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Abstract: This paper presents a compact stacked RF energy harvester operating in the WiFi band
with multi-condition adaptive energy management circuits (MCA-EMCs). The harvester is divided
into antennas, impedance matching networks, rectifiers, and MCA-EMCs. The antenna is based on a
polytetrafluoroethylene (PTFE) substrate using the microstrip antenna structure and a ring slot in the
ground plane to reduce the antenna area by 13.7%. The rectifier, impedance matching network, and
MCA-EMC are made on a single FR4 substrate. The rectifier has a maximum conversion efficiency
of 33.8% at 5 dBm input. The MCA-EMC has two operating modes to adapt to multiple operating
conditions, in which Mode 1 outputs 1.5 V and has a higher energy conversion efficiency of up to
93.56%, and Mode 2 supports a minimum starting input voltage of 0.33 V and multiple output voltages
of 2.85–2.45 V and 1.5 V. The proposed RF energy harvester is integrated by multiple-layer stacking
with a total size of 53 mm × 43.5 mm × 5.9 mm. The test results show that the proposed RF energy
harvester can drive a wall clock (30 cm in diameter) at 10 cm distance and a hygrometer at 122 cm
distance with a home router as the transmitting source.

Keywords: RF energy harvesting; rectenna; compact design; micro energy; energy management

1. Introduction

With the development of communication and wireless sensing technology, electromag-
netic waves are becoming more widely distributed in the environment. Electromagnetic
waves are a kind of electromagnetic information as well as electromagnetic energy that
has the advantages of being clean, wireless, wide distribution, etc. Harvesting ambient
electromagnetic wave (radio frequency, RF) energy has become a contemporary research
hotspot [1,2]. Compared to traditional ambient energy sources such as photovoltaic (PV),
vibration, and wind, RF energy is widely distributed and insensitive to environmental
factors (such as light intensity, vibration rate, wind speed, etc.). In addition, RF energy
harvesters usually have a small volume and possess the advantages of integration [3,4].

WiFi is the most widely used wireless network-transmission technology today. By
using wireless routers to send and receive electromagnetic waves, mobile phones and
computers can achieve high-speed wireless data communication. WiFi band is divided into
2.4 G and 5 G, of which the 2.4 G band is 2.412–2.472 GHz in China. WiFi signal sources are
generally omnidirectional to meet the signal demand in all directions. However, network
signals are not required in all directions, resulting in the waste of RF energy. Placing radio
frequency (RF) energy harvesters in the WiFi signal distribution areas that have no signal
demand to harvest WiFi RF energy and power small electronic devices or wireless sensor
nodes (WSNs) is of great value for energy savings and environmental protection.

An RF energy harvester generally consists of an energy-receiving antenna, a rectifier,
and energy management circuits [5]. The antenna and rectifier, usually referred to as the
rectenna, are the core devices for RF energy harvesting. The energy management circuits
realize energy storage, release, and voltage conversion [6]. Generally, the rectifier contains
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an impedance matching network to achieve impedance matching with the antenna and
maximize the efficiencies of energy transmission. According to the Friis equation, increasing
the gain of the receiving antenna can significantly improve the efficiency of RF energy
transmission [7]. For a rectenna, a smaller size means greater application compatibility
and flexibility [8,9]. Increasing resonance points is a common method to achieve multi-
frequency energy harvesting without increasing the area. A dual-band compact rectenna
with an overall dimension of 80 mm × 45 mm and a maximum gain of 4 dBi was proposed
in [10]. An additional resonance point was achieved with a minimal increase in overall
size by using two inductors and one capacitor. To achieve dual-frequency rectification, the
impedance matching network occupied a relatively large area. Additionally, to enhance the
gain of the monopole antenna, a substantial ground area was required. These two factors
constrained the integration level of the rectenna. In some previous studies, matching-free
rectennas were achieved by incorporating the rectifier impedance during the antenna
design. A compact rectenna without impedance matching network operating at 2.45 GHz
with an overall size of 70 mm × 70 mm × 20 mm was proposed in [11]. To achieve the
matching-free effect, the designed antenna structure does not have a significant advantage
in terms of gain. To enhance the gain, this article employed a reflector plate. While the gain
was improved, the overall volume of the rectenna increased. Some studies have achieved
compact rectennas through structural optimization. A 2.45 GHz compact rectenna with an
overall dimension of only 24.9 mm × 8.6 mm and a 0.8 dBi peak gain was reported in [12].
This research significantly reduced the volume of the rectenna by designing the antenna
structure and integrating the matching circuits into the PCB edge. However, this also
resulted in a significant decrease in antenna gain and rectification efficiency. In the previous
studies, the proposed rectennas still have plenty of optimization space in terms of gain and
total size, and few studies have achieved verification of ambient RF energy harvesting.

