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Abstract: Binary memristor crossbars have great potential for use in brain-inspired neuromorphic
computing. The complementary crossbar array has been proposed to perform the Exclusive-NOR
function for neuromorphic pattern recognition. The single crossbar obtained by shortening the
Exclusive-NOR function has more advantages in terms of power consumption, area occupancy, and
fault tolerance. In this paper, we present the impact of data density on the single memristor crossbar
architecture for neuromorphic image recognition. The impact of data density on the single memristor
architecture is mathematically derived from the reduced formula of the Exclusive-NOR function,
and then verified via circuit simulation. The complementary and single crossbar architectures are
tested by using ten 32 × 32 images with different data densities of 0.25, 0.5, and 0.75. The simulation
results showed that the data density of images has a negative effect on the single memristor crossbar
architecture while not affecting the complementary memristor crossbar architecture. The maximum
output column current produced by the single memristor crossbar array decreases as data density
decreases while the complementary memristor crossbar array architecture provides stable maximum
output column currents. When recognizing images with data density as low as 0.25, the maximum
output column currents of the single memristor crossbar architecture is reduced four-fold compared
with the maximum currents from the complementary memristor crossbar architecture. This reduction
causes the Winner-take-all circuit to work incorrectly and will reduce the recognition rate of the single
memristor crossbar architecture. These simulation results show that the single memristor crossbar
architecture has more advantages compared with the complementary crossbar architecture when the
images do have not many different densities, and none of the images have very low densities. This
work also indicates that the single crossbar architecture must be improved by adding a constant term
to deal with images that have low data densities. These are valuable case studies for archiving the
advantages of single memristor crossbar architecture in neuromorphic computing applications.

Keywords: pattern recognition; memristor crossbar circuit; neuromorphic computing

1. Introduction

Memristor was mathematically proposed in 1971 by Prof. L. O. Chua as basic as the
three circuit elements, namely the resistor, inductor, and capacitor [1]. The first practical
memristor device was introduced by R. S. William and several colleagues at Hewlett-
Packard Laboratories in 2008 [2]. The conductance of a memristor, also known as memris-
tance, can be modified by programming pulses and has the ability to be maintained, making
the memristor an ideal device for modelling the synaptic plasticity of biological neuronal
systems [3,4]. Furthermore, with 2D array and 3D array structures [5–9], memristor cross-
bar arrays have become an emerging technology for high-density neuromorphic computing
systems, as an alternative to CMOS technology that is unquestionably approaching the
physical scaling limits [10,11].

Hardware implementations of neural computing using memristor crossbars have
achieved much success in the last decade [12–17]. Since the multiplication and accumula-
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tion operations can be performed using Kirchoff’s law and Ohm’s law at the circuit level,
the results can be obtained in a single step, leading to a significant improvement in com-
putational speed, energy consumption, and area occupancy [18]. Although the memristor
crossbar has many advantages, the implementation of neural computing using memristor
crossbar faces many challenges, caused by non-ideal device parameters, for example, pro-
gramming variation, state-stuck devices, conductance drift, and device variability [19,20].
The binary memristor crossbar, in which memristor has only two states: low resistance and
high resistance states, becomes more feasible for neuromorphic computing [13,16,21,22].
The binary memristor crossbar can perform the cognitive task of pattern recognition, which
is the process that matches information from a stimulus with information retrieved from
the memory [23]. Several brain-inspired neuromorphic computing circuits employing
binary memristor crossbar arrays for neuromorphic pattern recognitions such as speech
recognition [24,25] and image recognition [26,27] have been recently proposed. With the
high ratio of high resistance state to low resistance state, binary memristor arrays are more
efficient for implementing brain-inspired neuromorphic computing for pattern recognition
applications in terms of power consumption, and noise and device variation tolerance,
compared with analog memristor crossbar arrays.

