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Abstract: Establishing an excellent recycling mechanism for containers is of great importance for
environmental protection, so many technical approaches applied during the whole recycling stage
have become popular research issues. Among them, classification is considered a key step, but this
work is mostly achieved manually in practical applications. Due to the influence of human subjectivity,
the classification accuracy often varies significantly. In order to overcome this shortcoming, this
paper proposes an identification method based on a Recursive Feature Elimination-Light Gradient
Boosting Machine (RFE-LightGBM) algorithm using electronic nose. Firstly, odor features were
extracted, and feature datasets were then constructed based on the response data of the electronic
nose to the detected gases. Afterwards, a principal component analysis (PCA) and the RFE-LightGBM
algorithm were applied to reduce the dimensionality of the feature datasets, and the differences
between these two methods were analyzed, respectively. Finally, the differences in the classification
accuracies on the three datasets (the original feature dataset, PCA dimensionality reduction dataset,
and RFE-LightGBM dimensionality reduction dataset) were discussed. The results showed that the
highest classification accuracy of 95% could be obtained by using the RFE-LightGBM algorithm in
the classification stage of recyclable containers, compared to the original feature dataset (88.38%) and
PCA dimensionality reduction dataset (92.02%).

Keywords: electronic nose; contaminant classification; recursive feature elimination; light gradient
boosting machine

1. Introduction

The recycling of containers can not only effectively decrease the disposal pressure
of waste and reduce environmental pollution, but can also provide a large number of job
positions [1]. The recycling of containers involves a series of steps such as classification
and identification, cleaning, drying, shredding, and regeneration. Of all these steps, classi-
fication is the most important [2,3], because recycling value will be effectively increased
by classifying waste containers. However, many factors such as the container’s size [4],
color [5], pose [6], shape [7], external damage [8], internal contamination [9], and mate-
rial [10] make achieving highly accurate classification and identification very challenging.

At present, the classification and identification of containers are mainly carried out
manually, and have the limitations of high cost and low efficiency [11,12]. Additionally,
some residual toxic and harmful gases may exist in those containers, which could hurt
human health [13,14]. In addition, the subjectivity of the inspector can lead to inconsis-
tent results [15,16]. To solve the above-mentioned problems, research into identification
methods based on intelligent devices has become a popular research domain in recent
decades. For example, Wang et al. [17] classified plastic bottles with different position
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relationships and colors based on image recognition, but detection inside the containers
was not considered, and the experimental platform required strict lighting conditions.
Dimitris et al. [18] used an online cloud computing platform with a distributed architec-
ture for solid waste classification; therefore, the response speed limited its application for
fast detection. Zhang et al. [19] proposed a recyclable waste classification model based
on the combination of image classification and deep learning, and confirmed that this
model could improve classification results on the TrashNet dataset; however, this model
required a very large amount of clear image data for training, and its reliability was unsta-
ble. Wang et al. [20] proposed an innovative design concept of a smart recycling system
based on Extenics to solve conflicts in cosmetic container recycling, but different categories
of cosmetic containers were not investigated in this study.

Using an electronic nose system is a promising approach to solving the problems
of classification and identification of contaminants. Actually, electronic noses have been
proven to be effective for the classification and identification of contaminant gases. For
instance, Wen et al. [21] detected the odors of rotten fruits with the help of an electronic
nose, and achieved efficient identification of fruit freshness. Savirio et al. [22] applied
an electronic nose to pre-adhesive recognition of relevant pollutants on the surface of
composite fiber-reinforced polymers (CFRP). Herrero et al. [23] used an electronic nose
to classify and quantify different pollutant gases in the air. Zhang et al. [24] identified
six indoor air pollutants (formaldehyde, benzene, toluene, carbon monoxide, ammonia,
and nitrogen dioxide) as air quality indicators, and classified the data collected using an
electronic nose. Liu et al. [25] proposed a non-destructive method for detecting peach
fungal contamination using an electronic nose, and showed that the electronic nose has
high discrimination accuracy. Mesías et al. [26] also used an electronic nose as the predictive
tool for detecting the chemical pollutants in roasted almonds.

