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Abstract: This article presents a transmitter (TX) front-end operating at frequencies covering 40–50 GHz,
including a differential quadrature mixer with integrated amplitude and phase imbalance tuning,
a power amplifier, and a detection mixer (DM) that supports local oscillator (LO) leakage signal or
image signal calibration. Benefiting from the amplitude and phase imbalance tuning network of the
in-phase quadrature (IQ) signal generator at the LO input, the TX exhibits more than 30 dBc image
signal rejection over the full frequency band without any post-calibration. Based on the LO leakage
signal fed back by the DM integrated at the RF output, the LO leakage of the TX has been improved
by more than 10 dB through the LO leakage calibration module integrated in the quadrature mixer.
When the intermediate frequency (IF) signal is fixed at 1 GHz, the TX’s 1 dB compressed output
power (OP1 dB) is higher than 13.5 dBm over the operating band. Thanks to the LO leakage signal
calibration unit and the IQ signal generator, the TX is compliant with the error vector magnitude
(EVM) requirement of the IEEE 802.11aj standard up to the 64-quadrature amplitude modulation
(QAM) operating mode.

Keywords: detection mixer; front-end; LO leakage calibration; SiGe; TX

1. Introduction

The main ways to increase the communication rate are to increase the modulation
order or adopt a wider channel bandwidth. Due to the limited spectrum resources in the
microwave frequency band, in order to improve the communication rate, it is necessary to
use a higher modulation order to improve the spectrum utilization, but it is still difficult to
achieve a data rate of tens of Gbps [1–5]. Therefore, facing the development requirements
of high-speed wireless communication in the future, it is inevitable to develop millimeter
wave frequency bands with abundant spectrum resources [6–8]. Traditional millimeter
wave discrete devices are expensive and have large board-level interconnect losses between
devices. The independent design, discrete implementation and mechanical assembly of
millimeter wave functional modules can no longer meet the requirements of future mobile
communication systems for cost, power consumption and integration. Therefore, the study
of a silicon-based highly integrated RF front-end is the key to future millimeter wave
wireless communication systems.

However, in terms of system implementation and application, millimeter wave fre-
quency bands face some inherent difficulties. First, the path loss of free space propagation
increases exponentially with the increase in frequency, and secondly, atmospheric and
rainwater attenuation are frequency selective, even if there is an atmospheric window
at some frequency points, but the overall attenuation trend is positively correlated with
frequency [9]. This makes wireless signal transmission in millimeter wave bands require
higher output power or effective isotropic radiated power (EIRP) to combat spatial loss.
Limited by the bias voltage of the silicon-based process, considering the system’s heat
dissipation and DC-to-RF conversion efficiency, even if the technical scheme of on-chip

Micromachines 2023, 14, 2105. https://doi.org/10.3390/mi14112105 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14112105
https://doi.org/10.3390/mi14112105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-1214-0564
https://doi.org/10.3390/mi14112105
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14112105?type=check_update&version=1


Micromachines 2023, 14, 2105 2 of 13

multiplexed power synthesis is adopted, the linear output power of a single radio frequency
(RF) channel in the millimeter wave band is limited, and it is still less than 20 dBm within
50 GHz. An effective solution is to use a phased array architecture with multichannel
spatial power synthesis to effectively boost the EIRP of the transmitter [10–12]. In order to
perform spatial synthesis efficiently, it is necessary to integrate amplitude and phase tuning
units on each channel for analog multi-beam architecture, and the complexity and chip
size are usually large. For all-digital multi-beam architectures, RF front-ends typically do
not need to integrate a phase-shifter and variable gain amplifier with large size and power
consumption, because amplitude and phase tuning are completed at the baseband [3].

Zero-IF transmitters are widely used in the design of millimeter wave transceivers due
to their strong anti-interference ability, large bandwidth, and ability to cope with diversified
scene requirements [13,14]. Although zero-IF TXs simplify the architecture of the system,
implementing a zero-IF RF front-end presents the problem of insufficient suppression of
image signals and LO leakage signals, especially when the operating frequency rises to the
millimeter wave band. When the image frequency signal and LO leakage signal are poorly
suppressed, the modulation order that the RF front-end can support will be reduced, which
will greatly affect the transmission data rate that the TX can support.

