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Abstract: As plastic production continues to increase globally, plastic waste accumulates and de-
grades into smaller plastic particles. Through chemical and biological processes, nanoscale plastic
particles (nanoplastics) are formed and are expected to exist in quantities of several orders of magni-
tude greater than those found for microplastics. Due to their small size and low mass, nanoplastics
remain challenging to detect in the environment using most standard analytical methods. The goal of
this research is to adapt existing tools to address the analytical challenges posed by the identification
of nanoplastics. Given the unique and well-documented properties of anthropogenic plastics, we
hypothesized that nanoplastics could be differentiated by polymer type using spatiotemporal de-
formation data collected through irradiation with scanning electron microscopy (SEM). We selected
polyvinyl chloride (PVC), polyethylene terephthalate (PET), and high-density polyethylene (HDPE)
to capture a range of thermodynamic properties and molecular structures encompassed by commer-
cially available plastics. Pristine samples of each polymer type were chosen and individually milled
to generate micro and nanoscale particles for SEM analysis. To test the hypothesis that polymers
could be differentiated from other constituents in complex samples, the polymers were compared
against proxy materials common in environmental media, i.e., algae, kaolinite clay, and nanocellulose.
Samples for SEM analysis were prepared uncoated to enable observation of polymer deformation
under set electron beam parameters. For each sample type, particles approximately 1 µm in diameter
were chosen, and videos of particle deformation were recorded and studied. Blinded samples were
also prepared with mixtures of the aforementioned materials to test the viability of this method for
identifying near-nanoscale plastic particles in environmental media. Based on the evidence collected,
deformation patterns between plastic particles and particles present in common environmental media
show significant differences. A computer vision algorithm was also developed and tested against
manual measurements to improve the usefulness and efficiency of this method further.

Keywords: SEM; detection; microplastics; machine learning; polymers

1. Background

In recent years, studies focusing on the extent of global plastic pollution, specifically
micro and nanoplastic (MNP) pollution, have increased exponentially [1]. With this in-
crease in research, mounting evidence of the ubiquity of MNPs in the environment has
raised concerns over their potential implications for the health of terrestrial and aquatic
ecosystems [2–5]. Microplastics are commonly described as plastic particles less than
5 mm in size, while nanoplastics have been described as having at least one dimension
smaller than 1000 nanometers (nm) [6]. The smallest nanoplastics are of particular concern
due to their increased capacity for biological interactions [5,7,8]. Given the difficulty of
measuring or identifying nanoplastics from environmental samples due to their small
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size and low mass, there remains a methodological gap in characterizing environmental
nanoplastics [6,9]. New, accessible approaches for detecting nanoplastics would greatly
improve our understanding of their presence in the environment and provide additional
data for regulatory decision-makers.

Following concentration and recovery from environmental samples, analysis using
tools like pyrolysis gas chromatography–mass spectrometry (Py-GC-MS) may support the
identification of nanoplastics by polymer type, but quickly detecting environmentally rele-
vant concentrations of nanoplastics may prove a challenge as limits of detection are on the
order of micrograms per liter range [6,10,11]. In addition to the significant preconcentration
needed to enable the effective use of Py-GC-MS [12], it also requires the destruction of a
sample, inhibiting the collection of nanoplastic morphology or particle count data once
analyzed. The typical non-destructive methods used for collecting chemical fingerprints
to identify microplastics by polymer type, including Fourier-transform infrared and Ra-
man spectroscopy, have been reported to have limitations due to small particle size and
background interference when used to characterize nanoplastics [9]. A recent study fo-
cused on applying scanning transmission X-ray spectromicroscopy (STXM) and near-edge
X-ray absorption fine-structure spectroscopy (NEXAFS) to image and characterize spiked
nanoplastics recovered from different environmental matrices [13]. While this method
seems viable for its intended purpose, it still requires considerable time to image particles
and perform spectral analysis. For environmental nanoplastics research to advance more
rapidly, simpler and more accessible methods are needed.

