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Abstract: Tunable fiber lasers have the advantages of good beam quality, high integration, and
adjustable output wavelength, and they are widely used in fields such as optical fiber communication
and optical fiber sensing. The fiber filter is one of the key components of tunable fiber lasers. Among
the various filters currently used, multimode interference filters have the advantages of simple
structure, convenient implementation, flexible tuning methods, and convenient spectral range design.
The structures of multimode interference filters based on multimode fibers, no-core fibers, multi-core
fibers, tapered fibers, and other special fibers are introduced in this paper. The working principles and
tuning methods are analyzed and the research progress of tunable fiber lasers based on these filters is
summarized. Finally, the development trend of tunable fiber lasers based on multimode interference
filters is discussed. The rapid development and applications of multimode interference filters can
help improve the performance of continuous and pulse lasers as well as promote the practicality of
tunable fiber lasers.

Keywords: tunable fiber laser; multimode interference filter; multimode fiber; no-core fiber; multi-core
fiber; tapered fiber

1. Introduction

Fiber lasers possess the advantages of good beam quality, high conversion efficiency,
excellent heat dissipation performance, and good maintainability. They are widely used in
fields such as mechanical processing, biomedical treatment, high-capacity communication,
as well as defense and military. Tunable fiber lasers, where the output wavelengths are
adjustable, are one of the most important branches of fiber lasers. In the field of optical
communication, the demand for high-speed communication in emerging industries such
as the Internet of Things and smart cities is constantly increasing. The tunable laser is one
of the key components for dense wavelength division multiplexing systems and one of
the core tools to enhance the flexibility of communication networks. In the field of fiber
sensing, the absorption spectra of different gases are located in different wavelengths. The
concentration distribution of various gases may be actively detected with tunable lasers.
Thus, tunable fiber lasers have important applications in atmospheric pollution monitoring,
hazardous gas detection, and flammable gas leakage warning. In addition, tunable lasers
are also widely used in areas such as autonomous driving, ultrafast spectroscopy, and
microscopy imaging.

The tuning methods of tunable fiber lasers are usually divided into three categories.
One is to insert wavelength selection devices such as optical filters into the fiber lasers,
and tunable wavelength will be achieved by adjusting the loss of different wavelengths [1].
The second method relies on nonlinear effects such as stimulated Raman scattering [2] or
stimulated Brillouin scattering [3], and wavelength conversion or tunability is realized
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during optical transmission. The third method is to change the transition energy level by
changing the length or doping concentration of the gain fiber, thereby changing the working
wavelength of the laser [4]. Among these three methods, inserting a filter into the laser
system is simple and easy to implement. In particular, fiber filters are of great significance
for designing tunable lasers with all fiber structures. So far, fiber gratings [5], birefringent
Lyot filters based on polarization-maintaining fibers [6], as well as fiber interferometers [7]
have all been used as wavelength selection devices to achieve tunable output wavelengths.

In recent years, with the advancement in fiber drawing and processing technology,
multimode interference filters implemented using interference between different modes
in fibers have attracted widespread attention [8,9]. The common method to fabricate a
multimode interference filter is to fuse a section of fiber with a special structure between
two sections of single-mode fibers (SMFs). Different high-order modes are excited at the
first fusion joint, which then propagate with different transmission constants in the special
fiber. Interference occurs when they are coupled back into the SMF at the second fusion
joint. Multimode interference filters have advantages such as simple structure, being easy
to integrate with other fiber devices, and convenient spectral range design. This article
reviews the research progress of tunable fiber lasers based on multimode interference filters,
and the structures and tuning methods of multimode interference filters fabricated with
multimode fibers, no-core fibers, multi-core fibers, tapered fibers, and other special fibers
are introduced. Finally, the development trend and application prospects of tunable fiber
lasers based on interference filters are presented.

2. Tunable Fiber Lasers Based on Multimode Fiber Interference Filters
2.1. Structure and Working Principle of Interference Filter Based on Multimode Fiber

An interference filter based on multimode fiber is usually fabricated by fusing a
segment of graded-index multimode fiber (GIMF) or step-index multimode fiber (SIMF)
between two SMFs, forming a single-mode–fiber-multimode–fiber-single-mode fiber (SMF-
MMF-SMF) structure, as shown in Figure 1 [8]. The working principle of this filter is
explained as follows. The light transmitted along the input SMF enters the multimode fiber
with an approximately Gaussian-shaped field distribution, and multiple high-order guided
modes are excited at the first fusion point. These modes propagate in the multimode fiber
with different transmission constants, resulting in interference with each other due to the
accumulated phase difference. When the phase shift of all modes is an integer multiple of
2π, the interference between different modes forms the self-imaging of input light [9,10].
Thus, the length of the MMF has to be precisely cleaved to have a self-image right at the
facet of the output SMF. Usually, the length of the MMF can be calculated using [9]

z = m
(

3Lπ

4

)
, m = 0, 1, 2 · · · (1)

where m is the order of self-imaging. Lπ is the beat length, which is given by

Lπ
∼=

4ncorea2

3λ0
. (2)
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Figure 1. Structure of SMF-MMF-SMF filter [8]. Figure 1. Structure of SMF-MMF-SMF filter [8].