Generally, the RF energy management circuits are simple in structure and have a
boost function because ambient RF energy is extremely weak and the output voltage of
the rectifier is not enough to drive the load directly [13]. BOOST circuits were constructed
using discrete devices in [14,15]. In [16–18], an ultra-low power management chip was
first used to boost the voltage, and then a DC-DC chip was used to convert and output the
load voltage. In more studies, a single energy management chip was used to realize energy
“store-and-release” and voltage boosting [7,19–21]. RF energy management efficiency is
affected by operating conditions including input power, input voltage, output voltage,
and the load. The adaptability of RF energy management circuits for multiple operating
conditions and multiple voltage outputs was less studied in previous research, which may
lead to the inability of load driving under multiple operating conditions and low energy
conversion efficiencies.

In this study, a compact stacked RF energy harvester with multi-condition adaptive
energy management circuits is proposed. The antenna is designed with a microstrip
structure to enhance the gain and a circular slot in the ground plane to reduce the area. The
RF energy harvester is integrated by multilayer stacking, which greatly reduces the area
and size of the system. The proposed energy management circuit supports two operating
modes (high efficiency mode and wide input range mode) and two voltage outputs (1.5 V,
2.85–2.45 V). The efficiency of the RF energy management circuit can be maximized by
switching between two modes. The contributions of this paper are concluded as follows:

(1) A novel compact rectenna with a stacked structure.
(2) A novel multi-condition adaptive energy management circuit for RF energy support-

ing two operating modes and two voltage outputs.
(3) We conducted ambient RF energy harvesting validation for the proposed RF energy

harvester. The validation results indicate that the proposed RF energy harvester can
drive a wall clock (30 cm in diameter) at 10 cm distance and a hygrometer at 122 cm
distance with a home router as the transmitting source.

The remainder of this paper is organized as follows: Section 2 presents a comprehen-
sive description of the complete design of the RF energy harvester. Section 3 provides the
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details of the ambient RF energy harvesting experiments. Section 4 discusses the results
obtained as well as crucial design considerations. Section 5 concludes the paper.

2. Design of the RF Energy Harvester
2.1. Design of the Antenna

The rectenna proposed in this paper is based on a double-layer stacking structure.
The upper board is an energy-receiving antenna based on a polytetrafluoroethylene (PTFE)
substrate of 1.52 mm thickness. The lower board is a rectifier based on an FR4 substrate of
1.6 mm thickness. The antenna and rectifier were designed by High Frequency Structure
Simulator (HFSS) and Advanced Design System (ADS), respectively.