Methods targeting unique molecular structures of different polymers may provide
an analytical fingerprint associated with individual polymer types, allowing researchers
to better characterize nanoplastics. In electron energy loss spectroscopy (EELS), materials
are exposed to an electron beam with a known energy input, while energy losses resulting
from inelastic scattering of electrons are measured to create spectra unique to a given
material [9,14]. Similar techniques commonly coupled with SEM, including X-ray photo-
electron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS), have also
been applied while attempting to identify MNPs within a sample. One study investigating
Indian beach sediment utilized both SEM and EDS to verify the presence of PVC, PE, and
PET microplastics [15]. However, the microplastics identified using this methodology were
between 36 µm and 5 mm in size and were identified primarily based on strong carbon
signatures in their elemental spectra. This methodology alone would likely prove more
challenging for characterizing nanoplastics in samples of mixed environmental media
with other high-carbon signature materials. Researchers using these techniques to identify
MNPs typically rely on heavier elemental signatures as markers that may not always be
present or known to be unique to plastics [15–17].

Due to the intensity of the SEM electron beam, many organic and sensitive samples
may degrade during imaging if left untreated [18,19]. Often, it is desirable to coat sensitive
samples with thin carbon or gold–palladium coatings to help protect the sample from
radiation damage incurred by the electron beam [20]. If left uncoated, organic materials such
as polymers with relatively low thermal conductivity values are susceptible to deformation
with only moderately elevated temperatures [21]. By maintaining constant electron beam
parameters during SEM imaging, it may be possible to identify unique deformation profiles
for anthropogenic plastics at the nanoscale that are distinct from other environmental media.
Furthermore, utilizing SEM enables the observation of materials down to the nanoscale,
which is outside the detection limits for many other analytical methods.

Electron-beam irradiation is commonly used for sterilizing ultra-high molecular
weight polyethylene (UHMWPE) materials used in biomedical applications [22,23]. Irra-
diation of linear hydrocarbon polymers can result in C-C and C-H bond cleavage, radical
and hydrogen removal, chain scission, cross-linking, and oxidation (in the presence of
oxygen) [22]. Polymer research has shown that chemical cross-linking is an irreversible
process that is commonly used to improve the strength, stiffness, and rigidity of poly-
meric materials [24]. These chemical alterations, occurring concurrently with high enough
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irradiation doses, can lead to spatial rearrangement and complex physical changes in
polymer characteristics [23]. During SEM, this spatial rearrangement of the polymer matrix
can result in changes to polymer surface characteristics that are observable in real time.
By controlling the conditions of irradiation during SEM, we hypothesized that physical
alterations of MNPs of similar sizes from the most common commercial plastics would
occur predictably by polymer type and be unique from the deformation patterns seen
in non-anthropogenic polymers. This study sought to test the capacity for irradiation
of individual particles during SEM to provide a spatiotemporal fingerprint to identify
environmental MNPs.

A supporting computer vision (CV) algorithm has been written in Python using the
popular PyTorch application processing interface (API) to aid the processing power of the
developed methodology [25]. PyTorch contains tools allowing software development to
design and train deep neural networks. The dataset of videos collected with SEM, along
with their associated masks representing particles to segment, were used as training data.
Using a specifically designed objective function, the network was trained to accurately
predict pixels belonging to either the foreground or background. The architecture, the
objective function, and the training process were all programmed with PyTorch. Once the
deep neural network was trained, it was stored in memory and used to infer a segmentation
mask for new input data. The prediction quality was quantitatively evaluated using a
standard metric for the segmentation algorithm, namely intersection over union (IoU).
IoU quantifies the amount of overlap between the predicted and manually annotated
masks. A 100% IoU corresponds to a predicted mask perfectly aligned with the manually
annotated one. As artificial intelligence (AI) systems continue to develop and increase in
sophistication, the accuracy of automated analysis of data collected using the methodology
described in this study is expected to improve.

2. Materials and Methods
2.1. Materials and Characterization

Environmentally relevant polymer types were investigated by identifying the most
prominent commercial plastics found in environmental waste [26]. After reviewing the
fundamental properties of engineered polymers, the degree of crystallinity was noted to
be affected during SEM irradiation [23,27] and hypothesized to be the most predictive of
polymer deformation during irradiation. Considering the predicted deformation profiles
of different polymer types during SEM imaging, the degree of crystallinity values and
overall polymeric structure were used to identify polymer types anticipated to capture a
wide spectrum of particle deformation behavior. The three plastic materials chosen for this
study were polyvinyl chloride (PVC), polyethylene terephthalate (PET), and high-density
polyethylene (HDPE). Pristine samples of each chosen polymer type were selected from
the Hawaii Pacific University Center for Marine Debris Research Polymer Identification Kit
and individually fragmented using a Retsch Cryomill to generate environmentally relevant
MNPs for SEM analysis.