In this paper, a model based on the Recursive Feature Elimination-Light Gradient
Boosting Machine (RFE-LightGBM) algorithm is proposed in the classification stage of
contaminants for recyclable containers. Based on the experimental results of using the
proposed model, the difference in the classification accuracies on three datasets (the original
feature dataset, principal component analysis (PCA) dimensionality reduction dataset, and
RFE-LightGBM dimensionality reduction dataset) was firstly investigated. Subsequently,
the PCA method and RFE-LightGBM algorithm were applied to reduce the dimensional-
ity of the feature dataset, and the differences between the two methods were analyzed,
respectively. Finally, the classification accuracies on these three datasets were discussed
as well.

2. Algorithm Theory

Figure 1 shows the flowchart of the contaminant classification model proposed in this
paper, which mainly consists of three processes: the data collection process, data feature
process, and classification and identification process.

2.1. Light Gradient Boosting Machine (LightGBM)

The main idea of the optimal feature splitting point in the LightGBM algorithm [27,28]
is as follows:

Assuming a dataset containing M samples and N features is given, LightGBM is an
integrated model composed of K basic models, where each basic model represents a tree
(representing different categories). Therefore, the predicted output of the integrated model
can be expressed as Formular (1):

ŷi = φ(xi) =
K

∑
K=1

fk(xi) (1)

where xi is the characteristic value of the gas sample, fk is the predicted value of the K-th
tree, and ŷi represents the current predicted value. Equation (1) represents the sum of the



Micromachines 2023, 14, 2047 3 of 15

predicted values of K regression trees (the weights of the leaf nodes divided according
to the corresponding decision rules of the regression tree) given an input xi. By iterating
on each prediction tree and fitting the current difference to obtain the optimal model, we
define the objective function as Formular (2):

target =
m

∑
i=1

l(ŷi, yi) +
K

∑
K=1

Ω( fk) (2)

where l(ŷi, yi) is the loss function between the predicted value and the actual value. Ω( fk)
represents the penalty term for the complexity of the model to balance the complexity of
the model, and can be determined using Formular (3):

Ω( fk) = µT +
1
2

λ‖ω‖2 (3)

where µ and λ represent the penalty coefficient, T represents the number of leaf nodes for
a given tree, and ||ω||2 is the square of the number of nodes on each leaf (predicted to
be of the same category). When training the K-th tree, the first two K-1 trees in the front
are known, and the unknown is the K-th tree. That is, based on the known decision tree
constructed earlier, the K-th tree is constructed, and the predicted value of the K-th tree is
represented by Formular (4):

ŷ(k)i = ŷ(k−1)
i + fk(xi) (4)

Taking Formular (4) into Formular (2), Formular (5) can represent the new objective
function obtained:

target =
m

∑
i=1

l(ŷ(k−1)
i + fk(xi), yi) + Ω( fk) + C (5)

Then the second-order Taylor approximation formular can be used to expand the
objective function, as shown in Formular (6):

target =
m

∑
i=1

[
l(ŷ(k−1)

i , ŷi) + gi fk(xi) +
1
2

hi f 2
k (xi)

]
+ Ω( fk) + C (6)

where gi = ∂ŷ(k−1)(ŷ(k−1) − yi)
2
, hi = ∂2ŷ(k−1)(ŷ(k−1) − yi)

2
in Formular (6) is the first

derivative and the second derivative of the Loss function, respectively; the best classification
characteristics are determined using Formular (7).

ωj = −
Gj

Hj + λ
(7)

Gj = ∑
i∈Ij

gi, Hj = ∑
i∈Ij

hi The final objective function can be represented as follows:

target = −1
2

T

∑
j=1

G2
j

Hj + λ
+ µT (8)

Finally, the information gain of all features is determined according to Formular (9):

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− µ (9)

Among them, GL + GR = HL + HR is the left and right branch sample set, split based
on the best feature. The larger the value of the gain, the more it can reduce the loss of the
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objective function after splitting. This method can sort features based on the ranking of
information gain and select the feature with the highest gain as the optimal splitting point.

1 
 

 
 

 

Figure 1. Flowchart of the contaminant classification approach based on the RFE-LightGBM algorithm
using electronic nose.

