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Abstract: This study has designed and developed a smart data glove based on five-channel flexible
capacitive stretch sensors and a six-axis inertial measurement unit (IMU) to recognize 25 static hand
gestures and ten dynamic hand gestures for amphibious communication. The five-channel flexible
capacitive sensors are fabricated on a glove to capture finger motion data in order to recognize static
hand gestures and integrated with six-axis IMU data to recognize dynamic gestures. This study
also proposes a novel amphibious hierarchical gesture recognition (AHGR) model. This model can
adaptively switch between large complex and lightweight gesture recognition models based on
environmental changes to ensure gesture recognition accuracy and effectiveness. The large complex
model is based on the proposed SqueezeNet-BiLSTM algorithm, specially designed for the land
environment, which will use all the sensory data captured from the smart data glove to recognize
dynamic gestures, achieving a recognition accuracy of 98.21%. The lightweight stochastic singular
value decomposition (SVD)-optimized spectral clustering gesture recognition algorithm for under-
water environments that will perform direct inference on the glove-end side can reach an accuracy
of 98.35%. This study also proposes a domain separation network (DSN)-based gesture recognition
transfer model that ensures a 94% recognition accuracy for new users and new glove devices.

Keywords: hand gesture recognition; smart data glove; underwater gesture recognition; amphibious
communication; deep learning; transfer learning

1. Introduction

With the continuous development of wearable sensor technology, human–computer
interaction (HCI) has become an important research area in computer science. As an
essential branch of HCI, gesture recognition technology can be applied to various fields,
such as smart homes [1], intelligent driving [2], sign language recognition [3], virtual
reality [4], and drone control [5]. With the continuous improvements in gesture recognition
technology, this technology can also be used in amphibious environments to complete
some tasks, such as communication with divers and underwater operations [6].

Although traditional vision-based gesture recognition technology has matured, it has
significant limitations in underwater environments [7,8]. The cost of underwater cameras is
high, the underwater shooting environment is complex, and it is very easy to be disturbed
by water flow, water bubbles, etc., which hinder the line of sight and make shooting
difficult. Sensor-based gesture recognition technology has become popular for underwater
gesture recognition because of its lower cost and higher stability (not easily affected by
the underwater environment). It has become a research area that many researchers are
interested in. However, sensor-based gesture recognition technologies still face many
challenges in amphibious environments.
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First, the environment could affect the sensors, leading to some discrepancies between
the gesture data collected on land and underwater. In the underwater environment, factors
such as water pressure, water flow, and water quality will affect the sensors, affecting the
accuracy and integrity of data collection. Secondly, people will feel more resistance and
pressure due to the increased water depth, resulting in slow or non-standard gestures.
Thirdly, there needs to be more accuracy when using a pretrained recognition model to
perform cross-user and cross-device gesture recognition. Fourthly, Bluetooth signals cannot
transmit underwater, and how to collect data and recognize real-time gestures underwater
is also a problem that needs to be solved. Finally, although several existing data gloves
are used for gesture recognition, none are used for amphibious environments. The above
challenges must be considered when designing and selecting a gesture recognition model
to ensure accuracy, robustness, and reliability.

This paper addresses the above research gaps by developing a smart data glove
integrating environmental sensors, five-channel capacitive flexible stretch sensors, and
six-axis IMU (three-axis accelerometer and three-axis gyroscope) and proposing a novel
hierarchical hand gesture recognition model. The proposed model introduces a novel
SqueezeNet-BiLSTM algorithm, a large complex recognition algorithm designed for land
gesture recognition, and another lightweight stochastic SVD-optimized algorithm designed
for underwater gesture recognition, which will be directly applied to the glove-end side.
Additionally, this study introduces the DSN-based transfer learning for gesture recognition
to ensure the recognition accuracy of new users and new glove devices. This paper makes
the following contributions:

• A new smart data glove integrating environmental sensors, five-channel capacitive
flexible stretch sensors, and six-axis IMU (three-axis accelerometer and three-axis
gyroscope).

• A novel amphibious hierarchical gesture recognition (AHGR) model that can adap-
tively switch the classification algorithm based on the environment (underwater and
land) between

# a complex SqueezeNet-BiLSTM classification algorithm for land gesture recog-
nition and

# a lightweight stochastic SVD-optimized spectral clustering classification algo-
rithm for underwater gesture recognition.

• A domain separation network (DSN)-based gesture recognition transfer model to
ensure the recognition accuracy of new users and new glove devices.

The rest of the paper is organized as follows: Section 2 provides a review of related
work. Section 3 introduces this study’s proposed smart data glove and predefined gesture
set. Section 4 describes the proposed amphibious hierarchical gesture recognition model.
Section 5 describes the proposed DSN-based gesture recognition transfer model. Section 6
presents the experimental results and analysis. Section 7 concludes this paper.

2. Related Work
2.1. Sensor-Based Gesture Recognition

Sensor-based gesture recognition can be roughly divided into the following four types:
surface electromyography (sEMG) signal-based gesture recognition, IMU-based gesture
recognition, stretch-sensor-based gesture recognition, and multi-sensor-based gesture recog-
nition.

sEMG usually records the combined effect of the electromyographic signal of the
surface muscle and the nerve trunk’s electrical activity on the skin’s surface. sEMG-based
gesture recognition usually relies on surface electrodes deployed on the human arm or
forearm to collect sensor signals [9–12]. However, sEMG-based gesture recognition also
has some drawbacks. Firstly, the signals correlate strongly with the user’s status, leading to
unstable recognition results. Secondly, the collection of sEMG signals requires the electrodes
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to be tightly attached to the user’s skin, and prolonged use is susceptible to the influence of
oils and sweat produced by the user’s skin and makes users uncomfortable.

IMU-based gesture recognition mainly uses one or more combinations of accelerome-
ters, gyroscopes, and magnetometers to collect hand movement information in the space
field [13]. Siddiqui and Chan [14] used the minimum redundancy and maximum correla-
tion algorithm to study the optimal deployment area of the sensor, deployed the sensor on
the user’s wrist, and proposed a multimodal framework to solve the IMU sensing during
the gesture movement bottleneck problem. Galka et al. [15] placed seven inertial sensors
on the experimenter’s upper arm, wrist, and finger joints, proposed and used a parallel
HMM model, and reached a recognition accuracy of 99.75%. However, inertial sensors still
have limitations, and they focus more on spatial dimension information, which is mainly
used for coarse-grained gesture recognition of large gesture movements. It is challenging
to perform finer-grained segmentation and recognition, such as recognition of the degree
of bending of finger joints.