Non-plastic materials were also studied for comparison against MNPs to determine
if plastics deform differently under SEM irradiation analysis. Non-plastic materials were
selected to capture a range of media commonly found in environmental samples. Algae
were selected as a proxy for common biological material. Samples of algae (Raphidocelis
subcapitata) were prepared using specimens cultured within the laboratory. For a non-
polymeric material, aluminum silicate (kaolinite) was selected as a proxy for soft silt and
sedimentary particles commonly found in environmental samples. Kaolinite materials
were obtained through Sigma–Aldrich. Environments are also rich in natural polymeric
materials, and a naturally derived polymer would also be needed to compare against the
anthropogenic polymers in this study. Cellulose was selected as a proxy for naturally
occurring polymer materials common in environmental media and could be mistaken as
an MNP. Cellulose used in this study was obtained through Sigma–Aldrich.
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2.2. SEM Sample Preparation

All SEM sample preparation occurred within a laminar flow hood with materials
obtained through Ted Pella, Inc. (Redding, CA, USA). Aluminum SEM specimen mounts
were first prepared by placing a piece of double-stick carbon tape and affixing a 5 × 5 mm
silicon wafer to the top of the tape. Compressed air was then used to remove any potential
dust or particulate debris that may have been present on the sample. Plastic samples were
prepared by suspending milled plastics in ultrapure water and subsequently, using glass
pipette tips, drop-casting each sample onto individual specimen mounts. Both kaolinite and
nanocrystalline cellulose samples were prepared similarly by suspending the dry powder
materials in ultrapure water and subsequently drop casting onto individual SEM specimen
mounts. Since algae samples were already suspended in aqueous media, they were diluted
50:50 with ultrapure water to reduce the concentration of algal cells prior to drop casting.
Samples were left uncoated to enable observation of deformation during SEM irradiation.
All validation samples were prepared similarly using mixtures of plastic materials and
environmentally relevant media.

2.3. Experimental Design

While field emission SEM (FE-SEM) may also be suitable for obtaining high-resolution
images of MNPs at low voltages, the higher voltages desired and the general ease of accessi-
bility from a typical SEM were preferable. To ensure consistent energy input across multiple
particle deformation observations, electron beam voltage and current were maintained
at 5 kilovolts (kV) and 33 nanoamperes (nA), respectively, with the beam aperture set to
50 µm. The beam scan rate was held constant at 500 nanoseconds with a horizontal field
width (HFW) of 9.95 µm and a working distance of 10.6 mm for each sample. For the pur-
poses of method development, groups of five of the smallest particles of each material type
(between 1 and 10 µm in length) were selected, and videos of particle deformation were
recorded for at least 40 s for analysis using a Quanta 3D dual beam SEM (FEI Company,
Hillsboro, OR, USA). Images were automatically collected every second during recording
for particle deformation analysis.

Electron beam settings were held constant throughout all plastic sample observations
for PVC, PET, and HDPE. After the initial observations of the selected plastic materials, it
was decided that a higher beam current may help further interrogate differences between
the deformation behavior of particle materials. All subsequent algae, kaolinite, and cellulose
observations occurred with a beam voltage of 5 kV at a current of 37.9 nA, with all other
experimental parameters remaining the same. Additional observations of different particles
from the PVC, PET, and HDPE samples were also recorded at the higher beam current to
determine potential changes in observed deformation patterns resulting from the increased
SEM irradiation.

Following the deformation observations of all the materials used in this study, three
blinded validation samples were prepared using mixtures of the same materials with the
addition of environmentally relevant media. These samples were then observed under the
same electron beam parameters with the increased 37.9 nA beam current. Particles present
in the validation samples were identified systematically prior to observation. Validation
samples were divided into quadrants during SEM analysis, with 10 particles of similar
size from each quadrant being selected and recorded under SEM irradiation. In total,
40 randomly selected particles from each of the three blinded samples were recorded for
deformation analysis. Deformation profiles from these blinded particles were analyzed
and compared against the deformation profiles collected for the six known materials used
in this study. The intent of the blinded validation study was to evaluate the utility of this
method for detecting MNPs from complex environmental samples.