In this work, we present an RF front-end with a zero-IF architecture. In the IQ signal
generator in the quadrature mixer, the introduction of amplitude and phase imbalance
tuning networks ensures good amplitude-phase balance of the IQ signal in the 40–50 band,
and it effectively improves the suppression of the image signal of the zero-IF TX. In addition,
for the LO leakage signal in the zero-IF TX, based on the LO power level fed back by the RF
output detection mixer, the tail current source integrated in the quadrature mixer is tuned,
which greatly improves the LO leakage signal suppression of the TX. Benefiting from the
designed image signal and LO leakage signal calibration unit, the suppression of the LO
leakage signal and image signal of the zero-IF TX in the working frequency band exceeds
30 dBc without integrating a phase shifter and variable gain amplifier, which are sufficient
to support QAM-64 modulation of the IEEE 802.11aj standard [7], and the supported
transmission data rate can exceed 30 Gbps. This miniaturized zero-IF RF front-end without
an integrated phase shifter and variable gain amplifier offers significant advantages in an
all-digital multi-beam phased array architecture.

This paper is organized as follows. In Section 2, we will introduce the architecture of
the front-end. The circuits design methodology are presented in Section 3. The measure-
ment results are provided in Section 4. Finally, conclusions are drawn in Section 5.

2. Architecture of the Front-End

Figure 1 shows the system block diagram of the zero-IF TX, including a differential
quadrature mixer that supports image signal tuning, an on-chip power synthesizer, a
power amplifier, an RF coupler, and a detection mixer. The single-ended LO input signal is
converted into a differential IQ signal by an on-chip IQ signal generator, which serves as
the LO input signal of the image-suppressed quadrature mixer. Based on the traditional IQ
signal generator, an on-chip amplitude and phase tuning network is introduced to ensure
the balance of IQ signals in the 40–50 frequency band. The differential outputs of the two
mixers are first converted to a single-ended signal by the on-chip transformer balun, and
then the upper sideband is extracted by the on-chip power synthesizer. The output of the
quadrature image rejection mixer is connected to an on-chip power amplifier to effectively
increase the output power of the TX. An on-chip passive coupler is connected between the
output of the power amplifier and the RF output PAD with a coupling degree of about 15.
The coupling port of the coupler is connected to a detection mixer, and by mixing the RF
output signal with the image frequency signal or the LO leakage signal, the amplitude of
the image frequency signal or the LO leakage signal can be judged by the IF signal obtained
by down-conversion. The calibration of the LO leakage can be completed by using the IF
output information of the detection mixer combined with the tunable tail current source in
the quadrature mixer.
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Figure 1. Block diagram of the 40–50 GHz front-end.

3. Circuit Design Methodology

In this part, we will introduce the design methodology of the 40–50 GHz TX front-end,
including the consideration of each block, and then present the design methodology of key
building blocks.

3.1. Detection Mixer

The circuit schematic of the detection mixer is shown in Figure 2. The input of the
detection mixer is connected to the coupling port of the coupler, and the input signal mainly
includes RF signal VRF coswRFt, LO leakage signal VLO coswLOt and image frequency VIM
coswIMt signal. The input impedance matching network of the detection mixer consists
of a wideband T-network consisting of two series capacitors C1, C2 and an inductor L1
connected in parallel to RF ground. Transistor Q1 with a common collector structure is
used as the detection mixing core [15]. Signals VRF coswRFt, VLO coswLOt, and VIM coswIMt
are injected through the base of the mixing core. Transistor Q2 and transistor Q1 form
a symmetrical structure, and the base of transistor Q2 is in a suspended state, which is
mainly used to improve the robustness of RF performance of transistor Q1 with changes
in temperature, voltage, process angle, etc. [16,17]. The IF signal of the detection mixer is
AC-coupled through the emitter of transistor Q1,2. For this zero-IF TX, the image signal
power at the RF output is much smaller than the LO leakage signal due to the image
rejection considered in the design of the differential quadrature mixer. Therefore, this
detection mixer is mainly used to complete the calibration of the LO leakage signal.
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For RF signal VRF coswRFt and LO leakage signal VLO coswLOt at the input of the
detection mixer, the amplitude of the RF signal is much higher than the amplitude of the
LO leakage signal due to the quadrature image suppression mixing architecture, that is

VRF � VLO (1)

For the detection mixer core shown in Figure 2, let

vRF(t) = VRFcoswRFt (2)

vLO(t) = VLOcoswLOt (3)

when condition (1) is met, transistor Q1 operates in a linear time varying state, and the
current flowing through transistor Q1′s emitter is

iE = f (VB + vRF + vLO) (4)

Expression (1) is expanded by the Taylor series, which further yields

iE ≈ f (VB + vRF) + f ′(VB + vRF)vLO (5)

iE(t) ≈ IE(wRFt) + gE(wRFt)vLO(t) (6)

where IE(wRFt) and gE(wRFt) are periodic functions of the frequency wRF of the RF sig-
nal; then, the emitter current iE of transistor Q1 contains the component with frequency
mwRF ± nwLO. Among the frequency components, the amplitude of the signal with fre-
quency wRF − wLO is the dominant component. Based on the above theory, the detection
mixer completes the spectrum shift of the LO leakage signal and RF signal in the output
signal, that is, the down-mixing function.