Flexible stretch-sensor-based gesture recognition is usually used to record changes in
gesturing finger joints. Stretch sensors are often highly flexible, thinner, and more portable
than other sensors [16,17]. Therefore, in recent years, research on gesture recognition
technology based on stretch sensors has also received extensive attention from researchers.
However, the limitations of flexible stretch sensors are also evident. First, they can only
capture hand joint information but cannot capture the spatial motion characteristics of
gestures. Second, stretch sensors are usually sensitive, so they are more prone to damage,
and the data they generate are more prone to bias than those from other sensors.

Although the above three sensor-based gesture recognition methods can achieve
remarkable gesture recognition accuracy, they all have some limitations, because they
only use a single type of sensor. Multisensor gesture recognition can perfectly solve these
problems by fusing multisensor data, thereby improving the recognition accuracy and
recognizing more types of gestures. Plawiak et al. [16] used a DG5 VHand glove device,
which consists of five finger flexion sensors and IMU, to identify 22 dynamic gestures,
and the recognition accuracy rate reached 98.32%. Lu et al. [18] used the framework of
acceleration signal and surface electromyography signal fusion, proposed an algorithm
based on Bayesian and dynamic time warping (DTW), and realized a gesture recognition
system that can recognize 19 predefined gestures with a recognition accuracy rate of
95.0%. Gesture recognition with multisensor fusion can avoid the limitations of a single
sensor, learn from the strengths of multiple approaches, capture the characteristics of
each dimension of gestures from multiple angles, and improve the accuracy of gesture
recognition.

To date, all these studies are based on gesture recognition on land, and there is no
related research on sensor-based gesture recognition underwater. This paper aims to fill this
research gap by using a multi-sensor-based gesture recognition approach and developing
a new smart data glove that incorporates environmental sensors, five-channel capacitive
flexible stretch sensors, and a six-axis IMU (three-axis acceleration meter and three-axis
gyroscope) mounted on the back of the hand.

2.2. Sensor-Based Gesture Recognition Algorithm

Sensor-based gesture recognition algorithms are generally divided into the following
two types: traditional machine learning and deep learning.

Gesture recognition algorithms based on machine learning (ML) include DTW, support
vector machine (SVM), random forest (RF), K-means, and K-nearest neighbors [16,19–21].
These methods are widely applicable and adaptable to various types of complex gesture
data. At present, many researchers have conducted research on the improvement of related
algorithms in sensor-based gesture recognition. Although the ML-based gesture recognition
method is relatively simple to implement, the number of parameters generated is also
lower than that of neural networks, and the requirements for the computing equipment are
relatively low. However, with the increase in gesture types and gesture data sequences, the
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training data required for learning is also increasing. The accuracy and response time of
the recognition algorithm will also be affected to a certain extent.

The basic model of deep learning (DL)-based gesture recognition mainly includes
the convolutional neural network (CNN) [22], deep neural network (DNN) [23], and
recurrent neural network (RNN) methods [24]. The DL model has become the mainstream
classification method in gesture recognition due to its excellent performance, high efficiency
in extracting data features, and ability to process sequential data. Fang et al. [25] designed
a CNN-based SLRNet network to recognize sign language. This method used an inertial-
sensors-based data glove with 36 IMUs to collect a user’s arm and hand motion data, and
the accuracy can reach 99.2%. Faisal et al. [26] developed a low-cost data glove deployed
with flexible sensors and an IMU, and introduced a spatial projection method that improves
upon classic CNN models for gesture recognition. However, the accuracy of this method for
static gesture recognition is only 82.19%. Yu et al. [27] used a bidirectional gated recurrent
unit (Bi-GRU) network to recognize dynamic gestures, realize real-time recognition on the
end side (data glove), and reach a recognition accuracy of 98.4%. The limitation of this
approach is that it is not possible to only use the smart glove, but external IMUs must be
employed on the user’s arm, which can cause discomfort to the user.

The selected model needs to be determined according to the type of task, requirements,
and other factors. Due to the complex amphibious environment, the underwater and land
environments are different, and the interference to the sensor is entirely different. It is
difficult to transmit Bluetooth signals underwater, and it is difficult to send data to the host
wirelessly. Therefore, choosing a gesture recognition model suitable for the amphibious
environment is essential. This study addresses this gap by proposing a novel amphibious
hierarchical gesture recognition (AHGR) model that adaptively switches classification algo-
rithms according to environmental changes (underwater and land) to ensure recognition
accuracy in amphibious scenarios. In addition, it is also challenging to ensure accuracy
for cross-user and cross-device recognition using a pretrained DL model. Although some
studies on gesture recognition across users and in different environments has made some
progress [12], they were mainly focused on EMG-based gesture recognition, and there is
a lack of research on cross-user gesture recognition using data gloves based on stretch
sensors and IMUs. This study, then, introduces the transfer learning framework to the
recognition model and proposes a DSN-based gesture recognition transfer model to solve
this issue.

3. Smart Data Glove and Gesture Set

The following subsections describe in detail the proposed smart data gloves and the
predefined gesture set.

3.1. Smart Data Glove

The smart glove developed in this study is shown in Figure 1. As shown in Figure 1a,
the glove uses a five-channel flexible capacitive stretch sensor to collect the bending state
of five fingers. The main control module located on the back of the hand is equipped
with a Bluetooth communication module for wireless transmission of the collected gesture
data, a six-axis IMU (three-axis accelerometer and three-axis gyroscope) for collecting hand
spatial motion information, an environmental sensor for inferring the land and underwater
environment, a microcontroller to process the collected gesture data and perform some
simple computational tasks, and a battery to support electricity energy. The microcontroller
used in the smart data glove is the Esp32-S3-DevKitC-1 development board [28]. This
microcontroller is equipped with an ESP32-S3-WROOM-1 module, a general-purpose
Wi-Fi+ low-power Bluetooth MCU, which has rich peripheral interfaces, powerful neural
network computing and signal processing capabilities, and is specially designed for artificial
intelligence (AI) and Internet of Things (IoT) market creation. It is equipped with 384 KB of
ROM, 512 KB of SRAM, 16 KB of RTC SRAM, and a maximum of 8 MB of PSRAM to meet
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the experimental requirements. The detailed technical information of the proposed smart
data glove is shown in Table 1.
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Table 1. Detailed technical information of the proposed smart data glove.