In Equation (2), ncore and a correspond to the effective refractive index and the diameter
of the MMF core. When the input light is broadband light, the oscillating interference curve
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will be measured in the output SMF. From Equations (1) and (2), the peak wavelengths of
the transmission curve are determined by the following equation [9]:

λ0 = m
ncorea2

z
, m = 0, 1, 2 · · · (3)

According to Equation (3), the peak transmission wavelength of the filter is related
to the length, effective refractive index, and radius of the multimode fiber. S. M. Tri-
pathi et al. [11] discussed the dependence of filter bandwidth on stretching and temperature.
The results show that the filter could be switched between band pass and band stop modes,
and that the filter bandwidth in each mode could be dynamically tuned. T. Walbaum
et al. [12] analyzed the effects of bending on the transmission spectrum and polarization
state both theoretically and experimentally, and a filter with a continuous tuning range of
13.6 nm and an 86% peak transmission was realized.

2.2. Tuning Method of Interference Filter Based on Multimode Fiber

For SMF-MMF-SMF filters, the commonly used tuning methods are stretching [10,13,14],
bending [15–22], or wrapping into a polarization controller (PC) [23–25]. Both mode-locked
and continuous wave (CW) fiber lasers have been reported based on MMF filters. Table 1
gives a summary of the literature reports on tunable fiber lasers based on SMF-MMF-SMF
filters. The tuning ranges are the results of single wavelengths. Dual- or triple-wavelength
tuning results are not included.

Table 1. Summary of the literature reports on tunable fiber lasers based on SMF-MMF-SMF filters.

Ref. Structure Tuning Method Laser Type Gain Fiber Tuning Range

[10] SMF-MMF-SMF Stretching Mode-locked Yb-doped NA

[13] SMF-GIMF-SMF Stretching Mode-locked Tm-doped NA

[14] Two cascaded
SMF-MMF-SMF Stretching Optical parametric

oscillator
Highly nonlinear

fiber 1642.5–1655.4 nm

[16] SMF-SIMF-GIMF-SMF Bending Mode-locked Tm-doped 1835–1886 nm

[17] SMF-SIMF-SMF Bending Mode-locked Tm-doped 1834–1895 nm

[18] SMF-MMF-SMF Bending Mode-locked Er-doped NA

[19] SMF-MMF-SMF Bending Mode-locked Tm-doped 1919.6–2014.9 nm

[20] SMF-MMF-SMF Bending CW Er-doped 1529–1581 nm

[21] SMF-SIMF-SMF Bending Q-switched Er-doped 1553–1569 nm

[22] SMF-GIMF-SMF Bending Mode-locked Yb-doped 1031.99–1039.32 nm

[23] SMF-MMF-SMF Wrapping into a PC CW Er-doped 1554.96–1564.25 nm;

[24] Two cascaded
SMF-MMF-SMF Wrapping into a PC CW Er-doped 1533–1573 nm

[25] SMF-GIMF-SMF Wrapping into a PC Mode-locked Yb-doped NA

[26] SMF-MMF-SMF Adjusting the PC in
the cavity CW Tm-doped 1892–1916 nm

[27] SMF-Taper GIMF-SMF Adjusting the PC in
the cavity Mode-locked Er-doped NA

[28] SMF-SIMF-GIMF-SMF Adjusting the PC in
the cavity Mode-locked Tm-doped NA

NA: not available.
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2.2.1. Stretching

Stretching changes the length of the MMF, and the stress caused by stretching changes
the effective refractive index of the transmission modes propagating in the multimode fiber,
thereby changing the peak transmission wavelengths of the filter. In 2012, L. Zhang et al. [10]
demonstrated a dissipative soliton fiber laser using the SMF-MMF-SMF filter as the wave-
length selection device, as shown in Figure 2. By applying a tensile strain to the filter, the
laser wavelength was tunable within a 12 nm range. In 2019, H. Li et al. [13] constructed
a Tm-doped mode-locked fiber laser using the SMF-MMF-SMF structure as a saturable
absorber and wavelength selection device. Continuously tunable mode-locked pulses
were experimentally achieved by varying the stretching length of the multimode fiber.
In 2020, J. Yu et al. [14] designed an optical parametric oscillator based on two cascaded
SMF-MMF-SMF filters. By stretching the MMF in the SMF-MMF-SMF device, the oscillator
wavelength was tunable in the range from 1642.5 nm to 1655.4 nm.
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2.2.2. Bending

Similar to stretching, bending changes the propagation constants of each mode prop-
agating in the MMF, thereby changing the transmission wavelengths of the filter. T. Wal-
baum et al. [18] reported a nonlinear polarization–rotation mode-locked erbium-doped
fiber laser with an SMF-MMF-SMF filter, and the spectra were tunable in a range of 11.6 nm
by bending the fiber filter. In this report, a Sigma cavity was used to avoid the impact of po-
larization state changes introduced by bending. N. Li et al. [20] reported an erbium-doped
fiber laser based on an SMF-MMF-SMF filter in 2018. When the laser operated in the single
wavelength state, the wavelength could be tuned with a range of 52 nm, and when the laser
operated in a dual wavelength state, wavelength spacing could be tuned from 9 to 58 nm
by bending the filter. Figure 3 shows the structure diagram of the constructed laser and the
tuning results.