2.2. Recursive Feature Elimination-Light Gradient Boosting Machine (RFE-LightGBM) Feature
Selection Algorithm

LightGBM was used as the base model for the feature recursive elimination algorithm
to model the original dataset in this study. After the corresponding weight values were
calculated, all features could be sorted according to their weight values. Then, the features
with the lowest weight values were successively deleted from the feature dataset using
recursive feature elimination (RFE) [29–32], and the features were iterated circularly (the
iteration number is equal to the dimension of the original feature dataset). Finally, sorting
tables related to the multiple feature weight values could be obtained. The feature selection
algorithm based on RFE-LightGBM is shown in Figure 2.
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2.3. Algorithm Evaluation Criteria

In order to obtain the optimal feature subset, the classification accuracy (ACC =
(TP + TN)/(TP + TN + FP + FN)) [33] was used to evaluate the score of each feature subset.
The feature subset with the highest accuracy score was chosen as the best feature dataset to
verify the classification results of the test data obtained based on the proposed model.

3. Materials and Methods
3.1. Electronic Nose System

Figure 3 shows the schematic of the electronic nose system used in this work, which
consists of three components: a gas sensing array (10 homemade MEMS metal oxide
sensors; because different sensors have different sensitivities to different gases, it is better
to choose sensors with high sensitivity for different practical applications) [34,35]; a gas
collection module; and a data acquisition module. The sensor parameters of the gas sensing
array are listed in Table 1. The gas collection module is made of a 2L PE box and equipped
with three pumps (the flow rate is approximately 800 mL/min). During the whole process
of the experiment, the equipment, including the pumps, is controlled by a computer. The
data acquisition module collects the response signal of the electronic nose to the detected
gas and transfers it to the computer.

1 
 

 
 

 Figure 3. Schematic of the electronic nose system used in the current work.

Table 1. Characteristics of the employed sensors in the electronic nose system.

Sensor Main Test Objects Detection Range (ppm) Response Time (s)

S1 Ethanol, Acetone, Hydrogen Sulfide 0.1–500 <20
S2 VOCs, Smog 1–500 <10
S3 Ethanol, Hydrogen Sulfide, Acetone 1–500 <20
S4 Hydrogen 0.1–300 <10
S5 Hydrogen Sulfide 0.5–300 <20
S6 Ammonia 10–300 <10
S7 Ethanol 1–500 <20
S8 VOCs 10–500 <20

S9 Hydrogen Sulfide, Carbon
Monoxide 1–500 <10

S10 Acetone, Hydrogen Sulfide 0.1–500 <10

3.2. Experimental Procedures

In this work, barreled water buckets were used as recyclable containers. Under
relatively fixed temperature and humidity conditions, the electronic nose system built in
3.1 was used to classify and identify contaminant gases in the recyclable container.
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For 5 consecutive days, residual gases (cigarette butts, coffee, liquor, and vinegar) in
3 concentration levels (10%, 30%, 50%), and uncontaminated barrels (100%) were classified
into 13 categories. Each category of gas was detected 20 times each day (all the substances
to be detected were poured out from the containers before measurement), so that a total
of 100 data were obtained for each category of gas sample. The contaminant (taking
coffee as an example, representing the ratio of the coffee volume to the whole volume of
a barreled water bucket) and the percentage concentration of the experimental sample
(e.g., a concentration of 50% means the volume ratio of contaminant in the recyclable
container before measurement, which is expressed as the gas concentration in the recyclable
container) are listed in Table 2. Details of the experimental procedure are as follows:

(1) The sensing array was preheated for 30 s to bring the baseline sensor resistance values
to a steady state.

(2) The aspirator pump was turned on at the 30 s mark, and sent the gas to the detection
chamber. The response signal of the sensor to the gas during the pumping time
was collected.

(3) The aspirator pump was turned off at the 35 s mark, and the gas washing pump and
air outlet pump were turned on (purging the gas detection chamber with ambient air)
until all sensor resistance values returned to the original baseline values.

(4) Repeat the operations of steps 1–3 until data collection is completed for all target detectors.

Table 2. The composition and concentration of experimental sample gases.