The first interesting architecture of binary memristor crossbar for brain-inspired neu-
romorphic computing is the complementary crossbar that performs the logical function
of Exclusive-NOR for speech and image recognition [24]. The twin crossbar architecture
is a modified version of the complementary crossbar for low-power neuromorphic image
recognition [26]. The single crossbar architecture is then an optimized version of the com-
plementary crossbar and the twin crossbar by shortening the Exclusive-NOR function [27].
The single memristor crossbar architecture has more advantages in terms of area occupancy,
power consumption, and fault tolerance. The single memristor crossbar is a potential piece
of architecture for neuromorphic image recognition because it can save area occupancy and
power consumption, compared to the complementary and twin crossbar architectures.

In previous work, to obtain the single crossbar architecture, a constant term in the
expanded function of the Exclusive-NOR is omitted. Because all constant terms of all
columns are omitted, so it does not affect the identification of the winner. The single
memristor crossbar circuit was tested with 10 binary images. The tested images have a
high number of 1 bits. Single crossbar architecture has not been tested with images with
the low number of 1 bits. Bit 1 of binary image data is represented by a low resistance
state memristor, which mainly produces the output column current in single memristor
crossbar architecture. If the number of 1 bits is low, the output currents are all very small,
which can impact the accuracy of output decision circuit. In this work, we find out the
impact of data density on the operation of the single memristor crossbar architecture, in
which a constant term of the expanded function of the Exclusive-NOR is omitted. This
research shows an interesting result that the single memristor crossbar architecture has the
advantage for images with high density, but does not work well with low-density images.

2. The Complementary Memristor Crossbar Architecture and the Single Memristor
Crossbar Architecture for Neuromorphic Pattern Recognition

A complementary memristor crossbar architecture has been proposed for the cognitive
task of pattern recognition based on the Exclusive NOR operation to measure the similarity
between the input pattern and the stored patterns. Complementary memristor crossbar
architecture is composed of two complementary crossbar arrays, as conceptually shown in
Figure 1. The column outputs are obtained by the Exclusive NOR operation between the
input vector and the column vectors [24]:

Y = A⊕M = AM + A′M′ = A · (M+) + A′ · (M−) (1)
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Figure 1. (a) The block diagram and (b) the schematic of the complementary memristor crossbar
architecture for neuromorphic pattern recognition.

In Equation (1), A is the input vector, M+ and M− represent the memristor crossbar
and its inversion, which consists of inverted elements of M+, respectively. The block
diagram and schematic of the complementary memristor crossbar architecture are shown
in Figure 1.

Figure 1a conceptually shows a block diagram of the complementary crossbar architec-
ture for recognizing m patterns. In Figure 1a, the input vector A has the size of 1 × n, the
M+ and M− are the two complementary memristor arrays with the size of n × m in which
m patterns are pre-stored for later recognition. Each pattern is saved in one column of the
arrays, in the format of binary data. A memristor in one column of the M+ array may be
set at either a high resistance state (HRS) or a low resistance state (LRS) when storing a bit
0 or a bit 1, respectively. The M− array contains memristors that have inverted values with
corresponding memristors in M+. For example, if the M0,0 memristor in the M+ array has
the value of HRS, the M′0,0 memristor in the M− array will have the value of LRS. The M+
array and M− array can be described in matrices as follows:

M+ =


M0,0 M0,1 . . . M0,(m−1)
M1,0 M1,1 . . . M1,(m−1)

...
...

...
...

M(n−1),0 M(n−1),1 . . . M(n−1),(m−1)



M− =


M′0,0 M′0,1 . . . M′0,(m−1)
M′1,0 M′1,1 . . . M′1,(m−1)

...
...

...
...

M′(n−1),0 M′(n−1),1 . . . M′(n−1),(m−1)


(2)
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The input vector A is applied to the M+ array, and its inversion vector, A′, is applied
to the M− array to implement the Exclusive-NOR function between A and M as discussed
in Equation (1) in order to obtain the following results:

Y =
[
a0 a1 . . . a(n−1)

]
·


M0,0 M0,1 . . . M0,(m−1)
M1,0 M1,1 . . . M1,(m−1)

...
...

...
...

