean-squared errors were 7.5 × 10−4 N and 1 × 10−5 N,
respectively. It could effectively monitor the force of the ankle joint extension movement.

3.2. Analysis of Flexion Movement Accuracy

The flexion movement occurs when force is applied to press down the toes, causing the
pressure sensor to be in a compressed state. Figure 7 illustrates the accuracy analysis of the
experimental setup, encompassing the bracket, a force gauge, weights, and the monitoring
device. The monitoring device was securely affixed to a desktop. However, when the
weight was directly pressed onto the spring, it tended to slip off. Consequently, the weight
was suspended from a force gauge attached to a bracket. The application of pressure force
to the spring and monitoring device was achieved by adjusting both the weight and the
force gauge, as depicted in Formula (2).

F = mg − F0 (2)

In Formula (2), m is the mass of the weight itself and g is the acceleration due to
gravity and has a value 10 m/s2. F0 represents the force exerted by the force gauge. In this
experiment, five weights with different masses were used: 200 g, 300 g, 400 g, 500 g,
and 1 kg. Ten experiments were performed for each weight, and the relevant data were
recorded. The ith pressure value Fi (i = 1, 2, 3..., 10) measured by the monitoring device
and the actual pressure F were used to calculate the average and mean-squared errors.
The results are summarized in Table 2. The range of the force gauge was 10 N; the resolution
was 0.01 N; the accuracy was ±0.05 N.

Figure 7. Experimental device diagram for analyzing the monitoring accuracy of flexion force value.
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Table 2. The experiment data and accuracy analysis of the flexion force value.

Weight Mass
Force

Value F0
(N)

Actual
Pressure

F (N)

Pressure
Value F1

(N)

Pressure
Value F2

(N)

Pressure
Value F3

(N)

Pressure
Value F4

(N)

Pressure
Value F5

(N)

Pressure
Value F6

(N)

Pressure
Value F7

(N)

Pressure
Value F8

(N)

Pressure
Value F9

(N)

Pressure
Value F10

(N)

Average
Error (N)

Average
Relative

Error
(%)

Mean Square Error (N)

200 g (2 N) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 0.002 0.2 2 × 10−5

300 g (3 N) 1.00 2.00 1.99 1.99 1.99 1.99 2.00 2.00 2.00 2.00 2.00 2.00 0.004 0.2 4 × 10−4

400 g (4 N) 1.00 3.00 3.01 3.08 3.11 3.06 3.04 3.03 3.03 3.02 3.01 3.00 0.039 1.3 2.61 × 10−3

500 g (5 N) 1.00 4.00 4.07 4.07 4.07 4.07 4.07 4.06 4.07 4.07 4.07 4.07 0.068 1.7 4.64 × 10−3

1 kg (10 N) 5.00 5.00 5.04 5.05 5.02 5.06 5.08 5.05 5.05 5.05 5.04 5.05 0.049 0.98 2.61 × 10−3
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As shown in Table 2, the monitoring accuracy of the flexion movement was high,
with average maximum and minimum errors of 0.068 N and 0.002 N, respectively. The max-
imum and minimum average relative errors were 1.7% and 0.2%,respectively. The maxi-
mum and minimum mean-squared errors were 4.64 × 10−3 N and 2 × 10−5 N, respectively.
It could effectively monitor the force of the ankle joint flexion movement.

In summary, the device developed in this study can accurately monitor the force
values of the ankle joint flexion and extension movements.

The error analysis curve of the flexion and extension movement is shown in Figure 8.
The positive values denote flexion movement, while negative values represent extension
movement. The black curve signifies the average error; the red curve represents the average
relative error; the blue curve indicates the mean-squared error. As shown in Figure 8, for
flexion movements, the maximum average error, average relative error, and mean-squared
error were 0.068 N, 1.7%, and 4.64 × 10−3 N, respectively. The minimum average error,
average relative error, and mean-squared error were 0.002 N, 0.2%, and 2 × 10−5 N, re-
spectively. For extension movements, the maximum average error, average relative error,
and mean-squared error were 0.023 N, 0.9%, and 7.5 × 10−4 N, respectively, while the mini-
mum average error, average relative error, and mean-squared error were 0.001 N, 0.1%, and
1 × 10−5 N, respectively. The results indicated that the monitoring device had high accuracy
and could effectively monitor the force of the ankle flexion and extension movements.