Indicator Name Parameter

Stretch range 0–50%
Minimum trigger strain 0.05%
Response time 15 ms
Stretch fatigue >100,000 times
Data transmission Bluetooth wireless data transmission.
Data collection frequency 50 Hz
Microcontroller Esp32-S3-DevKitC-1

Battery capacity

500 mah (when we deploy the proposed lightweight model on the
glove side and conduct static gesture recognition and output
signals in real time via Bluetooth. Through experimental testing,
the battery power can last for 5–6 h.)

Battery type Lithium polymer battery
Environmental sensor Barometer Senor QMP6988
IMUs MPU6050 (3-axis accelerometer and gyroscope)

3.2. Gesture Set

In the sensor-based gesture recognition technology, according to the characteristics of
the stretch sensor and IMU loaded on the data glove, gestures can be divided into dynamic
and static gestures according to the characteristics of the activity.

Static gestures are defined by the finger bending status. Since there are some difficult-
to-operate gestures, some gestures were discarded, and 25 gestures were finally defined, as
shown in Figure 2.

Dynamic gestures combine finger bending information (static gesture) with hand
motion trajectories to characterize gesture types. We use the signal fluctuation of the motion
sensor to distinguish the dynamic and static gestures. At the same time, the definition
of the dynamic gesture set refers to the existing gesture sets, such as the sign language
gesture set used by deaf–mute patients, and based on the distinguishability, operability,
and understandability of the gesture design, 10 dynamic gestures are predefined, as shown
in Figure 3.
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In the face of different task environments, the gestures’ meanings may differ. Therefore,
this research does not assign specific meanings to static and dynamic gestures. It only
describes them with serial numbers, where static gestures are assigned with serials from
0–24 and dynamic gestures with 0–9. Thus, users can assign meaning to gestures when
dealing with different tasks. In the underwater environment, due to the influence of
the water resistance and air pressure, the IMU data will be affected to a certain extent,
resulting in data distortion. In contrast, stretch sensor data are very slightly affected by
the environment. Secondly, users are easily affected by environmental factors such as the
water flow, resulting in movement deviation and incomplete and non-standard gestures.
This makes the data collected via IMU vary greatly for the same gesture, making training
and testing difficult. Static gestures are less affected by the environment, and they can still
be made accurately in an underwater environment. Finally, Bluetooth data are difficult
to transmit underwater to the host, and underwater gestures must be recognized on the
glove side. Static gesture recognition adopts a lightweight model that can be deployed on a
microprocessor with limited computing power, so that static gestures can be recognized
directly on the glove side. Based on the consideration of these factors, this study uses static
gestures for underwater gesture recognition. The ground environment supports static and
dynamic gesture recognition.
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4. Amphibious Hierarchical Gesture Recognition Model

Due to the differences between underwater and land environments, this study pro-
poses the AHGR model for gesture recognition in amphibious environments with a hierar-
chical structure. This section describes the details of the proposed AHGR model, including
the hierarchical gesture recognition flow, the lightweight stochastic SVD-optimized spectral
clustering algorithm for underwater gesture recognition, and the complex SqueezeNet-
BiLSTM algorithm for land gesture recognition.

4.1. Hierarchical Gesture Recognition Flow

Affected by the underwater environment, it is difficult for users to make precise
dynamic gestures underwater. The IMU signal will be greatly disturbed underwater,
affected by water pressure, resistance, water flow, etc. Static gestures have no complex
spatial motion, relying only on stretch sensor data to represent the gesture state information.
Additionally, stretch sensors are less affected by the underwater environment. Thus,
underwater gesture recognition only considers static gesture recognition using stretch
sensor data. And since gesture recognition needs to be performed directly on the glove
end in an underwater environment, choosing a recognition algorithm model with less
recognition latency and less computing power requirements is necessary to ensure adequate
gesture recognition performance in an underwater environment. Therefore, this study
proposes a lightweight stochastic SVD-optimized spectral clustering algorithm to recognize
underwater static gestures.

In the land environment, both static and dynamic gesture recognition are relatively
easy to implement and acquire. There are still some challenges regarding dynamic gesture
recognition on land. Although there is no interference from the water environment, the
user will inevitably tremble to a certain extent when making gestures, which will cause
fluctuations in sensor (IMUs) data and affect the recognition accuracy. The dynamic
gesture recognition problem is a placement-independent problem with strong temporal
characteristics, and a model capable of deep feature extraction in temporal and spatial
dimensions is required. Thus, this study adopts the method of multisensor data fusion and
proposes a complex SqueezeNet-BiLSTM algorithm for dynamic gesture recognition on
land to ensure the effectiveness, robustness, and accuracy of the recognition results.

As shown in Figure 4, the detailed amphibious gesture recognition process of the
AHGR model is as follows: The AHGR model first determines the recognition environment
based on environmental sensors. The environmental sensor used in the AHGR model is a
barometer sensor. According to the principles of hydrostatic pressure, when the air pressure
sensor value is greater than the local standard atmospheric pressure plus 0.98 kpa (water
depth is greater than 0.1 m), the current environment is underwater; otherwise, it is judged
to be a land environment. If it is underwater, the AHGR model will switch to underwater
gesture recognition and use the proposed lightweight stochastic SVD-optimized spectral
clustering algorithm to recognize static gestures on the glove side. If it is on land, the
AHGR model will first switch to land gesture recognition and determine the dynamic
and static gestures through the fluctuations in the IMU data. If it is a static gesture, the
land gesture recognition will directly output the result of the static gesture recognized
using the lightweight stochastic SVD-optimized spectral clustering algorithm. If it is a
dynamic gesture, land gesture recognition will use the SqueezeNet-BiLSTM algorithm to
recognize dynamic gestures using multisensor data and encoded static gesture recognition
results. The recognition results can be used to interact with or control devices in the
IoT environment.
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4.2. Stochastic SVD-Optimized Spectral Clustering Algorithm

The spectral clustering algorithm is an algorithm evolved from graph theory [29].
Its main idea is to regard all data as points in the space, connect them with edges in
the graph, calculate the weight by calculating the distance from the point to the edge,
and finally realize clustering according to the weight. Although the spectral clustering
algorithm can complete the clustering of high-dimensional data, the spectral clustering
algorithm relies too heavily on the Laplacian matrix to complete the eigen decomposition.
The calculation process requires extremely high space complexity and time complexity, and
with the increase in data volume, the complexity also increases exponentially, seriously
affecting the practical applications. Therefore, this study introduces the stochastic SVD [30]
algorithm to accelerate the spectral clustering algorithm and reduce the computational cost.