2.4. Manual Data Evaluation

Analysis of the change in cross-sectional areas of individual particles was the primary
focus of this study. Once the SEM irradiation observations were recorded for particle
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groups for each sample material, particle cross-sections were measured using images taken
at specific time points. Particle cross-sectional area measurements were collected using
ImageJ Version 1.53i image processing software (NIH, Madison, WI, USA). As the plastic
particles were of irregular size and shape due to milling, variability among particle defor-
mation within individual polymer samples was expected. Following the characterization
of deformation profiles for known materials, particle cross-section measurements from
blinded samples were then collected. After the characterization of deformation profiles
for particles of unknown origin, these data were compared against those of the known
materials. If the unknown particles exhibited similar deformation profiles to those of
known plastics, this would indicate potential MNPs present in the blinded samples.

Once the analysis of particles from blinded samples was complete and deformation
profiles were analyzed, the presence of MNPs in blinded samples was proposed and vali-
dated by the person who prepared the blinded samples. Successful identification of MNPs
present in mixed samples would further validate this method and indicate its potential to
help close the methodological gap for identifying environmental nanoplastics. However,
the method described herein for manual cross-sectional particle area measurements does
not lend itself to the practical and rapid collection of environmental data on MNPs. More
automated measurement techniques would be needed to develop this method further.

2.5. Automated Data Evaluation with Computer Vision Analysis

Automated data evaluation was developed to expand the usefulness of the developed
methodology. By developing a computational tool that can observe the SEM irradiation of
particles and calculate the changes in particle size, particle deformation profiles could be
produced in a fraction of the time.

Computer vision (CV) systems are proper candidates to tackle the problem of mea-
suring changing particle sizes within the observational data collected in this study. Given
an image representing a particle, the task consists of recognizing which pixels represent it.
This is known as the segmentation task, a popular problem that has been widely studied
over the years by the CV community. Traditional segmentation algorithms may be used,
including watershed [28], grab-cut [29], or image preprocessing followed by thresholding.
However, these methods suffer from poor generalization power, are sensitive to noise, and
require tedious manual tuning of parameters. They become poor candidates for SEM image
processing, which can be highly noisy with varying contrasting occurring. With the recent
advance of AI systems, particularly deep learning, a new set of algorithms was developed,
leveraging deep neural networks’ discrimination power. This family of techniques achieves
state-of-the-art performance in various CV tasks, like segmentation.

Deep learning algorithms must be trained on a large set of annotated data to perform
well on the desired downstream task. Since the particle data collected were not annotated
with the corresponding image masks representing the particle, selecting a database for train-
ing the deep network with publicly available annotated data was necessary. The database
selected is called PhC-C2DH-U373 [30] for cell segmentation. This dataset is appropriate
for training the deep network because the images are annotated with corresponding expert-
made segmentation masks, and the cells represented are visually similar to the particles
observed in this study. The visual domain is also similar since both databases contain
images taken using SEM. The deep network model comprises the popular UNet architec-
ture [31]. UNet is a popular choice for the segmentation algorithm because it was designed
to consider the image at multiple scales and is robust to noise perturbations. It achieves
state-of-the-art performance on multiple benchmark datasets on the segmentation task.

The first and last frames of all particle deformation videos were manually annotated
to fill the gap between the cell and particle deformation datasets. UNet architecture was
then trained on a joint set of images with cell and plastic deformation masks, increasing its
ability to generalize to unseen images containing plastic particles.
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2.6. Statistical Analysis

Statistical analyses were performed using SigmaPlot version 15.0 (Systat Software,
San Jose, CA, USA). Differences between sample groups were considered significant when
p ≤ 0.05. Significant differences in deformation behavior between material types were
based on cross-sectional measurement data collected over time and analyzed using a
two-way repeated-measures analysis of variance (RM-ANOVA) and Bonferroni post hoc
analysis. Significant differences in initial deformation rate data across material types
were determined using one-way ANOVA and Tukey’s post hoc analysis. Normality and
equal variance of data were determined using Shapiro–Wilk and Brown–Forsythe tests,
respectively. Correlations between variables within the study were also performed using
linear regression analysis.