The dimensions and photograph of the proposed antenna are shown in Figure 1. The
dimensional parameters of the proposed antenna and rectifier are listed in Table 1. The
antenna is composed of a radiating patch, a feedline, and a ground plane, as shown in
Figure 1b,d. In Figure 1a, the resonant frequency of the antenna is determined by the
dimensions (W0 and L0) of the radiating patch. The impedance matching of the 50 Ω feedline
to the antenna patch is achieved by changing W2 and L2. Etching gaps in the ground plane to
alter the antenna’s current transmission path is a common method for changing the antenna’s
resonant frequency and dimensions. In Figure 1c,d, a circular slot is etched in the antenna
ground plane to decrease the antenna resonant frequency. To achieve the original resonant
frequency, it is necessary to reduce the size of the radiating patch, thus decreasing the total
area. During the antenna design process, the circular slot alters the shape of the ground plane,
which in turn changes the input impedance of the radiating patch. The change in impedance
is influenced by the circular slot parameters R1 and R2. The parameters W2 and L2 used for
impedance matching need to be adjusted accordingly. Therefore, by optimizing and adjusting
the circular slot parameters, matching parameters, and the dimensions of the radiating patch
in HFSS, antenna miniaturization and performance improvement are achieved. The antenna
size is 56 mm × 47.7 mm without a circular slot and 53 mm × 43.5 mm with a circular slot,
which means the slot decreases the total area by 13.7%.
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Table 1. Dimensional parameters of the antenna and rectifier.

Parameters of the Antenna W0 L0 W1 L1 W2 L2 Wsub Lsub R1 R2

Value (mm) 43 33.5 4.15 15 5 10 53 43.5 8 10

Parameters of the Rectifier W3 L3 L4 L5 L6 L7

Value (mm) 3.05 11.5 6.45 12.57 8.6 6.41

Figure 2 shows the simulated and measured S11 results of the proposed antenna. The
proposed antenna has a −10 dB bandwidth of 63 MHz (2.422–2.485 GHz) and a S11 of
−19.77 dB at 2.452 GHz. Figure 3 shows 2D and 3D simulations of the radiation pattern.
For the energy-harvesting antenna, the higher the gain, the stronger the directionality, and
the higher the radiation efficiency. The proposed antenna has a maximum gain of 4.578 dBi
and an omnidirectional radiation efficiency of 96.37%.
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2.2. Design of the Rectifier

The rectifier and the impedance matching network are fabricated on an L-shaped FR4
substrate, as shown in Figure 4b,c. Figure 4a depicts a diagram of the rectifier and impedance
matching network. The shape of the impedance matching network has been adjusted to
accommodate the shape of the circular slot and avoid affecting the antenna’s performance.
Due to the nonlinearity of the diode, the input impedance of the rectifier varies under different
input power levels and different load resistances, which increases the design complexity of
the impedance matching network. Figure 5 shows the input impedance of the rectifier under
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different input power levels (−30 dBm to 30 dBm) and load resistances (1000 Ω, 1500 Ω,
2000 Ω). It can be observed that the input impedance of the rectifier varies significantly at
low input power levels, mainly because the diodes are not fully conducting at this point and
their nonlinear characteristics become prominent. Common impedance matching methods
include lumped element matching and microstrip line matching. It is difficult to achieve
optimal matching using lumped components due to their discrete values. Microstrip-line
matching allows for continuous dimension adjustment, resulting in continuous impedance
variation and a better matching effect. Single-stub and double-stub are common microstrip-
line matching structures. In this study, double-stub matching was chosen. In Figure 4b,
L3 and L4 are 50 Ω feed lines, and L5 and L7 are the two impedance matching branches
from 50 Ω to the rectifier. Impedance matching adjustments are achieved by optimizing
the lengths of two stubs in ADS. The diode and isolation capacitor are HSMS2852 from
Broadcom (Irvine, CA, USA) and 5.1 pF from Murata (Nagaokakyo, Japan), respectively. The
simulation model for the diode is sourced from the high-frequency diode library in ADS.
During the simulation process, the primary approach is to explore the highest conversion
efficiency and globally higher efficiency by input power and load pull.
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The measurement setup and a comparison of the simulated and measured RF-to-DC
conversion efficiency of the proposed rectifier are shown in Figures 6 and 7. In Figure 6,
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the RF signal source (DSG836 from RIGOL) outputs RF energy (−10 dBm–5 dBm) to the
rectifier, and then the rectifier outputs to a resistance box (set to 1000 Ω). The voltage
across the resistance box is measured by a multimeter (15 B+ from FLUKE). In Figure 7,
the RF-to-DC conversion efficiencies were measured at different load resistances with the
same input RF power of 5 dBm. It can be observed in Figures 6 and 7 that the simulation
and measurement results are generally consistent, and a maximum measured efficiency of
33.8% is achieved at 5 dBm input power and 1000 Ω load.
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2.3. Design of the Multi-Condition Adaptive Energy Management Circuits