In addition to the fiber communication band, 1 µm band [22] and 2 µm band [16,17]
tunable fiber lasers have also been reported based on these filters. In ref. [22], a wavelength-
tunable passively mode-locked Yb-doped fiber laser was demonstrated. The central wave-
length could be tuned by moving the horizontally adjustable platforms to bend the SMF-GIMF-
SMF filter, and the tuning range was from 1031.99 nm to 1039.32 nm. In ref. [16], H. Li reported
an all-fiber Tm fiber laser, where the SMF-SIMF-GIMF-SMF structure was used as both the
saturable absorber and filter. By varying the curvature of the SMF-SIMF-GIMF-SMF structure,
the wavelength of the solitons could be continuously varied in the range of 1835–1886 nm.
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2.2.3. Wrapping into a Polarization Controller

Tunable fiber lasers have also been realized by wrapping the SMF-MMF-SMF filter
into a three-paddles polarization controller.

In the SMF-MMF-SMF filter, high-order modes are excited when the input light enters
the MMF from the SMF, and different high-order modes accumulate different phase shifts
when they are propagating in the multimode fiber, resulting in interference phenomena
when they are coupled back into the second SMF. When the SMF-MMF-SMF structure is
wrapped into a polarization controller, the fiber undergoes stretching and bending due to
twisting, resulting in the change in the propagation constants of each mode propagating
in the MMF. Changing the angle of the polarization controller paddles will change the
degree of stretching and bending, thereby affecting the phase difference between different
modes and causing changes in the transmission peaks of the interference curve. In 2019,
H. Zhang et al. [24] reported a wavelength tunable passively mode-locked fiber laser based
on two cascaded SMF-MMF-SMF structures, as shown in Figure 4a. Each of the SMF-MMF-
SMF structures was wrapped into a three-paddles polarization controller, and a tuning
range from 1533 nm to 1573 nm was achieved by mechanically tuning the orientation
angles of the paddles of the polarization controllers (Figure 4b). In 2022, Y. Qi et al. [25]
adopted a wrapped SMF-MMF-SMF structure as both saturable absorber and comb filter in
a mode-locked fiber laser, and continuously tunable multi-wavelength mode-locked pulses
were obtained by varying the paddles’ orientation.
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In addition, the fiber laser cavity artificial birefringence filter will also affect the
oscillating wavelengths. By adjusting the PC inserted into the fiber laser, the transmission
spectrum of the SMF-MMF-SMF is modulated, so the oscillating wavelength can also be
tuned or switched by adjusting the PC in the cavity [26–28]. In ref. [26], a multiwavelength
Tm-doped fiber laser was proposed and experimentally demonstrated. The wavelength
could be tuned by adjusting the PC and rotating the MMF in the SMF-MMF-SMF structure.
The experimental setup diagram and wavelength-tuning results are shown in Figure 5.
Figure 5a is the ring cavity configuration of the Tm-doped fiber laser, and Figure 5b is the
measured spectra of the single-wavelength laser by adjusting the PC and rotating the MMF.
The wavelength could be changed from 1892.66 nm to 1916.04 nm, with a tuning range of
24 nm.
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In mode-locked fiber lasers, the wavelengths could be switched by adjusting the PC
in the cavity. In ref. [27], J. Chen et al. reported the results of wavelength-switchable
bound solitons in a passively mode-locked fiber laser based on tapered GIMF. By adjusting
the PC inserted in the cavity, the central wavelength of the fiber laser could be switched
between 1565 nm and 1595 nm. In ref. [28], H. Li et al. demonstrated an all-fiber multi-
wavelength mode-locked thulium-doped fiber employing a cascaded SMF-SIMF-GIMF-
SMF structure, acting both as a filter and as a saturable absorber. Stable tri-wavelength
(1857/1897/1934 nm) mode-locking operation was obtained. The tri-wavelength mode-
locking state could be switched to single- or dual-wavelength mode-locking state by
rotating the PC properly. Changing the ambient temperature [11] has also been used to
achieve tunable wavelengths.

3. Tunable Fiber Lasers Based on No-Core Fiber Interference Filters
3.1. Structure and Working Principle of No-Core Fiber Interference Filter

With the development of fiber preparation technology, various special fibers with
different structures have been used to prepare multimode interference filters. A commonly
used type of fiber is the no-core fiber (NCF). As shown in Figure 6, a single-mode fiber
no-core-fiber single-mode-fiber (SMF-NCF-SMF) interference filter is formed by fusing a
section of NCF between two SMFs. The working principle of this kind interference filter
is similar to the SMF-MMF-SMF filter. When incident light enters the NCF, higher-order
modes are excited, and different modes undergo different optical paths during propagating
in the NCF. These higher-order modes cause interference between each other when they
are coupled back into the following SMF [29].
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3.2. Tuning Method of No-Core Fiber Interference Filter