Sample Label Contaminant Gas percentage Concentration

G0 Water 100%
G1 Cigarette 10%
G2 Cigarette 30%
G3 Cigarette 50%
G4 Coffee 10%
G5 Coffee 30%
G6 Coffee 50%
G7 Liquor 10%
G8 Liquor 30%
G9 Liquor 50%

G10 Vinegar 10%
G11 Vinegar 30%
G12 Vinegar 50%

4. Results
4.1. Response Curve of the Electronic Nose System

Affected by different sensitive materials, sensors will have different response sensitivi-
ties to the same target gas [36–38]. Moreover, environmental factors could also cause the
baseline fluctuation of the sensors [39,40]. In order to eliminate these effects, we processed
the collected signals according to the following formular:

values =
x−min(x)

max(x)−min(x)
(10)

where x, min (x), and max (x) represent all the original data of each sensor, the minimum,
and the maximum value in the data, respectively. Figure 4 shows the result curve of the
raw data processed according to Formular (10). The horizontal axis represents the detection
time, and the vertical axis represents the value after the change in the original data. It
can be observed that the sensor array reached a stable state during the preheating phase
(0–30 s). When the gas enters the detection chamber (30 s: black dashed line), the resistance
values of the sensor array will decrease with the increase in the concentration of the gas.
After stopping the gas supply, the resistance values of the sensor array return to the initial
steady state with time.
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4.2. Feature Datasets Constructed by Manual Methods

In this study, we extracted four steady-state features and three transient features from
the pre-processed signals of each sensor [41], with a total of 15 features (1 + 1 + 1 + 1 +
1 + 1 + 5 + 5 = 15). The features extracted from all sensors (10 in total) are represented
by different colors, and all the features are connected in order to form a feature vector
that includes 150 features (10 × 15 = 150). Additionally, all the sample feature vectors are
stacked together to form a feature dataset, as shown in Figure 5. The data collected by
each sensor during the pumping period were defined as xi, and their detailed description
is shown in the formular in Table 3 (where xi

max, xi
min represent the maximum value and

minimum value).
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Table 3. Gas features extracted using manual methods.

Symbol Mark Number Feature Description Function

D 1 Difference xi
max − xi

min
R 1 Relative difference xi

max/xi
min

F 1 Fractional difference (xi
max − xi

min)/xi
min

L 1 Logarithm difference log
(

xi
max/xi

min

)
I 1 Integral

5∫
0

xi(t)dt

DE 5 Derivative dxi(t)/dt
SD 5 Second derivative d2xi(t)/dt2
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4.3. Dimensionality Reduction of Feature Datasets

The feature dataset constructed using the above method has high dimensionality (with
each feature vector containing 150-dimensional features). In order to speed up the model
training, pre-processing of the feature dataset is necessary for eliminating the redundant
features before training.

In the field of gas identification, principal component analysis (PCA) is a widely
used method [42]. Figure 6 shows the variance contribution of each principal component
calculated using the PCA method, and the cumulative variance contribution of the first
two and three principal components is 93.93% and 96.71%, respectively. When considering
the first 10 principal components, the cumulative variance contribution could reach up to
99.78%.
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Figure 7 shows the visualization results of the original feature dataset after dimen-
sionality reduction using PCA. It can be observed that when only the first two principal
components are focused, there is a large amount of overlap between different categories,
indicating that PCA cannot classify well (Figure 7a). Figure 7b shows the sample visualiza-
tion distribution when applying the first three principal components. Here, the displayed
classification effect is more obvious. It can also be seen that the ability to distinguish
different samples has improved, but there are still some overlapping samples.
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Figure 8c shows the percentile weight values obtained using the RFE-LightGBM
method for the features. The feature with the highest score is I-S6 (which is the integral
feature of the sixth sensor), which means this feature provides the greatest information
gain in classification. In contrast, as shown in Figure 8b, all the fractional difference feature
contribution values were zero. This means that this type of feature is completely unhelpful
for the classification. In addition, it can be seen in Figure 8a that only 26 features have
contribution values higher than 0.01. Therefore, in order to reduce the dimensionality of
the feature dataset, features with relatively low contribution rates could be discarded.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 16 
 

 

Figure 8c shows the percentile weight values obtained using the RFE-LightGBM 
method for the features. The feature with the highest score is I-S6 (which is the integral 
feature of the sixth sensor), which means this feature provides the greatest information 
gain in classification. In contrast, as shown in Figure 8b, all the fractional difference feature 
contribution values were zero. This means that this type of feature is completely unhelpful 
for the classification. In addition, it can be seen in Figure 8a that only 26 features have 
contribution values higher than 0.01. Therefore, in order to reduce the dimensionality of 
the feature dataset, features with relatively low contribution rates could be discarded. 

 
Figure 8. Information gain calculated according to the RFE-LightGBM method: (a) features with an 
information gain weight value higher than 0.01; (b) features with an information gain weight value 
of zero; (c) percentage of information gain weight value for all features. 