M(n−1),0 M(n−1),1 . . . M(n−1),(m−1)



+
[
a′0 a′1 . . . a′(n−1)

]
·


M′0,0 M′0,1 . . . M′0,(m−1)
M′1,0 M′1,1 . . . M′1,(m−1)

...
...

...
...

M′(n−1),0 M′(n−1),1 . . . M′(n−1),(m−1)


=
[
i0 i1 · · · im−1

]

(3)

where Y =
[
i0 i1 · · · im−1

]
is the output vector that contains m output column currents.

The output current is then fed into a Winner-take-all circuit, which determines the
maximum output current. If the Winner-take-all circuit shows that ik is the maximum
output current, it means that the input vector A best matches the pattern stored in column
kth of the arrays.

Figure 1b represents the schematic of a complementary memristor crossbar circuit for
recognizing ten black and white images with the size of 32 × 32. Each image is converted
into a vector of size 1024 × 1 and stored in one column of the M+ array while its inverted
vector is stored in the corresponding column of the M− array. The input image represented
by vector A =

[
a0 a1 . . . a1023

]
and its inversion vector A′, are applied to the M+ array

and the M− array as presented in Equation (3). The output column current ik is then copied
by a current mirror circuit, and makes the pre-charged capacitor Ck discharge. When the
capacitor Ck discharges, the voltage VCk decreases either fast or slowly depending on the
value of the current ik. If the current ik is large, the capacitor Ck discharges fast and the
voltage VCk decreases fast. Ten discharging voltages, VC0 to VC9, are then compared to
each other using the Winner-take-all circuit to find the fastest one. The schematic of the
Winner-take-all circuit is shown in Figure 2 [24].
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Figure 2. The schematic of the Winner-take-all circuit.

In the Winner-take-all circuit, ten comparators receive ten discharging voltages, from
VC0 to VC9, and compare these voltages with the reference voltage VREF. When a voltage
VCk decreases to below the VREF, the output Dk changes to high while the other outputs
remaining low. This means that if VCk is the fastest discharging voltage, the comparators
set only Dk to high. The Pulse Generator then produces a locking pulse after a delaying



Micromachines 2023, 14, 1990 5 of 13

time to set the Outputk to high by the flip-flop FFk. The Outputk becomes high, while the
other outputs remaining low indicates that the input vector A matches the pattern in the
column kth of the memristor arrays.

The single memristor crossbar architecture was proposed by utilizing the Exclusive-
NOR function with only one memristor array [27]. The Exclusive-NOR function can be
expanded as follows:

Y = A⊕M = AM + A′M′

= AM + A′(1−M)
= (A− A′)M + A′

(4)

In Equation (4), A′ is a constant term for all columns and can be ignored because this
term does not affect the determination of the maximum output current. The optimized
Exclusive-NOR function for the single memristor crossbar architecture is expressed as:

Y = A⊕M = B·M
where B = (A− A′)

(5)

or:

Y =
[
b0 b1 . . . b(n−1)

]
·


M0,0 M0,1 . . . M0,(m−1)
M1,0 M1,1 . . . M1,(m−1)

...
...

...
...

M(n−1),0 M(n−1),1 . . . M(n−1),(m−1)


=
[
i0 i1 · · · im−1

]
(6)

In Equation (5), B =
[
b0 b1 · · · b(n−1)

]
is the bipolar input vector generated from

subtraction (A− A′) and contains the values 1 and −1. For example, if the input vector A
is A =

[
0 1 0

]
, A′ will be A′ =

[
1 0 1

]
and (A− A′) will result B =

[
−1 1 −1

]
.

Therefore, single memristor crossbar architecture employs only one memristor array along
with a unipolar-to-bipolar Convertor, as shown in Figure 3.
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for neuromorphic pattern recognition.