When the refractive index of the surrounding environment of the NCF changes, the
transmission constant of the light propagating in the fiber changes. Therefore, an advantage
of the multimode interference filters based on NCF is that wavelength tuning can be easily
achieved by changing the environmental refractive index [29–31]. In 2014, L. Ma et al. [29]
demonstrated a tunable erbium-doped all-fiber laser, where a thinner NCF with a diameter
of 104 µm was used to fabricate the SMF-NCF-SMF filter. The filter was sensitive to the
change in the environmental refractive index. In the experiment, the filter was covered
with glycerol solution. When the concentration of glycerol solution was changed from
0% to 78%, the effective refractive index ranged from 1.333 to 1.440, and the oscillating
wavelength of the fiber laser changed from 1532 nm to 1564 nm, with a tuning range of
32 nm. In ref. [31], X. Ma et al. fabricated an SMF-NCF-SMF filter, and when the NCF was
gradually vertically covered by refractive-index-matching liquid, the peak wavelengths
of the transmission curve of the fiber filter were tuned. Using the SMF-NCF-SMF filter, a
thulium-doped fiber laser was demonstrated, and the wavelength was tunable in the range
from 1831.52 nm to 1858.70 nm. Figure 7 shows the filter structure, experimental setup
diagram, and tuning results.
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Combined with the refractive-index-matching fluid, the SMF-NCF-SMF filter could also
be tuned by changing the length of the liquid. A. Castillo-Guzman et al. [32] reported a widely
tunable erbium-doped fiber laser based on the multimode interference effect. The tuning
mechanism was based on a fused silica ferrule filled with a refractive-index-matching fluid.
The ends of the SMF and NCF were inserted into the ferrule, and their separation was changed
to tune the peak wavelength. Figure 8 gives the schematic of the filter, the experimental setup
of the tunable erbium-doped fiber laser, and the tuning results.
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4. Tunable Fiber Lasers Based on Multi-Core Fiber Interference Filters
4.1. Structure and Working Principle of Multi-Core Fiber Interference Filter

Different from conventional fiber, there is more than one core in multi-core fibers. Ac-
cording to the number of cores, multi-core fibers can be divided into two-core fibers, four-core
fibers, seven-core fibers, and so on. If the distances between the cores are long, each core
serves as an independent waveguide, and light propagates independently within these cores.
This type of fiber is called a weakly coupling multi-core fiber. If the distances between the
cores are close, the coupling between different cores will occur when light is coupled into one
core, and this type of fiber is usually called a strong coupling multi-core fiber.

4.1.1. Structure and Working Principle of Strong Coupling Multicore Fiber Interference Filter

Currently, most tunable lasers based on multi-core fibers are fabricated with strong
coupling fibers. Figure 9a shows a cross-section of a two-core fiber (TCF). The TCF filter
(Figure 9b) is prepared by fusing a section of TCF between two sections of SMFs [33]. At
the first fusion point, the light transmitted in the SMF is coupled with one core of the TCF.
Due to the small distance between these two cores, the light is coupled and transmitted
in these two cores, and it returns to the SMF at the second fusion point [34]. When a
segment of weakly coupled multi-core fiber is heated and tapered, the distance between the
cores becomes shorter and shorter, and a strong coupling fiber will be formed. Figure 9c
shows a filter prepared with a segment of seven-core fiber, which is made by fusing a
tapered seven-core fiber (TSCF) between two SMFs [35]. Taking the TSCF as an example,
the working principle of a strong coupling multi-core fiber filter is analyzed as follows.



Micromachines 2023, 14, 2026 9 of 22Micromachines 2023, 14, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 9. (a) Cross-section of the two-core fiber [33]; (b) The structure of the interference filter based 
on two-core fiber [33]; (c) Structure of the interference filter based on tapered seven-core fiber [35]. 

When light is injected from the middle core of the seven-core fiber, the intensity of 
the light in the middle core and the six side cores can be expressed as [35] 

( ) ( )CzzA 7cos
7
6

7
1 22

1 +=  (4)

( ) ( ) 1p     7sin
7
1 22

≠= CzzAp  

in which n  and n  are the refractive indices of the middle-core and side-core modes, 
while a and d are the core diameter and the spacing between two cores, respectively. K  
and K  denote the Henkel functions of order 0 and 1. U , V , and W  are represented 

as U = a 2πn λ − β  , V = n − n  , and W = a β − 2πn λ  . They are nor-
malized as radial phase constant, normalized radial attenuation constant, and normalized 
frequency. 

From Equation (4), it can be seen that the middle-core mode and side-core mode os-
cillate periodically with a phase of 𝜋 2. Figure 10 shows the normalized light intensity 
distribution of the strong coupling part and the weak coupling part of the seven-core fiber 
simulated by Rsoft software (202103). In the strong coupling part of the tapered region, 
light oscillates in the middle core and side cores are observed, while in the non-tapered 
part after the tapered region light propagates independently in each core. Figure 10b 
shows the oscillation spectra in the middle core and the side cores, with a phase difference 
of  𝜋 2, which is consistent with the theoretical analysis results. 

 
Figure 10. (a) The field distribution and normalized power in a tapered seven-core fiber simulated 
by Rsoft software; (b) Transmission spectra of tapered seven-core fiber simulated by Rsoft software 
[35]. 

Up to now, except for the tapered seven-core fiber, strong coupling multi-core fibers 
such as three-core fiber [36], two-core erbium-doped gain fiber [37], and two-core photonic 

Figure 9. (a) Cross-section of the two-core fiber [33]; (b) The structure of the interference filter based
on two-core fiber [33]; (c) Structure of the interference filter based on tapered seven-core fiber [35].