SVD is a matrix decomposition method widely used in pattern recognition to reduce
dimensions and solve ranks. The main process is to establish the connection between the
large matrix and the small matrix and estimate the SVD result of the large matrix through
the SVD decomposition result of the small matrix. This study considers using a stochastic
SVD [31] algorithm. In this algorithm, an orthogonal matrix is established first and used as
an orthogonal basis for the low-rank estimation of the original matrix. At the same time, the
original matrix is projected to the subspace, the matrix formed in the subspace is subjected
to SVD, and the decomposition result is mapped back to the original space. The detailed
process is as follows:

Let the original matrix be W ∈ Rn×n. First, select a standard Gaussian random
matrix Ω of n× (k + p), where k is the dimension of the low-rank estimate, and p is the
oversampling parameter, so that the rank of the random subspace is slightly larger than k.
Let Z = WΩ, and then find an orthogonal matrix QεRn×k through QR decomposition to
let Z = QQTZ. Map the original matrix W to the subspace with Q as the orthogonal basis,
and obtain

B = QTWQ, (1)

For the SVD decomposition of B, obtain

B = VMVT , (2)

Then, the k-rank estimation of the original matrix W is obtained as

W ≈ QBQT = QVMVTQT , (3)

Therefore, the estimated eigenvector of W is U = QV. The stochastic SVD algorithm
avoids direct SVD decomposition of large matrices by mapping high-dimensional matrices
to low-dimensional subspaces. Hence, the information on the original matrix is almost
completely preserved. The stochastic SVD-optimized spectral clustering algorithm is shown
below as Algorithm 1.
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Algorithm 1: SVD-optimized spectral clustering

Input: X = {x1, x2, . . . , xn}, xi ∈ RN

Output: Clustering result of x1, x2, . . . , xn

for i, j = 1, . . ., n:

s
(

xi, xj

)
← exp

(
∗−d(xi ,xj)

2

2σ2

)
Aij = s

(
xi, xj

)
end
[u, s, v] = Randomized_SVD(A)
# u, v is the left and right singular vector matrix of A
# s is the singular value matrix of A, s = diag(σ1, σ2, . . . , σn,)
U← {u1, u2, . . . , ul} ∈ Rn×l , where ui is the i-th vector of u
yi ∈ Rl , i = 1, 2, . . . , n is the i-th row vector of matrix U
C1, C2, . . . , Ck ← Kmeans(yi)
Create mapping xi ∈ RN ` yi ∈ Rl , i = 1, 2, . . . , n
Output the clustering results of x1, x2, . . . , xn

4.3. SqueezeNet-BiLSTM Algorithm

The proposed SqueezeNet-BiLSTM gesture classification algorithm first uses the
Tucker decomposition algorithm to reduce the dimensionality and extract features of
the preprocessed gesture data. After that, the SqueezeNet [32] network is used to extract in-
depth data features and combined with the Bi-LSTM [33] network to extract the time series
features of the gesture data to ensure the robustness of the gesture recognition model and
improve the recognition accuracy. Tucker [20] decomposition is a high-dimensional data
analysis method, especially suitable for dimensionality reduction and feature extraction of
multidimensional data. It decomposes higher-order tensors into products of core tensors
and some modality matrices. In this process, the dimensionality reduction of the data can
be achieved by retaining the principal components of the core tensor, thereby removing
irrelevant information and noise. The SqueezeNet [24] network adopts the idea of com-
pression and expansion. Compared with the traditional convolutional neural network, it
reduces the model parameters while ensuring the gesture recognition accuracy. A Bi-LSTM
network, through the stacking of two layers of LSTM structure, solves the limitation that
LSTM can only predict the output of the next moment based on the timing information of
the previous moment. It can better combine the context for output and more effectively
utilize the input gesture data’s forward and backward feature information. The structure
diagram of the proposed SqueezeNet-BiLSTM algorithm is shown in Figure 5.
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Figure 5. Structure diagram of SqueezeNet-BiLSTM algorithm.
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The gesture recognition process of the SqueezeNet-BiLSTM model is as follows: For
the gesture data collected by the smart data glove, the scale of the original sensor data is
adjusted to a uniform length through operations such as sliding window, filter processing,
standardization, normalization, data length normalization, and Turker decomposition [34].
The processed gesture feature data are input into the SqueezeNet network to obtain the
corresponding feature vector through the multilayer convolution module, fire module,
and maximum pooling layer, and then, the time series features are extracted from the
gesture data through the BiLSTM network, and finally through the SoftMax to complete
the gesture classification.

5. DSN-Based Gesture Recognition Transfer Model

During gesture recognition, the collected gesture data from the data gloves are subject
to variations due to different users and different data gloves, leading to discrepancies that
result in reduced recognition accuracy when incorporating new users or new data gloves
into the recognition system. Employing user-specific model training during recognition
requires substantial data from diverse users. While this approach may yield personal-
ized gesture recognition models tailored to the unique characteristics of each user, it can
potentially compromise the user experience for new users. Leveraging transfer learning
facilitates the adaptation of existing gesture recognition models to acquire the distinctive
gesture data features associated with new users and new data gloves. This approach
enables the preservation of the intrinsic gesture recognition domain features while con-
currently acquiring domain-specific features from the new context, thereby enhancing the
recognition efficiency of the source model when confronted with novel data. Therefore, this
study presents a novel DSN-based [35] gesture recognition transfer model, leveraging the
principles of transfer learning. By collecting a small but representative dataset from the new
domain, this model facilitates the transfer of the gesture recognition model, ensuring its
effectiveness in accurately recognizing new data and enhancing the overall user experience.