Figure 3a shows the block diagram of the single memristor crossbar architecture for
recognizing m patterns and Figure 3b represents the schematic of the single memristor
crossbar architecture for recognizing ten 32 × 32 binary images. The input vector A is first
turned into the bipolar input vector B by the Unipolar to bipolar Convertor. The bipolar
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input vector B is next applied to the single memristor array where ten patterns are stored
to obtain the output column currents, the i0 to i9, as expressed in Equations (5) and (6). The
output column currents are finally compared to each other by the Winner-take-all circuit to
find the maximum output column current ik. Here, the input vector A best matches the
pattern pre-stored in kth column of the single memristor array.

So far, we can see that the single memristor crossbar array with bipolar input has
the same functionality as the complementary memristor crossbar architecture for pattern
recognition based on Exclusive-NOR operation. In Equation (4), A is the input vector, M is
the memristor array in which images are stored in columns. We apply the input vector to
the array and obtain the output column currents. The winning column is identified as the
maximum column current by using a digital Winner-take-all circuit [24]. For a particular
input, all columns in Equation (4) are added a term of A′; thus, the existence of A′ does
not affect the determination of the maximum column current. Based on this inference, it is
possible to omit the constant term of A′ to obtain Equation (5). However, in Equation (5), if
the input vector A has a large number of 1 bits (defined as high density), meaning A′ has
small number of 1 bits (defined as low density), the column currents are all high. If the input
vector A has low density, meaning A′ has high density, omitting A′ leads to all column
currents are very low. In the CMOS circuit, it is difficult to determine the maximum current
when all currents are very low or all currents are very high because CMOS transistors have
threshold and saturation voltages. Therefore, the single memristor crossbar architecture
becomes a problem when the input images have fewer 1 bits.

3. Simulation and Results

The circuit simulations were performed to test the impact of data density on the
performance of single memristor crossbar and the complementary memristor crossbar
architectures. The simulations were performed using the SPECTRE circuit simulation
provided by Cadence Design Systems Inc, San Jose, CA, USA [28]. Memristors were
modeled using Verilog-A [29,30]. Memristor model and parameters are chosen to fit the
practical memristor device presented in Figure 4 [29,30]. Figure 4 shows a hysteresis
behavior of a real memristor based on the film structure of Pt/LaAlO3/Nb-doped SrTiO3
stacked layer and a memristor model that can be used to describe various memristive
behaviors [29,30].
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Figure 4. The memristor’s current–voltage characteristic measured from the real device and the
memristor’s behavior model [29].

As discussed in the previous section, it is essential to analyze the impact of data
density of patterns on the complementary and the single memristor crossbar architectures.
The data density of a binary image is defined as the percentage of bit 1 s in the image data.
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In particular, images with high data density will have a higher number of 1 bits, whereas
images with low data density will have fewer 1 bits. In this paper, ten images are used to
analyze the impact of data density on the performance of memristor crossbar architectures.
The original images are presented in Figure 5.
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Figure 5. Ten original grayscale images, numbered from image number 0 (#0) to image number 9 (#9).

The original images are grayscale images with the size of 32 × 32. Binary images are
produced by thresholding grayscale images. By varying the threshold, we obtain images
with different data densities. The first three images (#0, #1, and #2) have a low data density
of 0.25, the next three images (#3, #4, #5) have a moderate data density of 0.5, and the last
four images (#6, #7, #8, and #9) have a high density of 0.75. These different data density
images are then vectorized to the size of 1024 × 1 and stored in the memristor arrays of
the complementary crossbar architecture and the single crossbar architecture. Each image
is stored in a column of the array. Binary images with different data density produced by
thresholding grayscale images are shown in Figure 6.

In Figure 6a, a low data density of 0.25 means that the number of bits 1 accounts for
25% of the total number of pixels in the image. In Figure 6b, the images have equal numbers
of white pixels and black pixels, and images in Figure 6c have a greater number of white
pixels than black pixels.