When light is injected from the middle core of the seven-core fiber, the intensity of the
light in the middle core and the six side cores can be expressed as [35]

|A1(z)|2 =
1
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in which n1 and n2 are the refractive indices of the middle-core and side-core modes, while a
and d are the core diameter and the spacing between two cores, respectively. K0 and K1 denote

the Henkel functions of order 0 and 1. U, V, and W are represented as U = a

√(
2πn1
λ

)2
−β2,

V = 2πa
λ

√
n2

1 − n2
2, and W = a

√
β2 −
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)2
. They are normalized as radial phase constant,

normalized radial attenuation constant, and normalized frequency.
From Equation (4), it can be seen that the middle-core mode and side-core mode

oscillate periodically with a phase of π
2 . Figure 10 shows the normalized light intensity

distribution of the strong coupling part and the weak coupling part of the seven-core fiber
simulated by Rsoft software (202103). In the strong coupling part of the tapered region,
light oscillates in the middle core and side cores are observed, while in the non-tapered
part after the tapered region light propagates independently in each core. Figure 10b shows
the oscillation spectra in the middle core and the side cores, with a phase difference of π

2 ,
which is consistent with the theoretical analysis results.
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Up to now, except for the tapered seven-core fiber, strong coupling multi-core fibers
such as three-core fiber [36], two-core erbium-doped gain fiber [37], and two-core photonic
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crystal fiber [38] have all been used to prepare filters and have achieved tunable output
wavelengths in fiber lasers.

4.1.2. Structure and Working Principle of Weakly Coupling Multi-Core Fiber
Interference Filter

Weakly coupling seven-core fiber has also been used to fabricate interference filters [39],
and the structure of the seven-core fiber is shown in Figure 11a. The working principle of
the filter is shown in Figure 11b. The light transmitted in the SMF is divided into two parts
by the first segment of the MMF, where one part propagates in the core of the seven-core
fiber, and the other part propagates in the cladding of the seven-core fiber. These two parts
of the light are recoupled back to the SMF after passing through the second segment of the
MMF, and interference occurs due to the different effective refractive indices of the light
transmitted in the core and cladding.
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4.2. The Tuning Method of Multi-Core Fiber Interference Filter

The commonly used methods to tune multi-core fiber interference filters are stretching
and bending. In 2011, G. Lin et al. [40] proposed a filter based on TCF, where three TCF
filters were cascaded to optimize the transmission spectrum of the filter. By applying
tension to the filter, the central wavelength of the filter could be adjusted in the range from
1540.8 nm to 1557.8 nm. In 2020, Y. Lv et al. [36] reported an erbium-doped fiber laser based
on a three-core photonic crystal fiber (TCPCF), and single-wavelength, dual-wavelength,
and three-wavelength tunability were achieved by applying tension, with tuning ranges of
19.58 nm, 10.34 nm, and 6.84 nm, respectively. In 2020, we proposed a narrow-linewidth,
wavelength-tunable erbium-doped fiber laser by cascading a Mach–Zehnder interferometer
and a TSCF filter [35]. By applying strain to the TSCF, the wavelength could be tuned from
1570.22 nm to 1559.33 nm. Figure 12a,b show the experimental setup and tuning results of
the laser, respectively. In 2013, G. Yin et al. [34] reported a fiber laser based on a TCF filter.
By bending the filter, the output wavelength of the laser was tunable, with a tuning range
of 24 nm. In 2014, a tunable erbium-doped fiber laser was reported based on two cascaded
TCF filters. The number of the wavelength could be adjusted by bending one filter, and
the central wavelength could be tuned by stretching the other filter [33]. Fiber lasers based
on multi-core fibers are summarized in Table 2. The tuning ranges are the results of single
wavelengths. Dual- or triple-wavelength tuning results are not included.

Table 2. Summary of the literature reports on tunable fiber lasers based on multi-core fiber filters.

Ref. Structure Tuning Method Laser Type Gain Fiber Tuning Range

[33] Two cascaded
SMF-TCF-SMF

Bending and
stretching CW Er-doped 1541.8–1560 nm

[34] SMF-TCF-SMF Bending CW Er-doped 1542.2–1566 nm

[35] SMF-TSCF-SMF Stretching CW Er-doped 1570.22–1559.33 nm
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Table 2. Cont.

Ref. Structure Tuning Method Laser Type Gain Fiber Tuning Range

[36] SMF-MMF-
TCPCF-SMF Stretching CW Er-doped 1549.32–1568.9 nm;

[38]
SMF-twin-core

photonic crystal
fiber (TCPCF)-SMF

Bending CW Er-doped 1560.4–1583.44 nm

[41] SMF-TSCF-SMF Stretching Mode-locked Yb-doped

Dissipative solitons:
1040.08–1052.44 nm,

Amplifier similaritons:
1052.02–1068.16 nm
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5. Tunable Fiber Lasers Based on Tapered Fiber Filters

Tapered fibers are widely used in fiber couplers, fiber sensors, and other nonlinear fiber
devices. The common method to prepare a tapered fiber is to heat and stretch a segment
of traditional fiber. During the stretching process, the diameter of the fiber decreases
gradually. According to the structure of the tapered fiber, the interference filters based on
tapered fibers can be divided into two types, which we refer to as single-cone filters and
double-cone filters.