5.1. Domain Separation Networks

Considering the inherent differences in gesture data among various users and different
data gloves, it is acknowledged that the data space for gesture data is not entirely congruent.
However, it is observed that certain common features exist alongside the distinct character-
istics that are specific to each data domain. A transfer learning methodology utilizing DSN
is considered to address this. This approach aims to uncover shared feature representations
across users and data gloves while capturing domain-specific features simultaneously.
During the transfer process, the source domain’s private features are discarded, while the
shared features are preserved, thereby ensuring the successful migration of the model.

The main work of DSNs [35] is divided into two parts: extracting common features of
different domains and using common features for migration. The obtained DSN structure
is shown in Figure 6.

A DSN is a “Decoder-Encoder” structure, which can be divided into five parts:

1. Target Domain Private Encoder Et
P
(
Xt): Used to extract private features of the target

domain.
2. Source Domain Private Encoder Es

P(Xs): Used to extract private features of the source
domain.

3. Shared Encoder Ec(X): Used to extract the common features of the source and target
domains.

4. Shared Decoder D
(
Ec(X) + Ep(X)

)
: Used to decode samples composed of private

features and shared features.
5. Classifier G(Ec(Xs)): The source domain samples are classified during training,

and the classification is completed directly on the target domain when the training
is completed.
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Figure 6. DSN structure diagram.

The overall work of the DSN is based on the original gesture recognition model
structure, the model is used as an encoder, and the overall training goal is to minimize the
difference loss Ldi f f erence:

Ldi f f erence =
∥∥∥Hs

c
T Hs

p

∥∥∥2

F
+

∥∥∥Ht
c

T Ht
p

∥∥∥2

F
(4)

Ldi f f erence calculates the similarity between hs
c and hs

p and ht
c and ht

p. When hs
c = hs

p and
ht

c = ht
p, Ldi f f erence is the largest, and when hs

c and hs
p are orthogonal (that is, completely

different) and ht
c and ht

p are orthogonal, Ldi f f erence is the smallest. Therefore, the purpose of
completely separating hs

c from hs
p and ht

c from ht
p can be achieved by minimizing Ldi f f erence.

While ensuring that hs
c and hs

p and ht
c and ht

p are completely separated, it is necessary
to ensure that hs

c s and ht
c can be transferred, meaningthat it is necessary to improve the

similarity between the two, that is, to reduce the similarity loss Lsimilarity:

Lsimilarity =
1

(Ns)2

Ns

∑
i,j=0

k
(

hs
ci, hs

cj

)
− 1

NsNt

Ns ,Nt

∑
i,j=0

k
(

hs
ci, ht

cj

)
+

1

(Nt)2

Nt

∑
i,j=0

k
(

ht
ci, ht

cj

)
(5)

When the similarity loss Lsimilarity is the smallest, hs
c and ht

c can be made the most
similar or even become the same distribution. When the two distributions are similar, the
classifier that is effective on hs

c can also work on ht
c. While meeting the above conditions, it is

also necessary to complete the measurement of the source domain data and perform target
domain data assurance. Using the “encoder-decoder” structure, set the reconstruction loss
Lrecon:

Lsi_mse(x, x̂) =
1
k
‖x− x̂‖2

2 −
1
k2 ([x− x̂]·1k)

2 (6)

Lrecon = ∑Ns
i=1 Lsi_mse(xs

i , x̂s
i ) + ∑Nt

i=1 Lsi_mse
(
xt

i , x̂t
i
)

(7)

After extracting the shared features and their respective private features of the source
domain and target domain samples, it is still necessary to classify the samples and set the
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classifier loss function Ltask. After minimizing Lsimilarity, the distribution of the shared part
of the source domain and the target domain is approximated. The classifier is effective in
the common part of the source domain while ensuring that the common part of the target
domain is also effective. Therefore, it only needs to use the labeled source domain data to
train the classifier.

Ltask = −∑Ns
i=0 ys

i ·logŷs
i (8)

5.2. The Structure of the Gesture Recognition Model

According to the DSN structure and basic principles, and based on the gesture recog-
nition process, the small-sample gesture recognition transfer model proposed in this study
is shown in Figure 7.

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 24 
 

 

When the similarity loss 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 is the smallest, ℎ𝑐
𝑠 and ℎ𝑐

𝑡  can be made the most 

similar or even become the same distribution. When the two distributions are similar, the 

classifier that is effective on ℎ𝑐
𝑠 can also work on ℎ𝑐

𝑡 . While meeting the above conditions, 

it is also necessary to complete the measurement of the source domain data and perform 

target domain data assurance. Using the “encoder-decoder” structure, set the reconstruc-

tion loss 𝐿𝑟𝑒𝑐𝑜𝑛: 

𝐿𝑠𝑖_𝑚𝑠𝑒(𝑥, �̂�) =
1

𝑘
‖𝑥 − �̂�‖2

2 −
1

𝑘2
([𝑥 − �̂�] ∙ 1𝑘)2 (6) 

𝐿𝑟𝑒𝑐𝑜𝑛 = ∑ 𝐿𝑠𝑖_𝑚𝑠𝑒(𝑥𝑖
𝑠, �̂�𝑖

𝑠)
𝑁𝑠
𝑖=1 + ∑ 𝐿𝑠𝑖_𝑚𝑠𝑒(𝑥𝑖

𝑡 , �̂�𝑖
𝑡)

𝑁𝑡
𝑖=1   (7) 

After extracting the shared features and their respective private features of the source 

domain and target domain samples, it is still necessary to classify the samples and set the 

classifier loss function 𝐿𝑡ask. After minimizing 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, the distribution of the shared 

part of the source domain and the target domain is approximated. The classifier is effective 

in the common part of the source domain while ensuring that the common part of the 

target domain is also effective. Therefore, it only needs to use the labeled source domain 

data to train the classifier. 