Table 4 shows 26 features with weight values greater than 0.01, with a total of 0.8442. 
Among them, integral features and derivative features made up a high proportion (17/26), 
which also indicates they make high contributions to gas identification. This shows that 
the integration features and derivative features can accurately express the information of 
the original data. Integral features can provide the best features, and derivative features 
can explain the rate and acceleration of the reaction. At the same time, the number of 
features formed by sensors S6, S7, and S8 correspond to 16/26. This shows that these 
features may have a significant impact on the classification and identification results. 
Therefore, the result confirms that the RFE-LightGBM method can utilize the original data 
information preserved in a small number of features in the model. 

Table 4. Weight value details of the first 26 obtained features higher than 0.01, obtained using RFE-
LightGBM analysis. 

Feature Name Importance 
I-S6 0.1571 
I-S2 0.1246 
L-S7 0.0607 

DE5-S9 0.0484 
SD4-S6 0.0458 

Figure 8. Information gain calculated according to the RFE-LightGBM method: (a) features with an
information gain weight value higher than 0.01; (b) features with an information gain weight value
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Table 4 shows 26 features with weight values greater than 0.01, with a total of 0.8442.
Among them, integral features and derivative features made up a high proportion (17/26),
which also indicates they make high contributions to gas identification. This shows that the
integration features and derivative features can accurately express the information of the
original data. Integral features can provide the best features, and derivative features can
explain the rate and acceleration of the reaction. At the same time, the number of features
formed by sensors S6, S7, and S8 correspond to 16/26. This shows that these features may
have a significant impact on the classification and identification results. Therefore, the
result confirms that the RFE-LightGBM method can utilize the original data information
preserved in a small number of features in the model.

Figure 9 shows the importance score of each feature on different sensors. The larger
values represent greater contributions to gas classification and identification. In addition, it
can be seen that the feature weight of S4 is relatively low, which also indicates that S4 has a
relatively small impact on the identification result. Therefore, removing S4 may not only
reduce the amount of data generated and shorten the time for feature preprocessing, but
also further reduce the power consumption of the sensor. In summary, the application of
RFE-LightGBM in the field of gas identification not only effectively optimizes the sensing
array, but also reduces the dimensionality of the feature dataset, thereby utilizing a small
number of features to retain a large amount of original information.
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Table 4. Weight value details of the first 26 obtained features higher than 0.01, obtained using
RFE-LightGBM analysis.

Feature Name Importance

I-S6 0.1571
I-S2 0.1246
L-S7 0.0607

DE5-S9 0.0484
SD4-S6 0.0458

R-S6 0.0334
L-S6 0.0327
I-S8 0.0301

DE4-S5 0.0292
DE4-S7 0.0287

D-S3 0.0250
DE5-S8 0.0247
DE5-S7 0.0236

D-S1 0.0194
SD4-S7 0.0187

R-S8 0.0183
DE4-S10 0.0167
SD4-S2 0.0161

D-S6 0.0127
L-S1 0.0121

DE4-S8 0.0121
R-S9 0.0116

DE2-S7 0.0112
DE3-S6 0.0110
DE5-S3 0.0102
DE3-S7 0.0101

SUM 0.8442
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Figure 9. Percentages of feature information gain weight values for each sensor.

The visualized distribution of samples obtained using the RFE-LightGBM feature
selection method was shown in Figure 10. The distribution of samples in different categories
using the first two features is shown in Figure 10a. Although there are still overlapping
phenomena between different categories, it is obviously lower than PCA. The visualization
using the first three features also yielded the same conclusion (Figure 10b). After using the
RFE-LightGBM method for feature selection, the distinction between different samples is
more obvious.
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5. Discussion

In this paper, a BPNN (back propagation neural network) model with one hidden
layer [43] was constructed as a classifier. The number of input layers was equal to features,
the number of output layers was equal to categories, and the categories were labeled with
one-hot coding. The number of neurons in the hidden layer was defined as 10, and sigmoid
was used as the activation function. To prevent the overfitting of the model, a five-fold
cross-validation was used in the training process.