5.1. Structure and Tuning Principle of Single-Cone Interference Filter

There is only one tapered region in the single-cone interference filter. The tapered
region supports two or more high-order modes, which couple with each other and are
coupled back into the fiber core in the non-tapered region. Interference is generated
due to the different transmission constants between different modes. In 2017, S. Celachi
et al. [42] calculated the dependence of effective index of excited HE11 and HE12 modes
on the external radius of the tapered region. According to the mode-coupling theory, the
normalized output power Pout from the HE11 mode is described by the follow equation [42]:

Pout(λ0) = ψ cos(φ)2 + ζ sin(φ)2, (5)

where Ψ = 0.9992 and ζ = 0.0132 are the square of the overlap integral between the HE11
and HE12 supermodes (from the coaxial waveguide) in-quadrature and phase, and the
HE11 mode of the rod waveguide, respectively. φ denotes the accumulated phase difference
between these modes after propagating a distance L:

φ =
2π

λ0

∫ L

0
∆ne f f (λ0, z)dz. (6)
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Figure 13 shows the numerical results calculated using Equations (5) and (6), which
agree with the experimental results well.
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The commonly used method to tune a fiber laser based on single-cone fiber filters
is to apply tension to the tapered region [43–47]. In 2006, K. Kieu et al. [44] used this
filter as a wavelength-selection device to build an erbium-doped fiber laser. When the
stretching reached 180 µm, the output wavelength of the laser was tunable in the range
from 1546 nm to 1567 nm. Figure 14 shows the structure diagram of the tapered fiber filter,
experimental setup diagram, and tuning results. In 2010, the same team designed a 2 µm
band mode-locked fiber laser, where the central wavelength could be tuned by applying
tension to the tapered region [43]. In 2017, H. Ahmad et al. [47] constructed a mode-locked
fiber laser based on a single-cone interference filter, and when the stretching range of the
filter reached 100 µm, the central wavelength of the mode-locked pulse was tunable in the
range from 1560 nm to 1556.2 nm. The article also pointed out that, the smaller the diameter
and the longer the length of the tapered area, the more sensitive it was to stretching. A
summary of the fiber lasers based on single-cone interference filter is shown in Table 3.
The tuning ranges are the results of single wavelengths. Dual- or triple-wavelength tuning
results are not included.
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Table 3. Summary of the literature reports on tunable fiber lasers based on tapered fiber filters.

Ref. Structure Tuning Method Laser Type Gain Fiber Tuning Range

[43] Single cone Stretching Mode-locked Tm-doped 1866.3–1916.4 nm

[44] Single cone Stretching CW Er-doped 1546–1566.5 nm

[45] Single cone Stretching Mode-locked Tm-doped

[46] Single cone Stretching CW Er-doped 1910.6–1958.1 nm

[47] Single cone Stretching Mode-locked Er-doped 1560.6–1556.2 nm

[48] Single cone Adjusting the PC in
the cavity CW Er-doped NA

[49] Single cone Adjusting the PC in
the cavity Mode-locked Yb-doped NA

[50] Double core Bending CW Er-doped 1550–1605 nm

[51] Double core Bending CW Er-doped 1527–1563 nm

[52] Double core Bending CW Er-doped

[53] Double core Bending CW Er-doped

Laser 1:
1528.778–1528.998 nm

Laser 2:
1533.877–1534.096 nm

[54] Double core Bending CW Er-doped NA

[55] Double core

Changing the
temperature of the
glycerol solution

surrounding the filter

CW Er-doped NA

[56] Double core Stretching CW Yb-doped NA

[57] Double core Using a passive band
pass filter CW Er-doped 1525–1562 nm

[58] Double core Adjusting the PC in
the Sagnac loop CW Er-doped 1560.1–1612.8 nm

NA: not available.

5.2. Structure and Tuning Principle of Double-Cone Interference Filter

In a single-cone filter, the transition in the tapered region is generally relatively slow.
If it is a steeply changing cone, the angle of the transition region is relatively large, and
part of the light will be coupled from the fiber core to the cladding. If another identical
steeply changing cone is added a few centimeters after the first one, the light coupled to the
cladding will be recoupled back into the fiber core. Due to the different refractive indices of
the core mode and cladding mode, interference occurs when the light is coupled back to
the core [50]. As shown in Figure 15, this kind of interference filter has two tapered regions.
In the first tapered region, part of the light is coupled into fiber cladding, and in the second
tapered region, the light is coupled back to the fiber core. The working principle of the
double-cone interference filter is similar to that of a Mach–Zender interferometer (MZI), so
it is commonly referred to as an MZI filter.
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The intensity at the end of the interferometer structure can be expressed as follows [51]:

I ≈ Icore + Icladding = 2
√

Icore Icladding cos ∆φ, (7)

where Icore denotes the intensity of the core mode, and Icladding is the cladding mode
intensity propagating between the first and second tapers. ∆φ denotes the phase difference
between core and cladding modes, which is given as follows:

∆φ ≈
2π
(

ne f f
core − ne f f

cladding

)
L

λ
. (8)

In Equation (8), ne f f
core and ne f f

cladding are the effective refractive indices of the core and
cladding modes, respectively. λ is the operation wavelength and L denotes the physical
length between these two tapers. The free spectral range of the interferometer is expressed
as follows:

∆λ ≈ λm−1 − λm =
λm−1λm
∆ne f f L

, (9)

where λm−1 and λm are the wavelengths of mth and (m−1)th-order interference dips, respec-
tively. ∆ne f f gives the effective refractive index difference of the core and cladding modes.

For double-cone interference filters, the commonly used tuning method is
bending [50–54]. When the filter is bent, more high-order modes are excited in the ta-
pered region, thereby changing the interference effect between different modes [50]. In
2010, X. Wang et al. [50] reported a tunable C-band and L-band fiber lasers based on biconi-
cal MZI filters, and the tuning range covered the entire C and L-band. Figure 16a,b show
the experimental setup of the tunable fiber laser and the tuning results after annealing,
respectively. In 2014, M I. Md Ali et al. [53] designed a dual-wavelength fiber laser based
on a biconical MZI filter and analyzed the effects of tapered region length on the free
spectral range, extinction ratio, and bandwidth of the interference curve. Tunable output
wavelengths were obtained by bending one of the tapered regions of the MZI filter. In 2022,
G. Salceda-Delgado et al. [51] reported an erbium-doped fiber laser with a double-cone
MZI as the wavelength selector, and the central wavelength was tunable from 1527 nm to
1563 nm. Additionally, the laser could emit simultaneous laser line emission, starting from
one to four. The stability of the laser was also discussed.