𝐿𝑡𝑎𝑠𝑘 = − ∑ 𝑦𝑖
𝑠 ∙ 𝑙𝑜𝑔�̂�𝑖

𝑠𝑁𝑠
𝑖=0    (8) 

5.2. The Structure of the Gesture Recognition Model 

According to the DSN structure and basic principles, and based on the gesture recog-

nition process, the small-sample gesture recognition transfer model proposed in this 

study is shown in Figure 7. 

 

Figure 7. DSN-based small-sample gesture recognition transfer model. 

The network recognition process is as follows: The labeled source domain gesture 

data are processed using private encoders and shared encoders to extract private features 

and shared features, respectively. Similarly, the unlabeled target domain gesture data are 

processed using private encoders and shared encoders to extract private features and 

shared features separately. By performing the computations outlined in Equations (4) and 

(5), the difference loss 𝐿𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and similarity loss 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 are obtained. The shared 

features from the source and target domains, along with the target domain’s private fea-

tures, are fed into the shared decoder. This process involves the computations specified in 

Equations (5) and (6), resulting in the reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛. Furthermore, a classifier 

Figure 7. DSN-based small-sample gesture recognition transfer model.

The network recognition process is as follows: The labeled source domain gesture
data are processed using private encoders and shared encoders to extract private features
and shared features, respectively. Similarly, the unlabeled target domain gesture data are
processed using private encoders and shared encoders to extract private features and shared
features separately. By performing the computations outlined in Equations (4) and (5), the
difference loss Ldi f f erence and similarity loss Lsimilarity are obtained. The shared features
from the source and target domains, along with the target domain’s private features, are
fed into the shared decoder. This process involves the computations specified in Equations
(5) and (6), resulting in the reconstruction loss Lrecon. Furthermore, a classifier Ltask is
constructed using the shared features from the source domain and the corresponding
data labels. This entire procedure is repeated iteratively to minimize the overall loss
function Ltask + αLrecon + βLdi f f erence + γLsimilarity, where α, β, and γ are hyperparameters
controlling the respective loss terms. Ultimately, the obtained classifier is utilized for
recognizing gesture data collected from the target domain, i.e., new users with new data
gloves. The network structure of the encoder and decoder is shown in Figure 8.

For the encoder part, we use a two-layer convolution structure to encode the gesture
data. The first-layer convolution kernel size is set to three and passed through the ReLU
layer to accelerate model convergence. At the same time, a maximum pooling layer with
a kernel size of two is used to alleviate the convolution layer’s sensitivity to positional
relationships. The second-layer convolution kernel size is five in order to capture the
data correlation characteristics of different areas. It then adopts a similar ReLU layer
and maximum pooling layer, and then accesses the coding features obtained by the fully
connected layer output operation.
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For the shared decoder part, we first use the fully connected layer to decode the
private features and public features and use the Reshape unit to modify the output of the
fully connected layer to the size corresponding to the convolutional neural network. Then,
we use two layers of convolution and ReLU layers with a convolution kernel of five and
a UpSampling unit for deconvolution to restore the data. Finally, the restored data are
operated through the convolution and ReLU layers to obtain the reconstruction loss Lrecon.

6. Experimental Results and Analysis

This section will discuss the gesture data collection, experiments, and results to verify
the effectiveness of the AHGR model proposed in this study.

6.1. Data Collection

Based on the amphibious environment, this study will collect and build hand gesture
datasets in land and underwater environments. The gesture data collection setup is shown
in Table 2.

Table 2. Gesture data collection setup.

Parameters On Land Underwater

Gesture Type 25 static gestures and 10
dynamic gestures 25 static gestures

Data collected
3-axis acceleration data, 3-axis
gyroscope data, and 5-channel

stretch data
5-channel stretch sensor data

Data collection devices
Developed smart data glove

and used Bluetooth to transfer
data to Android devices

Esp32-S3-DevKitC-1

Sensors
Accelerometer, gyroscope, and

5-channel flexible capacity
stretch sensors

Smart data glove built-in
5-channel flexible capacity

stretch sensors
Sampling rate 50 HZ (0.02 s per reading) 50 HZ (0.02 s per reading)
Time duration 10 min for each gesture 10 min for each gesture

Environment 20 volunteers wear smart data
gloves on land

20 volunteers wear smart data
gloves and put them under

water
File format for storing data .txt file .txt file
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The land environment’s gesture dataset includes dynamic and static gesture data. A
total of 20 volunteers participated in the data collection experiments. During the data
collection, the volunteers were asked to wear a data glove on their right hand and maintain
a stable standing posture. After starting the gesture collection, volunteers had to make
corresponding predefined dynamic and static gestures, and each gesture lasted for ten
minutes. The land gesture dataset collected a total of 250,000 sets of static gesture data and
100,000 sets of dynamic gesture data, and each set of data comprises 60 data points, which
is the window size.

The underwater gesture dataset is defined and constructed for the static gesture set,
and the data collection flow diagram is shown in Figure 9. The underwater gesture data
collection process is as follows: First, simulate the underwater environment and use a
water-filled pool. Second, 20 volunteers put the smart data glove on their right hand, then
put on a thin nitrile glove to make it waterproof. Third, volunteers put their hands into
the water-filled pool, make the corresponding gesture, and then turn on the data glove’s
power. The fingers of the hand should be at least 0.15 m away from the bottom of the pool,
and the elbow should be at least 0.5 m away from the water’s surface. For each gesture,
the volunteers had to remain underwater for at least 1 min. After a gesture data collection
process is completed, the glove must be connected to the computer to export the gesture
data saved on the glove side. According to the static gesture set, repeat the above steps until
all 25 predefined static gesture data are collected. The underwater gesture dataset collected
a total of 25,000 sets of static gestures, and each set of data comprises 60 data points.
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6.2. Evaluation of the Stochastic SVD-Optimized Spectral Clustering Algorithm