Figure 3 shows the simulation results of the detection mixer, the horizontal axis is
the power of the LO leakage (or image) signal, and the vertical axis is the power of the IF
signal obtained by mixing the RF signal and the LO leakage (or image) signal. When the IF
frequency is lower than 5 GHz, the conversion gain (refers to the power ratio of the power
of the IF signal output from the detection mixer to the power of the input LO leakage/image
signal) of the detection mixer is about −5 dB. It can be seen from the simulation results that
the power of the IF signal output by the detection mixer is linear with the power of the LO
leakage (or image) signal. Therefore, we can judge the power of the LO leakage signal by
the IF output power of the detection mixer. Furthermore, the calibration of the LO leakage
signal is completed in combination with the tunable tail current source integrated in the
quadrature mixer. The tail current source of the mixer is dynamically adjusted based on the
amplitude information of the LO leakage signal, so that the amplitude of the LO leakage
signal reaches the minimum value. At this point, the state of the tail current source of the
mixer is the state when the LO leakage signal calibration is completed.
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3.2. Differential Quadrature Mixer

The image rejection IQ mixer is the core component in the zero-IF TX front-end.
Figure 4 shows the system block diagram of the image-reject mixer, including a differential
IQ signal generation network, two differential mixers with tail current tuning for LO
leakage calibration, and a combiner for upper sideband spectrum selection [18].
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The architecture of the image rejection mixer requires four quadrature differential
signals (0◦, 90◦, 180◦, 270◦), and in order to achieve better image rejection performance, it is
necessary to select an appropriate passive circuit to generate differential quadrature signals
with better amplitude and phase balance. In order to obtain better amplitude and phase
balance in the 40–50 GHz band, an IQ signal generator based on the Lange coupler and
transformer balun is used as shown in Figure 5. Unlike our previous reported structures [1],
an amplitude and phase balance tuning network between the coupler and balun is adopted,
consisting of a series of MIM capacitors, parallel tuned inductors, and an intersecting
capacitor. The introduction of the amplitude-phase tuning network greatly improves the
amplitude and phase balance characteristics of the IQ generator, and it further effectively
improves the image frequency suppression characteristics of the quadrature mixer. The
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simulated amplitude and phase balance performance of the IQ signal generator are shown
in Figure 6; in the 40–50 GHz band, we can see that the amplitude difference between the
output ports is less than 1 dB, and the phase difference is within 3 degrees. In addition,
within the operating frequency band of the IQ signal generator, the S11 at the input port is
better than −15 dB. Since the Lange coupler, transformer balun, and tuning network are
all passive devices, after electromagnetic simulation verification, the amplitude and phase
balance of the I and Q paths are relatively stable.
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The Gilbert cell as depicted in Figure 7 is adopted as the mixing core, and an image-
suppressed up-converter consisting of two Gilbert mixers is shown in Figure 3. Gilbert
mixers based on a double-balanced structure can achieve good isolation of LO and RF
signals, and they have higher conversion gain than single-balanced and passive topologies.
The transistors in the mixing core use the dual base and dual collector structure provided
in the process to improve the symmetry of the transistor. Unlike traditional active Gilbert
mixing cores, this mixing core does not use an active transconductance stage and consists
of resistors [19]. The advantage of such a design is that a tunable tail current source can be
easily integrated to complete the calibration of the LO leakage of the mixer. The 3D view
of the mixing core is shown in Figure 8 with local oscillators and RF signals isolated by a
ground wall of metal and via arrays. This effectively improves the isolation between the
LO and the RF signal of the mixer [20].
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The final stage of the IQ mixer uses an on-chip power synthesizer to extract the upper
sideband signal. The 3D view of the power combiner is illustrated in Figure 9, and the
transmission line is composed of grounded coplanar waveguide (GCPW) transmission
lines. The GCPW transmission line is surrounded by RF ground walls on both sides, which
can effectively reduce the coupling between adjacent circuits. The simulation results show
that in the 40–50 GHz band, the insertion loss of the power combiner is less than 1 dB, and
the reflection coefficient of each port is better than −14 dB, as illustrated in Figure 10.
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3.3. Power Amplifier

As shown in the block diagram of Figure 1, the image rejection mixer is followed by
a power amplifier, which is mainly used to increase the output power and transmission
distance of the TX. The schematic of the power amplifier is shown in Figure 11, consisting
of a two-stage differential cascode structure, and the input, output, and intermediate stage
matching networks are based on transformers. Due to the limited output power of the
image rejection mixers, in order to deliver more than 15 dBm output power, the power
amplifier needs to provide a small signal gain close to 20 dB.
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Figure 11. Schematic of the power amplifier.