In addition to bending, changing the refractive index of the liquid surrounding the
tapered region or applying tension will also change the characteristics of the filter. In
2014, R. Selva-Aguilar [55] immersed a biconical interferometer in glycerol solution and
changed the refractive index of the solution through heating to achieve tunable laser
output, and the tuning range was 12 nm. In 2016, H. Ahmad et al. [56] reported a dual-
wavelength Yb-doped fiber laser with adjustable wavelength spacing based on a double-
cone interferometer. When the stretching amounts were 2 µm, 12 µm, 87 µm, and 190 µm,
the dual wavelength intervals were 7.88 nm, 7.62 nm, 11.59 nm, and 7.12 nm, respectively.
Fiber lasers based on tapered fiber filters are summarized in Table 3.
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6. Tunable Fiber Lasers Based on Other Interference Filters

Except for the interference filters mentioned above, there are also filters fabricated
with other special fibers or structures, such as four-leaf clover suspended core fibers [59],
two cascaded up-taper joints structure [60], photonic crystal fibers [61], and core-offset
structure [62].

In 2011, Z. Tang et al. [59] reported a high-performance fiber laser by using a four-leaf
clover suspended core fiber (FLCSCF) filter. The filter was fabricated by splicing a segment of
FLCSCF between two segments of SMFs, as shown in Figure 17a,b. The working principle of
this filter is similar to the SMF-MMF-SMF filter or SMF-NCF-SMF filter. The mode transmitted
in the first SMF is diffracted at the fusion point between the SMF and FLCSCF, where high-
order core modes and multiple cladding modes are excited in the following FLCSCF. The
propagation constants of these core modes and cladding modes are different; thus, a certain
phase difference is accumulated after transmitting a distance in the FLCSCF. These modes will
converge and recombine with each other at the second fusion point. Inserting the FLCSCF
filter in a ring fiber laser cavity, the central wavelength could be tuned from 1581.5 nm to
1546.6 nm by applying strain to the filter. Figure 17c,d are the experimental setup of the fiber
laser and the tunable single-wavelength output, respectively.

Multimode interference filters have also been prepared by cascading two up-taper
joints (Figure 18) [60]. The up-taper was fabricated by increasing the forward distance
infusion splicing using a fusion splicer. The working principle of this filter is similar to
that of the tapered dual-cone filter. Cladding modes are excited in the first up-taper point,
which will propagate in the cladding of the fiber between these two tapers. The couple
of cladding mode back to core mode will happen in the second up-taper point, and the
core mode and cladding mode meet and create interference with each other. Fiber lasers
based on this filter possess the sensing characteristics that the interferometer possesses.
The temperature and refractive index response of the laser are investigated [60].
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Figure 17. (a) The cross-section of the FLCSCF; (b) Schematic diagram of the FLCSCF filter;
(c) Experimental setup of the fiber laser based on FLCSCF filter; (d) Tunable single-wavelength
lasing output [59].
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Figure 18. Diagram of two cascaded up-taper joints structure [60].

The similar MZI filter could be fabricated with photonic crystal fiber (PCF) [61,63].
Figure 19a,b show the SEM picture of the PCF and the schematic diagram of the SMF-PCF-
SMF filter. As shown in Figure 19b, when the PCF and SMF were spliced together, the
air hole of the PCF collapsed in the region of the splices. When the fundamental mode
in the SMF was launched into the first collapsed region, cladding and core mode were
excited. The cladding modes could be re-coupled to the core in the second collapse region,
and interference occurred between the cladding and core modes. J. M. Sierra-Hernandez
et al. [63] reported a tunable erbium-doped fiber laser based on this SMF-PCF-SMF filter. By
changing the curvature radius of the MZI filter, the single-, double-, or triple-line emissions
could be tuned from 1526 nm to 1550 nm. Figure 19c gives the experimental setup of the
tunable fiber laser. Figure 19d shows the tuning results of the single-wavelength spectrum.

When the light transmitted in the core of the SMF encountered a core-offset joint, part
of the light would be coupled to the cladding, too [62,64–66]. X. Hao et al. [62] proposed
a fiber laser temperature sensor based on SMF core-offset structure filter. The core-offset
structure was fabricated by offset-splicing a section of SMF between two SMFs, as shown
in Figure 20. When the light propagating in the SMF was launched into the first core-offset
joint, part of the light was coupled to the cladding of the fiber. After a certain distance
transmission, the light would be re-coupled to the core at the second core-offset joint. The
filter was put on a furnace to change the temperature. When the temperature varied from
30 to 270, the central wavelength of the fiber laser changed from 1547.7 nm to 1558.1 nm.
Y. Qi et al. [65] reported a wavelength-switchable fiber laser based on a few-mode fiber
(FMF) filter with core-offset structure. FMF is a special multi-mode fiber with several core
modes. The proposed fiber filter was fabricated by splicing a section of FMF between two
SMFs. The light was injected into the FWF at the core-offset structure though the lead-in
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fiber. Different from SMF core-offset structure, several core modes were effectively excited
in the FMF, which could be selected by adjusting the core-offset distance appropriately.
And the excited cladding modes were lost by the absorption of the coating of FMF. Thus,
interference occurs between different core modes at the second core-offset splicing region.
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Figure 19. (a) The cross-section of the PCF; (b) Schematic diagram of the SMF-PCF-SMF filter [55];
(c) Experimental setup of the tunable fiber laser; (d) Tuning results of the single-wavelength output
spectrum [63].
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7. Applications of Multimode Interference Filters in Mode-Locked Fiber Lasers