The structure of the proposed RF energy harvester equipped with multi-condition
adaptive energy management circuits is shown in Figure 8. RF energy harvested by the
rectenna is converted by the power management integrated chip (PMIC), BUCK, and Low
Dropout Regulator (LDO) to Load1, Load2, and Load3, respectively. A double-pole-double-
throw (dpdt) switch, together with Switch 1, Switch 2, and a hysteresis comparator is used
to switch two operating modes. When the DPDT switch is toggled to positions 1 and 2, the
system enters Mode 1 and Mode 2, respectively. In Mode 1, Load3 is supplied by the LDO,
while the PMIC and BUCK serve as reference voltage sources. In Mode 2, Load1 is powered
by the PMIC and LOAD2 is supplied by the BUCK, while the LDO is inactive. These two
modes are designed to adapt to different input power and input voltage conditions, which
can provide varying voltage ranges to accommodate various operating scenarios. The
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PMIC is BQ25504RGTT from Texas Instruments (Dallas, TX, USA), which is an ultra-low
power management chip that enables voltage boosting at a minimum input voltage of
0.33 V [22]. BQ25504RGTT can output a threshold management signal. In this paper, the
high and low voltage thresholds of BQ25504RGTT are set to 2.85 V and 2.45 V.
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Figure 8. Structure of the proposed RF energy harvester with multi-condition adaptive energy manage-
ment circuits (MCA-EMC).

When the dpdt switch is adjusted to position 1 (Mode 1), the storage capacitor and the
output of Switch 1 are connected to the recenna and Switch 2, respectively. As the voltage
of the storage capacitor rises, Switch 2 is turned on, and the hysteresis comparator and
the LDO are powered up. The output voltage of Switch 1 is converted by the BUCK to
obtain a 1.5 V output as the supply and reference voltage (after divider) for the hysteresis
comparator. The LDO step-down converts the output voltage of the rectenna and outputs
1.5 V to Load3. The threshold range of the hysteresis comparator is set to 1.5–1.8 V, i.e.,
when the storage capacitor voltage reaches 1.8 V, the LDO powers up and the capacitor
discharges, and when the storage capacitor voltage is lower than 1.5 V, the LDO powers
down and the capacitor stops discharging. The hysteresis comparator must have a stable
reference voltage; otherwise, the threshold will be inaccurate because of the changing input
voltage. Therefore, PMIC and BUCK are used as reference voltage generation sources in
this paper. The power consumption of the reference voltage source includes only the static
power consumption of the PMIC, BUCK, and some configuration resistors because Load1
and Load2 are not connected to the harvester in Mode 1.

When the dpdt switch is adjusted to position 2 (Mode 2), the storage capacitor is
connected to the PMIC output, and Switch 1 no longer controls Switch 2. Switch 2 turns off,
and the LDO and the hysteresis comparator are powered down. The storage capacitor acts
as an energy storage element of the PMIC, and the PMIC monitors the voltage on it and
controls Switch 1. In mode 2, the RF energy harvester can output 2.85–2.45 V and 1.5 V by
connecting Load1 and Load2, respectively.

The power consumption and energy conversion efficiency of the MCA-EMC are af-
fected by the load state, operating mode, input power, and input voltage, which are esti-
mated in the next contents of this paper. The turn-off currents of the two switches (2nA),
are neglected in the estimation. Equations (1)–(3) express the conversion efficiencies of the
MCA-EMC when Load1, Load2, and Load3 are output individually, where Pin denotes the
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input power of the MCA-EMC and PqLDO represents the power-off static power consump-
tion of the LDO. R1, R2, R3, and R4 are the configuring resistors of the hysteresis comparator.
Figure 9 illustrates the peripheral circuitry of the hysteresis comparator. PR1+R2 denotes the
power consumption of R1 and R2, whereas PR3+R4 denotes the power consumption of R3
and R4. PHComp indicates the static power consumption of the hysteresis comparator. ηPMIC,
ηBUCK, and ηLDO represent the energy conversion efficiency of the PMIC, BUCK, and LDO,
respectively. PqBUCK stands for the static power consumption of the BUCK.