3. Results
3.1. Plastic Particle Deformation

Data collected for PVC, PET, and HDPE particles at a 33 nA beam current showed a
variation in deformation patterns between the different polymer types. Figure 1 shows
particle deformation over time as a percentage of the initially measured cross-sectional area.
The data shown are the mean of five different particle measurements for each polymer type
(n = 5), with standard error bars showing the deformation variability between measured
particles. Trends in the data show that the measured particle cross-sectional area is generally
reduced for the lower crystallinity polymer types during SEM irradiation. Although distinct
differences between particle deformation seem apparent, the higher variability in PVC
particle deformation adds uncertainty to the dataset. Statistical comparisons of the three
deformation profiles show that PVC and PET deformation profiles significantly differed
from HDPE (p < 0.001) but not from each other.
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Figure 1. Deformation profiles for PVC, PET, and HDPE under both 33 nA and 37.9 nA beam currents.
Particle shrinkage is depicted as a change in manually measured particle cross-sectional area over
time, normalized against the initial particle cross-sectional area at the start of irradiation. The plot
shows the mean particle measurements for each material type (n = 5) with standard error.

Following initial plastic particle deformation observations, additional data on plastic
materials were collected at a higher beam current of 37.9 nA to observe changes result-
ing from increased irradiation. PVC, PET, and HDPE were re-evaluated by selecting five
additional particles within each sample for analysis (n = 5). Data collected for all plastic
materials under both 33 nA and 37.9 nA beam currents are shown in Figure 1. Statistical
comparisons of the deformation profiles between the plastic materials at different beam
currents indicated significantly increased deformation behavior for PVC at a higher beam
current (p = 0.042) but no significant change for either PET or HDPE. The apparent reduced
average deformation of PET particles observed at the 37.9 nA beam current is likely an
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artifact of variations in the degree of crystallinity across the particles selected in the different
study groups. Comparisons across the three materials at the higher beam current also
indicate that differences in deformation behavior between all of the plastic materials were
statistically significant from each other. Based on these observations, deformation profiles
of lower crystallinity plastics under higher currents appear more likely to display acceler-
ated deformation rates and greater changes in measured cross-sectional area than higher
crystallinity plastics. Linear regression analysis also showed that the final deformation
measurements for each material (t = 39 s) correlated to the reported degree of crystallinity
values with an R2 value of 0.87.

3.2. Plastic vs. Non-Plastic Media Particle Deformation

Generally, data collected for algae, kaolinite, and cellulose particles indicated less
deformation than plastic particles. Notable differences in particle morphology were also
present during deformation observations. Interestingly, blebbing was observed during
algal cell irradiation, which enabled additional qualitative distinction of algal media from
other media in this study. Kaolinite was characterized by a markedly different contrasting
quality over the other materials and appeared to have more jagged features when compared
to the other materials. While cellulose appeared to have a similar morphology to the plastic
materials observed in this study, it did not appear to degrade as readily as the lower
crystallinity plastics in this study. Even at the higher current of 37.9 nA, all of the non-
plastic media tested appeared to display less particle shrinkage when compared to both
PVC and PET samples.

Figure 2 shows particle deformation profiles for algae, kaolinite, and cellulose, as well
as the plastic materials tested at 37.9 nA beam current. Data plotted in Figure 2 are the mean
of five individual particle measurements for each material type (n = 5) collected during
SEM irradiation with calculated standard error bars to indicate variability within material
types. Measurements were then normalized to a percentage of the initially measured
cross-sectional area over time. Statistical comparisons across the material types shown
indicate that both PVC and PET display deformation behavior significantly different from
the rest of the materials tested and from each other (p < 0.001). Additional comparisons
yielded no significant differences in particle deformation behavior between the non-plastic
media or HDPE. These observations further indicate that using this methodology, the
particle deformation behavior of low crystallinity plastics is significantly different from the
behavior of common non-plastic environmental media and high crystallinity plastics. SEM
images showing typical particle deformation for each material type are shown in Figure 3.
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against the initial particle cross-sectional area at the start of irradiation. The plot shows the mean
particle measurements for each material type (n = 5) with standard error.
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3.3. Blinded Validation Sample Analysis

Measurements were collected at five time points for 0, 2, 4, 10, 20, and 40 s of irradia-
tion to more rapidly collect the deformation profiles for particles from blinded samples.
Deformation profiles were then plotted and visually assessed to determine if any particles
of unknown origin exhibited deformation behavior similar to the lower crystallinity plastics
in this study (PVC and PET). Similar particle shrinkage behavior to these known plastics
was considered indicative of anthropogenic polymers, and those particles were further
studied. Unknown particles were deemed suspect when their overall particle deformation
at the end of observation (t = 39 s) showed deformation greater than the least deforming
known PET particles assessed in this study (8.1% at t = 39 s).