In normal-dispersion mode-locked fiber lasers, the filter plays the role not only of
wavelength selection but also of pulse reshaping. In 2006, A. Chong [67] reported a mode-
locked ytterbium-doped fiber laser based on the spectral filtering of a highly chirped
pulse in the cavity. By increasing the nonlinear phase shift accumulated by the pulse and
inserting a spectral filter in the cavity, self-amplitude modulation via spectral filtering is
enhanced. In another words, by cutting the edges of the spectrum of a chirped pulse, the
filter helps reshape the pulse in the spectral domain. The filter and saturable absorber work
together to maintain stable pulse operation. This type of pulse is generally in a Gaussian



Micromachines 2023, 14, 2026 18 of 22

shape and is called dissipative soliton [68]. When the filter is narrower than 5 nm, another
type of parabolic pulse may be obtained [69], which is a local nonlinear attractor in the
gain segment of the oscillator and is usually referred to as parabolic amplifier similariton.
Generally, both dissipative solitons and amplifier similaritons could be obtained in one
mode-locked fiber laser. With the decrease in the filter bandwidth, the pulses will be
switched from dissipative solitons to amplifier similaritons [70]. In 2023, our team reported
a wavelength tunable fiber laser based on a TSCF filter. When a filter with a 3 dB bandwidth
of 12.00 nm was selected, stable dissipative solitons were obtained. And when a filter with
a 3 dB bandwidth of 6.64 nm was used, the fiber laser generated amplifier similaritons [41].
By applying tension to the tapered region, the central wavelengths of both dissipative
solitons and self-similar pulses could be tuned. Figure 21a gives the experimental setup of
the tunable fiber laser, and Figure 21b,c show the tuning results.
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Another point worth to note is that the transmission spectrum of an interference filter
is generally comb-shaped. The comb shape affects the spectrum of the pulse. When a
narrow interference filter is adopted and the fiber laser delivers amplifier similaritons,
the spectrum of the pulse usually exhibits modulated sidebands [7]. According to the
experimental and simulation results, the sidebands in the modulated spectrum result from
the comb-shaped oscillator transmission spectrum of the interference filter [7]. Therefore,
when a multimode interference filter is used in a mode-locked fiber laser, the impact of
filter bandwidth and shape on pulses should be considered.

As mentioned above, multi-mode fiber, no-core fiber, multi-core fiber, tapered fiber,
and many other types of fibers have all been used to prepare multimode interference filters.
Among them, filters based on multi-mode fibers and no-core fibers are less expensive and
are more robust than tapered fiber filters. Multi-core fibers can be fused with traditional
fibers using ordinary fusion splicers. However, the price of multi-core fiber is expensive.



Micromachines 2023, 14, 2026 19 of 22

No special fiber is needed to fabricate fibers based on tapered fibers. Nevertheless, the
tapering process requires special equipment.

8. Summary and Outlook

As a wavelength-selective device, the filter is one of the most important components in
tunable fiber lasers. Compared with fiber grating and birefringent filters, multimode inter-
ference filters have the advantages of simple structure, flexible tuning methods, being easy
to integrate with fiber devices, and flexible spectral ranges. The structures of multimode
interference filters based on multimode fibers, no-core fibers, multi-core fibers, and tapered
fibers have been introduced in this article, and the working principles of all these filters
are analyzed. The research progress of tunable fiber lasers based on different structures of
interference filters is summarized according to the classification of tuning methods.

With the advancement in fiber manufacturing and processing technology, the struc-
ture of multimode interference filters is continuously optimized, and the performance of
tunable lasers is constantly improved. However, there is still a certain gap in the practical
application of multimode interference filters. From a practical perspective, it is necessary to
estimate their stability and immunity to the changing environments. In addition, the com-
mon methods to tune multimode fiber filters are stretching or bending, and the repeatability
and reliability after multiple stretching or bending also need to be evaluated. Continu-
ously improving the performance of multimode fiber interference filters and promoting the
practicality of tunable fiber lasers is an important research direction.

In addition, mode-locked pulsed fiber lasers usually operate in the negative dispersion
domain or positive dispersion domain. In a negative dispersion mode-locked laser, the
filter determines the working wavelength of the laser, and the output wavelength is tunable
by changing the peak transmission wavelength of the filter. In a positive dispersion mode-
locked fiber laser, the peak transmission wavelength of the filter determines the working
wavelength of the laser, and the bandwidth and shape of the filter also affect the evolution
process and working mechanism of the pulse. The influence of the central transmission
wavelength, bandwidth, and shape of the filter on the pulse formation process need to
be studied to achieve the flexible output of the mode-locked laser with a tunable central
wavelength and switchable pulse mechanism. This is another research direction for tunable
fiber lasers.
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