ηLOAD1 =
(Pin − PqLDO − PR1+R2) · ηPMIC − PqBUCK

Pin
(1)

ηLOAD2 =
(Pin − PqLDO − PR1+R2) · ηPMIC · ηBUCK

Pin
(2)

ηLOAD3 =

(
Pin − PR1+R2 − PHComp − PR3+R4

ηBUCK ·ηPMIC

)
· ηLDO

Pin
(3)
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This paper conducted a simulation-based evaluation of energy conversion efficiency
under two modes and three load outputs. Table 2 lists the leakage current, leakage power,
and conversion efficiency (for power chips only) of each module. In the estimation, the
range of Pin is set from 10 µW to 1 mW. It should be noted that the power supply chip’s
conversion efficiency varies with operating conditions. The efficiency data presented in
this paper is the average values from the datasheet corresponding to the input power and
load current ranges. The output voltage VLOAD1 of LOAD1 is set at 2.85 V, while the output
voltages VLOAD2 and VLOAD3 of LOAD2 and LOAD3 are both set at 1.5 V. The conversion
efficiencies under three different loads were compared for input voltages Vin of 1 V, 1.6 V,
and 1.8 V, as shown in Figure 10. For LOAD1 and LOAD2, Vin was chosen to be 1 V based
on Equations (1) and (2), where lower Vin results in lower PqLDO and PR1+R2, leading to
higher ηLOAD1 and ηLOAD2. Additionally, selecting Vin below 1.5 V better conforms to the
operating conditions of LOAD1 and LOAD2. For LOAD3, the conversion efficiencies of
the MCA-EMC at Vin of 1.6 V and 1.8 V are compared. As shown in Figure 10, when the
input voltage Vin aligns with LOAD3’s operating conditions, LOAD3 exhibits a distinct
efficiency advantage. For Pin ranging from 60 µW to 1 mW, the efficiency exceeds 80% at
Vin of 1.8 V and surpasses 90% at Vin of 1.6 V with the highest efficiency reaching 93.56%. If
LOAD3’s input conditions are not met, it is necessary to switch to either LOAD1 or LOAD2
outputs. LOAD1 delivers a voltage output ranging from 2.85 V to 2.45 V, while LOAD2
maintains a consistent 1.5 V output. Due to a two-stage conversion process, LOAD2 has
the lowest efficiency. LOAD1 and LOAD2 have lower demands on input voltage, making
them suitable for a broader range of application scenarios.
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Table 2. Leakage current, leakage power, and conversion efficiency (for power chips only) of each module.

Leakage Current/nA Leakage Power/nW Conversion Efficiency (η)

LDO 3 3 × Vin (PqLDO) VLOAD3/Vin (ηLDO)
BUCK 60 60 × VLOAD1 (PqBUCK) 0.8 (ηBUCK)
PMIC 330 330 × Vin 0.8 (ηPMIC)

R1 + R2 Vin/(R1 + R2) Vin × Vin/(R1 + R2) (PR1+R2)
R3 + R4 Vin/(R3 + R4) Vin × Vin/(R3 + R4) (PR3+R4)
Hcomp 150 150 × VLOAD2 (PHComp)
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Figure 11 illustrates the operational voltage changes in two modes. In Figure 11a, the
threshold voltage of the hysteresis comparator is validated by adjusting Vin to rise above
1.8 V and then drop below 1.5 V. During this process, VLOAD1 maintains a consistent
maximum output voltage of 3.15 V, while VLOAD2 serves as a reference voltage and
maintains a continuous output of 1.5 V. Figure 11b depicts the operational voltage state of
Mode 2 with a Vin of 1 V. The voltage across the capacitor rises to 2.85 V, causing the PMIC’s
threshold monitoring pin to output a high level with an activation time of approximately
66 ms. In Mode 2, since the input voltage remains below 1.8 V, VLOAD3 remains at 0 V.
For VLOAD1 and VLOAD2 in Mode 1 and VLOAD3 in Mode 2, only minimal static power
consumption is generated because the subsequent stage is not connected to a load, resulting
in minimal impact on energy conversion efficiency.