Based on analyses of the 120 unknown particles studied across the three blinded
validation samples, 35 unknown particles exhibited suspect deformation behavior. Of
the total suspect particles, 19, 1, and 15 were present in blinded validation samples #1,
#2, and #3, respectively. Suspect particles in each validation sample were then grouped
and compared for statistical similarity to known deforming plastics PVC and PET. Upon
comparison, it was found that PVC was significantly different from the grouped suspect
particles in all three validation samples (p < 0.002), whereas no significant differences were
apparent between PET and any of the three validation samples. These data indicated the
possible presence of PET in every blinded validation sample.

To further interrogate the presence of PVC within the validation samples, a new set of
suspect unknown particles were grouped based on overall particle deformation at the end
of observation (t = 39 s) and showed deformation greater than the least deforming known
PVC particle assessed in this study (20.0% at t = 39 s). Of the total suspected PVC particles,
3, 0, and 2 were present in blinded validation samples #1, #2, and #3, respectively. After a
statistical comparison, PVC was no longer found to be statistically different from validation
sample #3. This analysis indicated that the suspected particles in validation sample #1
exhibited deformation profiles that were different from those of the suspected particles in
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validation sample #3. Additionally, this analysis showed no statistical difference between
PVC and validation sample #3, indicating the potential presence of PVC. Following these
analyses predicting the presence of PET in all validation samples and PVC in validation
sample #3, the data were verified with the preparer of the blinded samples for comparison.
The results of those predictions are highlighted in Table 1.

Table 1. Summarized findings of blinded validation study testing identification methodology.

Validation
Sample

Statistically
Suspect * Verified Sample

Description

#1 PET Yes PET, Algae

#2 PET Yes PET, HDPE, Kaolinite

#3 PVC, PET Yes PVC, PET, HDPE, Silty Soil
* denotes a significant similarity relative to known plastic media (p ≤ 0.05).

3.4. Analysis of Materials with AI-Assisted Data Processing

The same particle observation data analyzed with manual measurements was also
analyzed using the developed machine learning algorithm for comparison to provide
enhanced data-generating power. The benefits of machine learning analysis are excep-
tionally enhanced speed of data collection while also collecting data at additional time
points. Figure 4 depicts the computationally generated particle measurements for the
plastic materials at the lower 33 nA beam current. Statistical analysis of the three plastic
materials at a 33 nA beam current showed PVC to be significantly different from HDPE
(p = 0.005), but PET was found not to be significantly different from HDPE (p = 0.088). PVC
and PET were also not found to be significantly different from each other. These results
deviate slightly from those derived from the manual measurements, possibly suggesting
the need for further training of the machine learning algorithm to improve the accuracy of
measurements and reduce the variability of the data collected.
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Figure 5 depicts computationally generated particle measurements for all materials
tested at the 37.9 nA beam current. Upon visual inspection, the same trends in the data
are apparent, albeit with increased variability. Statistical comparisons across the material
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types indicated that PVC displays deformation behavior significantly different from all
the other materials except for PET (p = 0.07). Given the high variability of the PET data
generated, PET was no longer shown to be significantly different from the other materials,
including HDPE (p = 0.064). These results also deviate slightly from those derived from the
manual measurements. A comparison of manual and computationally generated particle
measurements is detailed below in Table 2. Each material type was assessed to determine
significant differences between manual and computationally generated data.
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Figure 5. Deformation profiles for all material types under a 37.9 nA beam current. Particle shrinkage
is depicted as a change in computationally measured particle cross-sectional area over time, normal-
ized against the initial particle cross-sectional area at the start of irradiation. The plot shows the mean
particle measurements for each material type (n = 5) with standard error.

Table 2. Statistical comparisons of manual measurements against computationally generated mea-
surements for each material type.