Due to the usage of a static gesture set for underwater gestures, this research focuses
solely on the gesture characteristics conveyed by the stretch sensors in the underwater
data, while disregarding the data from the IMU. The comparison between the collected
underwater gesture data and the corresponding land-based gesture data is illustrated in
Figures 10 and 11. As shown in Figure 10, the upper part of the figure represents the
underwater gesture data, while the lower part represents the gesture data captured on land.
The figure displays three gestures, numbered 1, 2, and 6, from the predefined static gesture
set depicted in Figure 2. As shown in Figure 11, the blue curve represents the gesture data
collected underwater, and the orange curve represents the gesture data collected on land.
A total of three dynamic gesture data points are compared in Figure 11, namely, dynamic
gestures 0, 1, and 2 from the predefined dynamic gesture set depicted in Figure 3.
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As illustrated in Figure 10, after undergoing gesture preprocessing and standardiza-
tion normalization, the underwater gesture data captured by the stretch sensors exhibit
similarity to the land-based gesture data collected by stretch sensors. The signal variations
caused by the water pressure on the stretch sensors are found to be less than 1%. As
illustrated in Figure 11, the dynamic gesture data show huge differences between under-
water and on land, which can make pretrained dynamic gesture models difficult to use
underwater. The above comparative results verify the feasibility of using static gestures
underwater and the difficulty of using dynamic gestures. Moreover, since the underwater
environment has little impact on the gesture data, the verification of underwater gesture
recognition algorithms (stochastic SVD-optimized spectral clustering algorithm) can use
on-land static gesture data as a reference.
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A total of 25 static gesture data samples from 10 individuals were collected for experi-
mentation. The collected data underwent preprocessing, normalization, and standardiza-
tion procedures, with the application of a sliding window filtering technique to eliminate
noise. Feature vectors were extracted from each gesture sample, and the extracted data were
inputted into the stochastic SVD-optimized spectral clustering algorithm. The recognition
accuracy and recognition time were recorded and compared with the performance of classic
classifiers such as SVM, K-NN, and multilayer perceptron (MLP). The comparative results
are summarized in Table 3.
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Table 3. The performance results of different classification algorithms for underwater gestures.

SVM K-NN Spectral
Clustering MLP

Stochastic
SVD-Optimized

Spectral Clustering

Person 1 0.9857 0.9667 0.9519 0.9651 0.9759
Person 2 0.9333 0.9784 0.9484 0.9545 0.9828
Person 3 0.9333 0.9667 0.9324 0.9456 0.9865
Person 4 0.9996 0.9568 0.9349 0.9464 0.9794
Person 5 0.9655 0.9935 0.9724 0.9652 0.9827
Person 6 0.9666 0.9667 0.9282 0.9413 0.9863
Person 7 0.8275 0.9382 0.9873 0.9613 0.9827
Person 8 0.9667 0.9348 0.9932 0.9734 0.9932
Person 9 0.7586 0.9655 0.9923 0.9426 0.9793

Person 10 0.8621 0.8965 0.9838 0.9756 0.9862

Average 0.9199 0.9564 0.9625 0.9571 0.9835

Inference time (ms) 36.70 129.47 35.83 45.65 30.50

Training time (s) 320 240 153 356 135
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The experimental validation revealed that the gesture recognition algorithm employed
in this study achieved an average recognition accuracy that was approximately 7% higher
than for SVM, 3% higher than for K-NN, and around 2% higher than for spectral clustering.
Furthermore, the inference time and training time of the proposed algorithm were compar-
atively shorter than those of the other algorithms. These results provide empirical evidence
of the effectiveness of the adopted stochastic SVD-optimized spectral clustering algorithm
for underwater gesture recognition.

6.3. Evaluation of the SqueezeNet-BiLSTM Algorithm

To evaluate the proposed SqueezeNet-BiLSTM algorithm, this study conducted com-
parative experiments on several sensor-based deep learning gesture recognition algo-
rithms, including convolution neural network (CNN)-LSTM, BiLSTM, CNN-LSTM, and
SqueezeNet-LSTM.

The CNN-LSTM [36] network is a classic DL network model. It uses a CNN to extract
the features of gestures in the spatial dimension and LSTM to extract the features of gesture
data in the time dimension. The BiLSTM [37] network uses bidirectional LSTM network
units to realize the two-way feature in the time dimension of gesture data extraction.
The CNN-BiLSTM network [38,39] combines the classic CNN and BiLSTM to compare
and verify the impact of the SqueezeNet network architecture on the accuracy of gesture
recognition. The SqueezeNet-LSTM network connects the SqueezeNet network and the
LSTM network to show the characteristics of the bidirectional time feature extraction of the
gesture data via the bidirectional LSTM network.

The dataset collected in Section 6.1 is used to train the model. The ratio of training and
testing sets is 7:3. The window size is set up to be 60. The loss and accuracy curves of the
five selected algorithms are shown in Figure 12. As the epoch increases, the loss rate of the
training model gradually approaches 0, and the accuracy rate approaches 1. Although the
trends of all training models tend to be consistent in the end, the loss and accuracy curve
of the SqueezeNet-BiLSTM algorithm is smoother, and it converges faster than those of
the other four selected algorithms, which shows that the performance of the SqueezeNet-
BiLSTM algorithm is more suitable for the current situation. The performance results of the
proposed SqueezeNet-BiLSTM algorithm and the other four selected algorithms are shown
in Table 4.
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Table 4. The performance results of different gesture recognition algorithms.

Accuracy Precision Recall F1 Score Inference
Time (ms)

Training
Time (s)

SqueezeNet-
BiLSTM 98.94% 97.34% 98.21% 97.21% 85.4 638

CNN-LSTM 94.59% 94.72% 94.59% 94.69% 235.6 678
BiLSTM 92.34% 94.70% 92.34% 92.34% 73.6 436

CNN-BiLSTM 94.68% 95.06% 93.32% 93.32% 386.8 896
SqueezeNet-LSTM 95.97% 96.01% 97.08% 95.97% 65.3 563

According to the above experimental results, the recognition accuracy of the gesture
recognition based on the BiLSTM network is the worst compared with other algorithms
and can only reach 92.3%. Its network structure only pays attention to the information
characteristics of the gesture sequence in the time dimension, ignoring the character of
the gesture data in the spatial dimenstion, and the recognition accuracy is relatively low.
The recognition accuracy of the gesture recognition algorithm based on the CNN-LSTM
network structure and the CNN-BiLSTM network structure is higher than that of the
gesture recognition algorithm based on the BiLSTM network. This is because its network
structure fully integrates the characteristics of CNN and LSTM networks and fully extracts
the attributes of gesture data in various dimensions. The recognition accuracies obtained
by the CNN-LSTM and the CNN-BiLSTM network are close. The reason is that the two
network structures are similar, and the difference mainly lies in the Bi-LSTM network
structure used by the latter.