Binary images are represented by vectors of binary values. Each image is stored in
one column of the memristor array for single crossbar architecture. For complementary
crossbar architecture, each image is stored in two columns, one column in the memristor
array and the other in the inverted memristor array, as mentioned before. Binary value 0
is represented by the high resistance state (HRS) memristor and binary 1 is represented
by the low resistance state (LRS) memristor in the crossbar array. The HRS and LRS are
1 MΩ and 10 KΩ, respectively. The binary values 0 and 1 in the input vector are mapped
to input voltages of 0 V and 1 V, respectively. The input image represented by the vector
of input voltage is applied to the crossbar circuit. The output currents are produced at
the bottom of columns according to the Ohm’s law and the Kirchoff’s current law. These
output column currents are then compared to each other using a Winner-take-all circuit
to determine the maximum column current, corresponding to the column containing the
pre-stored image that best matches the input image. The Winner-take-all circuit is based on
the discharge speeds of pre-charged capacitors, which are controlled by the output column
currents, to find the fastest discharging capacitor. Therefore, the values of output column
currents play an important role in the recognition accuracy of the memristor crossbar
array architectures. The output column currents when recognizing ten input images with
different data densities are shown in Figure 7.
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density of 0.75.

Figure 7a reveals that the complementary crossbar architecture produces the same
amount of maximum column currents when recognizing 10 images (from #0 to #9) which
have different data densities. In other words, the maximum output column current of the
complementary crossbar architecture does not depend on the data density of the input
images and the stored images. In particular, although the data densities of input images are
varied from 0.25 to 0.75, the maximum output column currents are stable at above 100 mA.
The reason for these stable maximum output column currents is that the complementary
crossbar architecture employs two complementary memristor arrays: the M+ memristor
array and the M−memristor array which contains memristors with inverted values of the
corresponding memristors in the M+ array. When a low data density image is stored in
the M+ memristor array, its inverted image or the complementary high data density image
would also be stored in the M−memristor array and vice versa. An output column current
is the sum of corresponding output currents from the M+ and M− arrays; therefore, the
maximum output column current remain unchanged regardless of the input images with
different data densities.
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Figure 7. The output column currents when recognizing images from #0 to #9 with: (a) the comple-
mentary crossbar architecture, (b) the single crossbar architecture.

In contrast, with the single memristor crossbar architecture, the output column currents
reduce when the data densities of input images are decreased, as shown in Figure 7b. In
particular, when the data density of input images is as low as 0.25 (images #0, #1, #2),
the maximum output column currents decreased as much as four times in comparison
with the complementary crossbar architecture and the other column currents are 0. The
reason for this result is described by Equation (5). In Equation (5), the parameter A′ is
omitted because it is a constant. Although this dismissing is mathematically true for
implementing the Exclusive-NOR function with the single memristor crossbar array, it
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causes a reduction by an amount of A′ at every output column current. In addition, the
subtraction in Equation (5) can yield negative values when the input image has few white
pixels or low data density, and these negative values do not generate any current to output
column currents. Therefore, when recognizing input images with a low data density of 0.25
by the single crossbar architecture, the maximum column current reduces about 4 times in
comparison with by the complementary crossbar architecture, and the rest column currents
are 0. When the data density is 0.5 (images #3, #4, #5) and 0.75 (images #6, #7, #8, #9), the
maximum output column currents produced by the single crossbar architecture are also
decreased, equal to around 0.5 and 0.75; the largest one is generated by the complementary
crossbar architecture.

Because the Winner-take-all circuit is based on the output column currents, this reduc-
tion in the maximum output column current of the single memristor crossbar architecture
should be considered. As represented in previous section, the output column currents from
memristor crossbars cause the pre-charged capacitors, the C0 to C9, to discharge at different
speeds. When an output column current is high, it makes the corresponding capacitor dis-
charge fast, and a capacitor will discharge slowly when the corresponding column current
is low. The discharging voltages, the VC0 to VC9, from the pre-charged capacitors is fed
into the winner-take-all circuit to determine the maximum output current, corresponding
to fastest discharging voltage. When the fastest discharging voltage degrades to below the
reference voltage of 0.5 V, it makes the Pulse Generator create a pulse to lock the wining
output among all outputs, from Output0 to Output9. If the Outputk becomes 1 while the
others are 0, it indicates that VCk is the fastest discharging voltage or the input image best
matches the pattern pre-stored in the kth column.