Figure 8. Analysis curve for the accuracy of force values during flexion and extension movements.

3.3. Experimental Data Record of Ankle Joint Flexion and Extension Movement

As depicted in Figure 9, one side of the spring was affixed to the pressure sensor,
while the other side was connected to the foot. Subsequently, the flexion and extension
movements of the ankle joint were initiated. In the flexion movement, the sole of the foot
moved towards the outside of the body, compressing the spring and generating pressure.
Conversely, in the extension movement, the foot moved towards the inside of the body,
causing the spring to move in tandem. Since the opposite side of the spring was anchored
to the pressure sensor, the spring pulled the upper side of the pressure sensor, resulting in
the deformation and the generation of tensile force values. We set the threshold for both
flexion and extension movements to 2 N and record the maximum force values and the
corresponding effective numbers for 10 flexion and extension movements, respectively,
in Table 3.
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(a) (b)

Figure 9. Experimental diagram of ankle joint flexion and extension movement. (a) flexion movement;
(b) extension movement.

Table 3. Experimental data on ankle joint flexion and extension movements.

Number of Experiments The Maximum Force Value
of Flexion Movement (N)

The Maximum Force Value
of Extension Movement (N)

Effective Number of Flexion
Movements (Dcount)

Effective Number of
Extension Movements

(Tcount)

First 6.05 3.57 1 1
Second 5.83 3.65 2 2
Third 6.35 3.61 3 3

Fourth 6.31 3.78 4 4
Fifth 6.24 4.12 5 5
Sixth 6.13 4.03 6 6

Seventh 6.25 3.84 7 7
Eighth 6.33 3.89 8 8
Ninth 6.23 5.95 9 9
Tenth 5.95 3.95 10 10

From the experimental results in Table 3, we can see the maximum force value and
effective number of times generated during the flexion and extension movements. Among
the 10 effective flexion movements, the maximum effective force value was 6.35 N, while
the minimum effective force value was 5.83 N. The average effective force value for these
10 flexion movements was 6.167 N. In the case of the 10 effective extension movements,
the maximum effective force value was 5.95 N, and the minimum effective force value was
3.57 N. The average effective force value for these 10 extension movements was 4.039 N.
Users can set thresholds based on their individual needs to monitor the ankle joint flexion
and extension movements. The device designed in this article can monitor a maximum force
value of 50 N and a minimum force value of 0.01 N. The experimental results demonstrated
that our proposed ankle joint flexion and extension movement-monitoring device, based
on pressure sensors, is effective at monitoring these movements.

4. Conclusions

Ankle joint flexion and extension movements are very important for the rehabilitation
of bedridden patients. In this study, a monitoring device for ankle joint flexion and
extension movements was designed, leveraging a pressure sensor to accurately measure
force values during these movements. The maximum and minimum average error values
for flexion movement were 0.068 N and 0.0001 N, respectively. The maximum and minimum
mean-squared error values were 2.61 × 10−3 N and 2 × 10−5 N, respectively. For monitoring
extension movement, the average error was 0.023 N and 0.0001 N within different force
ranges. The maximum and minimum mean square deviation values were 7.5 × 10−4 N and
1 × 10−5 N, respectively. These results indicated that the device satisfied the conditions
for effectively monitoring the ankle flexion and extension movements. Furthermore, this
device had the capability to count the effective number of ankle joint flexion and extension
movements and transmit the data to mobile applications, establishing it as an effective
ankle flexion and extension monitoring device. In the future, the monitoring system can be
integrated with rehabilitation devices, including the incorporation of load-bearing modules
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to enhance users’ performance in rehabilitation training. Additionally, an attitude sensor
can be incorporated into the monitoring system. This enhancement would enable the
simultaneous measurement of both the force and attitude angle during ankle joint flexion
and extension movements, thereby achieving a more-comprehensive monitoring capability.
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