Beam
Current

Material
Type

Significant
Difference *

33 nA
PVC No
PET No

HDPE No

37.9 nA

PVC No
PET No

HDPE No
Kaolinite No

Algae No
Cellulose No

* denotes a significant difference between measurement methods (p ≤ 0.05).

The trends between manual and computationally generated measurements are similar,
such as no statistically significant differences across computational and manually derived
data by material type. However, due to increased variability in the computational data,
challenges remain with identifying statistically significant differences between material
types using the computational dataset. Higher resolution SEM data from particle obser-
vations with increased particle-background contrast for each material type would likely
improve machine learning algorithm measurements, allowing better determination of
statistically significant differences. Additional training of the machine learning algorithm
would also improve the overall discrimination of particles within lower-quality observation
data and improve the consistency of computationally generated measurements.
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To further verify the feasibility of AI-assisted data processing to identify MNPs from
samples of unknown origin, known materials were compared against the same three
blinded samples using only computationally generated datasets. With cross-sectional
areas generated at one-second intervals, known materials were compared against grouped
suspect particles from the same three validation samples following the aforementioned
methodology. Based on analyses of the 120 unknown particles studied across the three
blinded validation samples, 25 and 11 unknown particles exhibited suspect deformation
behavior for PET and PVC, respectively. Of the total suspect PET particles, 9, 1, and 15 were
present in blinded validation samples #1, #2, and #3, respectively. Of the total suspect PVC
particles, 4, 0, and 7 were present in blinded validation samples #1, #2, and #3, respectively.

Suspect particles in each validation sample were again grouped and compared for sta-
tistical similarity to known deforming plastics PVC and PET using two-way RM-ANOVA
with the computational datasets. Upon comparison, no statistically significant difference
was found between the computational datasets of known PET and the grouped suspect PET
particles from all three individual validation samples, accurately suggesting the possible
presence of PET MNPs in all three validation samples. The same comparison between the
computational datasets of known PVC and grouped suspect PVC particles from individual
validation samples showed no statistically significant difference between known PVC
particles and suspect PVC particles from both validation samples #1 and #3. As previously
tabulated in Table 1, PVC was only present in validation sample #3, meaning that the
statistical comparison of computational datasets for known and suspected PVC correctly
indicated the presence of PVC in validation sample #3 but incorrectly suggested the likeli-
hood of PVC in validation sample #1. To summarize these comparisons, it was possible
to accurately predict the presence of PET particles in all three validation samples using
only the computational datasets, but the presence of PVC was inaccurately suggested for
validation sample #1. This analysis of computational datasets suggests that it is feasible to
use computational datasets solely to predict the presence of MNPs in samples of unknown
origin. However, AI detection systems would likely need to be trained with larger datasets
to ensure more accurate predictions. A table of these comparisons is provided in Table 3.

Table 3. Summarized statistical analyses between computational datasets comparing known and
grouped suspected MNPs from blinded validation samples.

Validation
Sample

Statistically
Suspect * Verified Sample

Description

#1 PVC, PET PET only PET, Algae

#2 PET Yes PET, HDPE, Kaolinite

#3 PVC, PET Yes PVC, PET, HDPE, Silty Soil
* denotes no statistical difference relative to known plastic media (p ≤ 0.05).

4. Discussion

As noted earlier in this study, the random sizes and shapes of particles were expected
to introduce variability across particles of similar material types. A regression analysis of
the starting cross-sectional area of deforming plastic particles against the percent of total
deformation by the end of observation indicated a poor correlation with an R2 value of
0.05. The effects of irradiation are a well-studied topic in the field of polymeric materials
design [27]. Other research has suggested that the degree of deformation from electron
beam irradiation also depends on the polymer’s structure [32]. Previous research has
also shown that irradiation can cause a host of chemical changes, including chain scission
and cross-linking in polymers, leading to overall structural changes and spatial rearrange-
ment [23,27]. When considering the degree of crystallinity values of the tested materials, the
deformation behaviors of the studied plastics matched predictions made prior to investiga-
tion, with PVC deforming the most, followed by PET and HDPE, respectively. Crystallinity
is considered a significant property in the design of polymer material and was shown to
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have a positive correlation to the deformation and shrinkage behavior observed during
irradiation in this study.