In the design of the cascode core, we introduce two gain-boosting grounded capacitors
(C4, C6) as shown in Figure 11 in the common-base transistors [5]. RF ground capacitors in
silicon-based processes are mainly composed of metal–insulator–metal (MIM) capacitors or
metal–oxide–metal (MOM) capacitors. The metal layer and MIM capacitor of the process
used is shown in Figure 12a,b. Limited by the design rules of the process, when using MIM
capacitors for gain-boosting, the base of the common-base transistor must first be connected
to the top metal level AM and then connected to RF ground through the MIM capacitor.
However, the connection inductor shown in Figure 12d had to be introduced across the
MIM capacitor, which greatly reduced the Q value of the MIM capacitor. Therefore, the
grounded MOM capacitor shown in Figure 12e is used in the design. The MOM capacitor
consists of metal layers M1, M2, and MQ in the form of stacked interleaved capacitors, and
the capacitor is next to the base of the common-base transistor. As shown in Figure 13, com-
pared with MOM capacitors and MIM capacitors in the 40–50 GHz band, the capacitance
value fluctuation range and figure of merit characteristics are significantly improved.
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Figure 12. (a) Cross-sectional view of the metal layer of the process, (b) 3D layout of the MIM
capacitor, (c) connection of the grounded MIM capacitor for gain boosting, (d) equivalent of the
connection of MIM capacitor, (e) connection of the grounded MOM capacitor for gain boosting.
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4. Experimental Results

The RF front-end is implemented using a 130 nm SiGe BiCMOS process; Figure 14
shows the chip micrograph. The RF front-end including RF and DC PADs consumes a
chip size of only 1.15 × 1.5 mm2, and the transmitter is biased at 3.3 V power supply. The
performance of the chip is performed using a probe station, including an output power
1 dB compression point, amplitude of LO leakage and image signals, and 5 G new radio
(NR) signal measurement. The measurement setup of the chip is shown in Figure 15, which
mainly includes an output power test and output spectrum test. The IQ IF signals are
loaded by an arbitrary waveform generator through the coaxial line to the IF input ports of
the chip, and the LO signal is loaded to the LO port through a vector signal source. When
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performing an output power measurement, a power meter is connected to the RF output
for testing. The RF output spectrum is measured by a spectrum analyzer.
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Figure 16 shows the measured output power 1 dB compression point of the RF front-
end with the variation of LO frequency, where the IF frequency is fixed at 1 GHz. The RF
output power 1 dB compression point fluctuation in the 40–50 GHz frequency band is less
than 2 dB, and the output power is higher than 13.5 dBm. The measured maximum output
power 1 dB compression point of the transmitter is about 15.8 dBm at 45 GHz, because the
transmitter is designed for the IEEE 802.11aj communication standard, which is defined for
communication applications in the 42.3–48.4 GHz frequency band with a center frequency
of around 45 GHz.

This RF front-end is intended for zero-IF applications, where a poor suppression of
LO leakage signals and image signals will greatly deteriorate the modulation performance
of the TX. For the image frequency signal, the amplitude and phase tuning network intro-
duced in the IQ signal generator is used to improve the image frequency signal suppression
performance of the TX. For the LO leakage signal, the LO signal information detected by the
detection mixer is combined with the tunable tail current source integrated in the quadra-
ture mixer to improve the suppression performance of the LO leakage signal. Figure 17
shows the amplitude values of the image frequency signal and the LO leakage signal
measured at the RF output after calibration. After calibration, the amplitude values of the
image frequency and LO leakage signal are about −20 dBm. Combining Figures 16 and 17,
both the image frequency signal and LO leakage signal suppression of the transmitter
exceed 30 dBc. In particular, the amplitude of the LO leakage signal drops by nearly 10 dB,
owing to the integration of the detection mixer at the RF output. Combining Figures 16–18,
it can be deduced that in the 40–50 GHz frequency band, the suppression of the LO leakage
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signal and the suppression of the image frequency signal of the RF output port all exceed
30 dBc.
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5. Conclusions

Based on a 130 nm SiGe BiCMOS process, this article introduces a zero-IF RF front-end
with operating frequencies covering 40–50 GHz. By introducing amplitude and phase
tuning networks into the IQ signal generator in the quadrature mixer, the image signal can
be calibrated so that the image signal rejection exceeds 30 dBc over the full frequency band.
Based on the detection mixer integrated at the RF front-end and the tunable tail current
source in the quadrature mixer, this TX enables calibration of the LO leakage signal. After
calibration, the TX can suppress the LO leakage signal in the full frequency band by more
than 30 dBc.
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