In this paper, the storage capacitor is shared in two modes by using a dpdt switch to
reduce the system size. By coordinating components in two modes, energy charge and
discharge control are achieved, further reducing energy management consumption and
extending the input and output voltage range of the MCA-EMC. In Mode 1, the energy
storage process operates with only a LDO chip, maximizing energy management efficiency.
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3. Validation

The antenna, rectifier, and MCA-EMC were stacked and integrated as shown in
Figure 12b to obtain the RF energy harvester in Figure 12d. The ground planes of the two
parts are soldered together by tin. The antenna feed end and the rectifier feed end were
connected by a SMA feed pin. Copper at the ground plane of both the antenna and the
rectifier are spaced to ensure that there is no short between the feed and the ground during
stacking. The total size of the proposed RF energy harvester is 53 mm × 43.5 mm × 5.9 mm,
which is the same as the antenna in length and width.

Figure 13 shows the RF energy harvesting test. The RF signal source is DSG836 from
RIGOL (Suzhou, China), the spectrum analyzer is N9030 A from Agilent Technologies, the
transmitting antenna is a planar antenna with a gain of 14 dBi, and the receiving antenna
is the antenna proposed in this study. The RF signal source emits RF energy through the
transmitting antenna. The RF energy is received by the receiving antenna and measured
by the spectrum analyzer. By moving the receiving antenna and measuring radiation
power density at different antenna positions (measuring instrument: TES-92 from TES),
the relationship between the radiation power density, the received energy and the distance
between the transmitting antenna and the receiving antenna is established, as shown in
Figure 14.

Figure 14 also illustrates the relationship between the radiation power density and the
distance when a router is used as the transmission source. Because the signal emitted by the
router is modulated and not continuous, it is challenging to quantify the received RF energy
through spectrum analysis. However, in a stable network environment, radiation power
density testing is measured in integral form. Therefore, ambient RF energy harvesting data
can be quantified by comparing radiation power density. Figure 15 illustrates the ambient
RF energy harvesting performance of the proposed RF energy harvester at various distances
with a home router as the RF energy source. As depicted in Figure 15a, the minimum
distance satisfying the operating conditions of Mode 1 is 30 cm. At this distance, the voltage
output to LOAD3 is 1.849 V. From Figure 14, it can be observed that the radiation power
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density at the receiving antenna location is 80 µW/cm2, corresponding to a received power
of approximately −5 dBm. As shown in Figure 15b, the maximum distance for Mode 2
to output to LOAD1 and LOAD 2 is 122 cm. It can be seen from Figure 14 that the power
received at the receiving antenna location is approximately −10 dBm. At this distance,
LOAD1 can output a voltage above 2.85 V, and the storage capacitor has sufficient capacity
to support a single data acquisition and display cycle for a hygrometer, as illustrated in
Figure 15c. A wall clock of 30 cm in diameter, directly driven by a house router under
Mode 1, is shown in Figure 15d. Upon connecting to Load1 in Mode 1, the output voltage
decreases. A direct drive of the wall clock cannot be achieved at the 30 cm distance shown in
Figure 15a. The test results show that the effective direct driving distance is approximately
10 cm. From Figure 14, it can be observed that the power received by the receiving antenna
is approximately 3 dBm.
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Figure 15. Ambient RF energy harvesting test. (a) Maximum working distance test in Mode 1;
(b) maximum working distance test in Mode 2; (c) ambient RF energy drives a hygrometer; (d) ambient
RF energy drives a wall clock; (e) connection of the wall clock to the RF energy harvester.