We next analyze the discharging voltages, from VC0 to VC9, which are produced by
the single memristor crossbar array corresponding to different data density input images.
The discharging voltages when recognizing the image #6 (with data density of 0.75) and
the image #0 (with data density of 0.25) with the single crossbar architecture are shown in
Figure 8.

As shown in Figure 8a, when recognizing image #6, which has high data density of
0.75, using the single memristor crossbar array, the pre-charged capacitor C6 discharges
fastest. The discharging voltage VC6 decreases fastest to 0.5 V after around 0.3 ns while the
others discharging voltages keep as high as above 0.7 V. In the Winner-take-all circuit, the
reference voltage of comparators is set at VREF = 0.5V. Therefore, the comparator i6, which
received the VC6 voltage, would set the output D6 to high and the Pulse Generator could
finally create a locking pulse to lock the Output6 = 1 to indicate that the output column
current i6 is the maximum.

In Figure 8b, when recognizing image #0 (data density is 0.25) using the single memris-
tor crossbar array, after the same period time of 0.3 ns, there is no discharging voltage which
decreases below the reference voltage of VREF = 0.5V. This means that the Pulse Generator
could not create a locking pulse and the Winner-take-all circuit could not determine which
column current is the maximum after the same period of time as when recognizing image
#6 with a high data density of 0.75. These results prove that low data density input images
can cause the single memristor crossbar architecture to recognize incorrectly and, therefore,
degrade the recognition rate.
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Figure 8. The discharging voltages of pre-charged capacitors when recognizing images with the
single memristor crossbar array: (a) when recognizing image #6 with high data density of 0.75,
(b) when recognizing image #0 with low data density of 0.25.

4. Discussion

The single memristor crossbar is an optimized crossbar architecture for brain-inspired
neuromorphic computing. The single memristor crossbar architecture consumes less power
and occupies smaller area than the complementary memristor crossbar architecture. In
addition, using only one memristor crossbar array can improve the fault tolerance of
the memristor crossbar circuit. Here, the cross-point fault is one of the main causes that
significantly reduces the accuracy of the memristor crossbar-base neuromorphic circuits [27].
In this paper, we figured out that the single crossbar works well if images have larger
number of 1 bits. By contrast, if images have fewer 1 bits, the complementary crossbar
architecture performs the image recognition better than the single crossbar architecture.
When the input images have data density as low as 0.25, the maximum output column
currents obtained by the single memristor crossbar architecture reduce about four times
in comparison with the complementary crossbar architecture. The Winner-take-all circuit
could not determine the maximum current, leading to the degradation of the recognition
rate of the single memristor crossbar architecture. The discoveries from this study are
twofold: First, the single memristor crossbar is effective in neuromorphic image recognition
provided all images must have high data density. Second, to accommodate images with a
low data density, the architecture of the single memristor crossbar must be improved to
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contain the constant term in the expression of Exclusive-NOR function. These are valuable
case studies for archiving the advantages of single memristor crossbar architecture in
neuromorphic computing applications.

5. Conclusions

In this work, we present the impact of data density on the performance of the single
memristor crossbar architecture and the complementary memristor crossbar architecture.
The impact of data density on the performance of single crossbar architecture is mathemati-
cally figured out by analyzing the effect of the omitted constant term in the Exclusive-NOR
operation. The observation is then verified by the circuit simulation for the recognition of
images with different levels of density. The complementary crossbar architecture consumes
more power and occupies a larger area compared with the single crossbar architecture;
however, the complementary crossbar architecture does not depend on data density. Other-
wise, single crossbar consumes less power and occupies smaller area than complementary
crossbar but single crossbar degrades the performance with low data density images. This
work recommends that to ensure the single crossbar architecture works correctly for binary
image recognition application, binary images must have high number of 1 bits. Finally, this
work also indicates that the single crossbar architecture must be improved by adding a con-
stant term to deal with images that have low data densities. These are valuable case studies
for archiving the advantages of single memristor crossbar architecture in neuromorphic
computing applications.
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