In order to compare the influence of different feature processing methods on the
final classification results, 80% of the data from three datasets (randomly divided among
the original feature dataset, PCA dimensionality reduction dataset, and RFE-LightGBM
dimensionality reduction dataset) were used for model training. The remaining data
were used for model validation, and the results obtained are shown in Figure 11. The
original feature dataset (1-150 dimensional features) obtained an average classification
and identification accuracy of 88.38%. At the same time, one can also see that most PCA
methods achieved lower accuracy than the RFE-LightGBM method. Compared with the
PCA method, the RFE-LightGBM method can not only reduce the dimensions of the original
feature dataset, but also obtain 94.84% classification accuracy using the first 18 features.
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When performing gas identification, odors can change over time, which in turn is
reflected by differences in the collected data. For example, Mahdi et al. [44] classified a
variety of cheeses with different storage periods, Huang et al. [45] used RBF-ANN to assess
fish freshness, and Madiha et al. [46] applied an electronic nose system for determining
milk storage dates. The above studies have proved that the gas data collected on different
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days will affect the identification results. Therefore, when the electronic nose system is
used to detect recyclable containers, the storage time of the contaminants in the containers
will interfere with the final classification accuracy. If time interference can be overcome, the
misclassification rate can be effectively reduced, and thus the robustness of the classification
model can be significantly improved. Consequently, to explore the effect of gas data
collected on different days on the classification and identification results, we divided the
data into five schemes. We used different days of data as the training dataset and unknown
days of data as the testing dataset, as shown in Table 5.

Table 5. The datasets constructed according to the time of acquisition.

Datasets Number of Days of Training
Data Collection

Number of Days of Testing
Data Collection

Scheme 1 2-3-4-5 1
Scheme 2 1-3-4-5 2
Scheme 3 1-2-4-5 3
Scheme 4 1-2-3-5 4
Scheme 5 1-2-3-4 5

The training and testing datasets were divided into five datasets (see Table 5) to
compare the effect of different feature preprocessing methods on the final classification
results of each scheme. Figure 12 shows the recognition accuracy of the Scheme 1 dataset.
We used the original feature dataset of 1-150 dimensions to train the model, and obtained an
average accuracy of 81.15%. Meanwhile, we observed that most PCA methods had lower
recognition accuracy than that of the average of the original feature dataset. PCA is an
efficient dimensionality reduction method, and can reduce the computational complexity
of the model. However, the traditional PCA method in the field of gas identification
is not a good way to classify the samples. The RFE-LightGBM method can not only
reduce the dimension of the feature dataset, but can also significantly improve the final
classification effect. When the first 20 features were used for model training, the highest
verification accuracy reached 94.23%. In addition, it can be observed in Figures 11 and 12
that the average classification accuracy of the 1-150-dimensional original feature dataset
decreased. The classification accuracy obtained using the PCA method is significantly
reduced, indicating that the gas data collected on different days have different principal
components. Moreover, the RFE-LightGBM method still shows good classification accuracy.
Therefore, the application of the RFE-LightGBM method for feature selection can overcome
the impact of odor changes over time.
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Table 6 shows the classification accuracy of various data-partitioning schemes under
different methods. It can be observed that the dimensionality of the feature dataset can be
reduced via the PCA method, but the classification accuracy of the validation dataset also
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decreases significantly. In contrast, the application of the RFE-LightGBM method can not
only reduce the dimensionality of the feature dataset, but also improve the classification
accuracy. Even if the validated gas data come from different days, our built model achieves
the best performance and also shows good classification and identification ability, where
the highest validation accuracy result reaches 95.00%.

Table 6. Comparison of the final classification results of different data-processing methods.

Dataset Random Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Average accuracy of raw feature data 88.38% 81.15% 85.38% 84.23% 83.85% 83.46%
Maximum accuracy of PCA 92.02% 71.54% 70.38% 75.77% 74.62% 62.31%

RFE-LightGBM highest accuracy 94.84% 94.23% 93.08% 95.00% 93.46% 94.23%

6. Conclusions

In this paper, an electronic nose system using the RFE-LightGBM algorithm was
employed to classify and identify the contaminants in recyclable containers. The main
results are as follows:

i. The use of electronic nose systems in the classification and identification of recyclable
containers can compensate for the shortcomings of manual and other intelligent devices.

ii. Compared with PCA, RFE-LightGBM is an effective feature extraction method. It
can not only reduce the dimensionality of the feature dataset, but also improve the
classification accuracy.

iii. Using the RFE-LightGBM method in gas classification can overcome the influence of
odor change over time. The highest classification accuracy reaches 95%.
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