4. Discussion

This paper has realized a compact stacked RF energy harvester. In order to reduce
costs and manufacturing complexity, FR4 material is chosen for producing the rectifier and
energy management circuit. Opting for microwave materials would enhance the efficiency
of the rectifier to a certain extent; however, it would correspondingly increase costs and
manufacturing complexity.

Mode 1 requires an input open-circuit voltage of 1.8 V or higher, making it more suitable
for scenarios with higher RF energy for direct driving. Mode 2 is adaptable to input voltages
above 0.33 V, making it more suitable for the “store-and-release” scenario with lower RF energy.
For Mode 1, due to threshold management designed in the circuit, it can also be used for “store-
and-release” as long as its input conditions are met, yielding higher efficiency compared to
Mode 2. The combined use of these two modes can maximize RF energy conversion efficiency.
The 1.5 V output from both Mode 1 and Mode 2 can be applied to power small electronic
devices, whereas the 2.85–2.45 V output from Mode 2 can be used to drive wireless sensor
nodes. This paper did not achieve adaptive switching between the two modes, which will be a
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future research direction. The additional circuits introduced for adaptive switching may lead
to additional power consumption issues, thereby increasing design complexity.

Compared to the previous studies, the RF energy harvester proposed in this pa-
per has added circuits for energy management and mode switching, enhancing energy
management efficiency and extending the output voltage range. In the previous studies,
energy conversion efficiency was mostly focused on rectifier conversion efficiency (RF-DC
efficiency) [7,16,17,19,21]. In comparison, this paper holds a substantial advantage. In
the previous studies, RF energy harvesters generally consist of multiple interconnected
modules, resulting in a larger overall size that was challenging to measure [10,23–26]. In
contrast, this paper achieves stacking integration, presenting a compact square-shaped
form that is well-suited for integrated applications. Table 3 lists the comparison of the
proposed RF energy harvester and related designs.

Table 3. Comparison of the proposed RF energy harvester and related designs.

Ref.
(Year) Total Size Maximum Conversion

Efficiency of Rectifier (%)
Maximum Conversion Efficiency of

Energy Management Circuits (%)
Output

Voltage (V)

[7]
(2021) − 25% at 1 dBm 82% 3−4 V

[17]
(2021) 125 mm × 140 mm About 10% at −2 dBm − 1.5−2.7 V

[19]
(2019) 150 mm × 90 mm × 50 mm About 25% at (1 µW/cm2) − 2.3−5.25 V

[14]
(2011)

60 mm × 75 mm (antenna)
− (rectifier) 55% at (200 µW/cm2) 70% 2.5 V

This work
(2023) 53 mm × 43.5 mm × 5.9 mm 33.8% at 5 dBm 93.56% 1.5 V,

2.85−2.45 V

5. Conclusions

A compact stacked RF energy harvester in the WiFi band is proposed. A circular
slot is etched in the ground plane to reduce the total area of the antenna by 13.7%. The
proposed rectenna has a maximum gain of 4.578 dBi, a S11 of −19.77 dB at 2.452 GHz,
and a −10 dB bandwidth of 63 MHz. The proposed rectifier has a measured maximum
RF-to-DC conversion efficiency of 33.8% at 5 dBm input. A multi-operating-condition
adaptable energy management circuit (MCA-EMC) is proposed, supporting voltage inputs
above 0.33 V and enabling outputs of 1.5 V and 2.85–2.45 V. Under 60 µW–1 mW power
and a 1.6 V voltage input, the conversion efficiency of the MCA-EMC is above 90%, with
a peak efficiency of 93.56%. The antenna, the rectifier, and the MCA-EMC are integrated
by multi-layer stacking, with a total size of 53 mm × 43.5 mm × 5.9 mm. Ambient RF
energy harvesting tests show that the proposed RF energy harvester achieves a maximum
operating distance of 30 cm under Mode 1 and 122 cm under Mode 2 from a home router
as the RF energy source. The compact size, high integration, multi-voltage outputs, and
excellent conversion efficiency of the proposed RF energy harvester make it highly valuable
for applications in ambient RF energy harvesting and integration into other devices.
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