Compared with the other four selected classification algorithms, the gesture recogni-
tion algorithm based on the SqueezeNet-BiLSTM network proposed in this study has the
best recognition accuracy, and its recognition accuracy, precision, recall, and F1 score reach
98.94%, 97.34%, 98.21%, and 97.21%, respectively. Its training time and inference time are
at a medium level compared with the state-of-the-arts algorithms. This is an acceptable
result, because although SqueezeNet is a lightweight convolutional neural network, whose
training time and inference time are usually short, when the BiLSTM layer is connected
behind SqueezeNet, as the complexity of the model increases, the recognition accuracy
increases, and the training time and inference time inevitably increase.

6.4. Evaluation of DSN-Based Gesture Recognition Transfer Model

The experiment employed the gesture data of two volunteers to validate the efficacy
of the proposed DSN-based gesture recognition transfer model. The experiment randomly
selected four volunteers as UserA, UserB, UserC, and UserD. Their gesture data were
excluded from the collected dataset, and the remaining data were utilized to train the
SqueezeNet-BiLSTM source model. Following the completion of training, the model was
tested by inputting the gesture data of these four users and the remaining data. The
obtained average recognition accuracy is presented in Table 5, while the confusion matrix
of users A and B is shown in Figure 13. The outcomes reflected in Table 5 underscore the
substantial dissimilarities among the gesture data of different users, with the source gesture
recognition model failing to extract the distinctive features of the novel users’ gesture data,
leading to a diminished accuracy in recognizing new users’ gestures.

Table 5. Comparison of the recognition accuracy of SqueezeNet-BiLSTM on new users’ data.

UserA UserB UserC UserD Remaining
Data

Accuracy 66.1% 63.6% 63.0% 61.4% 96.57%
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Figure 13 demonstrates that certain gesture recognition accuracies, such as gestures 0,
1, 6, and 7, are notably low. Gesture 0 and gesture 6 are often misrecognized for each other.
This may be because the finger bending state is the same in the two gestures, and the hand
movements are also similar. This leads to mutual misrecognition when user actions are not
very standardized. Gestures 1 and 7 are always recognized as gesture 4. This may be due to
the similar hand movements of these gestures and the non-standard bending of the user’s
fingers. In Figure 13, some special cases arise; in the test results of User B, gestures 8 and 9
show recognition problems, which may be caused by non-standard bending movements
of the user’s fingers or ill-fitting gloves. Since our gloves only come in one size, people
with small hands cannot fit the gloves perfectly when wearing them, making it difficult to
obtain accurate stretch sensor data, ultimately leading to inaccurate recognition. For other
relatively small identification problems, these can be attributed to variances in personal
hand size, movement patterns, and sensor data from the glove, resulting in significant
disparities between certain gesture data and the data employed during training. To avoid
these problems, we will first perform bending and stretching calibration in the early stage
of gesture recognition to minimize recognition errors caused by palm size. Secondly, in the
data preprocessing stage, filtering algorithms are used to reduce data noise and then put
through data normalization, as well as data up-sampling and down-sampling, to reduce
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dynamic gesture recognition errors caused by personal hand movement habits. Although
a series of measures have been taken to ensure the accuracy of identification, everyone’s
behavioral habits still vary greatly. In practical environments, it is still difficult to obtain
good recognition accuracy using untrained data.

The experiment performed a model transfer test regarding small-sample data, using
gesture data of varying scales. Specifically, the experiments collected samples of 5, 10,
20, 30, 40, and 50 instances for each gesture category. To verify the superiority of our
proposed -DSNbased gesture recognition transfer model, we also selected several state-of-
the-art transfer learning models for comparison, including generative adversarial network
(GAN)- [40] and conditional generative adversarial networks (CGAN)-based [41] transfer
learning models. The transfer process involved utilizing our proposed DSN-based gesture
recognition transfer model and selected state-of-the-art transfer learning models, with
incremental updates applied to enhance the model’s performance. Subsequently, the
experiment conducted tests using the gesture data of UserA, UserB, UserC, and UserD to
evaluate the recognition accuracy of the transferred gesture recognition model. The results
depicting the recognition accuracy for each user are illustrated in Figure 14.
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As shown in Figure 14, it can be observed that the recognition accuracy for new users
increases with the growth of the data scale. During data transfer training with the same
sample size, the accuracy of the proposed DSN-based gesture recognition transfer model
is significantly better than the state-of-the-art algorithms. When using the novel DSN
gesture recognition transfer model in the target domain, the model effectively extracts
the domain-generalizable features from the source domain data and applies them to the
target domain. As a result, the recognition accuracy is significantly improved compared
with direct training when conducting small-scale data transfer training. Therefore, new
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users only need to provide a small amount of training data to ensure the accuracy of the
recognition model, thereby effectively enhancing the user experience.

7. Conclusions and Future Work

This study developed a smart data glove with five-channel flexible capacitive stretch
sensors, accelerometers, and gyroscopes for gesture recognition in an amphibious envi-
ronment. To ensure recognition accuracy, this study also proposed a novel AHGR model,
which can adaptively change the gesture recognition model to adopt an amphibious en-
vironment. This model contains two classification algorithms, the SqueezeNet-BiLSTM
algorithm for land gesture recognition and the stochastic SVD-optimized spectral clustering
algorithm for underwater gesture recognition. The accuracy of the SqueezeNet-BiLSTM
algorithm and the stochastic SVD-optimized spectral clustering algorithm can reach 98.94%
and 98.35%, respectively. This study also introduces a DSN-based gesture recognition
transfer model, so that new users and new devices only need small-scale data transferring
and training to ensure that the recognition accuracy reaches 94%.

In future work, we plan to conduct more professional underwater hand gesture
testing, such as hiring divers to test in deeper water. We also plan to develop a waterproof
smart data glove that can be used directly underwater and add an acoustic modem to
transmit gesture data wirelessly. In addition, we plan to analyze the energy consumption
of different models running on the gloves and optimize the design model to reduce energy
consumption while ensuring high accuracy.
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