This same logic may also explain why HDPE was able to withstand the same irradia-
tion as PVC and PET without undergoing the same deformation, which could be attributed
to its already high degree of crystallinity. A plastic’s crystallinity degree is based on the
density of tightly packed folded molecular chains, or crystalline lamellae regions, versus
the amorphous regions where molecular chains are loosely or irregularly formed within
the polymer structure [33]. Materials with higher degrees of crystallinity are associated
with higher melting temperatures and greater strength and rigidity. Ranges noted in the
polymer literature list degrees of crystallinity for PVC, PET, and HDPE as approximately
10%, 35%, and 75%, respectively [34,35]. Considering these concepts, increased deformation
of MNPs under electron beam irradiation shows an inverse relationship to the degree of
crystallinity, wherein highly crystalline MNPs would require more irradiative energy to
experience significant observable deformation behavior.

The study of the plastic materials at different beam currents also allowed for the
observation of differing levels of deformation, specifically with the PVC particles. By
studying the same materials under both 33 nA and 37.9 nA currents, it was possible to
observe how an increase in irradiation could increase particle shrinkage. Additionally,
observing the non-plastic media under the higher irradiative parameters used in this study
further accentuated the differences in their deformation profiles compared to plastics.
In future developments of this methodology, observing the deformation of each plastic
type under increasing levels of irradiation could further enhance distinctions between the
deformation profiles of MNPs and non-plastic environmental media.

While the manual measurement techniques used in this investigation were enough
for a proof of concept, the ultimate vision for this methodology would be to apply more
computational methods for rapidly assessing the visual data collected during SEM. Using
the machine learning algorithm implemented in this study on additional samples of known
plastics, developing an MNP deformation database would be feasible. The development of
such a tool could allow scientists and researchers to take a given environmental sample
and observe particle deformations in real-time with a software package capable of rapidly
estimating the presence of MNPs. Although this methodology requires access to SEM
equipment, which can be costly to operate, it provides a simple, more accessible methodol-
ogy to augment existing analytical techniques used in detecting environmental MNPs. SEM
also has the added benefit of allowing observation of the size and occurrence of particles.

The fields of AI, and more specifically, deep learning, are rapidly evolving. New
neural network architectures and training strategies emerge yearly, achieving enhanced
state-of-the-art performance in various tasks. While it is possible to improve accuracy using
the latest methods or include more annotated data, accuracy can also be improved in other
ways. By analyzing the spatiotemporal changes of the particles observed in this study, it
is possible to leverage other well-studied tasks of AI systems, such as video classification.
Classifying particle deformation into categories by polymer type and source would simplify
the post-processing step of fitting the new sample to the established deformation profile of
a given plastic polymer type.

The rationale for performing blinded validation studies in this investigation was to
test the concept of using irradiation-induced deformation to detect MNPs in a sample with
unknown media, as would likely be the case when studying an environmental sample. The
results of applying the methodology described herein can potentially improve the detection
of environmental MNPs. Additional studies using this methodology on less pristine and
weathered samples of commercial plastics would further test its utility. Weathered or aged
MNPs are expected to have varying degrees of UV radiation exposure that may impact
the degree of crystallinity of aged materials. Understanding how different levels of UV
exposure affect plastic particle deformation is critical in developing this methodology for
use on environmental MNPs. Using similar methods to those described in this study,
the deformation behavior of pristine and UV-irradiated particles of the same polymer
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type could be characterized and compared for differences. Under such circumstances, the
analytical capabilities of the aforementioned computational tools would be necessary to
make this a desirable methodology to the broader environmental research community.

Based on this work, some key aspects of data capture that should be considered
include the beam settings of the SEM instrument, the number of particles present in a
sample, and the presence of media-obscuring particles. Having the correct SEM settings
enables better particle resolution while aiding in observing particle morphology during
deformation. Diluting samples before preparation on SEM specimen mounts can prevent
particles from being obscured by large piles of microscopic debris, which aids in the more
rapid collection of particle deformation data. In addition to environmental debris, the
presence of biological media coating particles would likely inhibit the ability to find them
using this methodology. Digestion of biological media would be recommended if this
methodology is applied to an environmental sample. Guidelines for aiding in the analysis
of collected observational data include having clear contrast between particles and their
background, identifying isolated particles within the SEM imaging frame, and maintaining
a consistent frame rate in exported video files. Following these best practices enhances
the quality of observational data, enabling machine learning algorithms to better assess
potential deformational changes in irradiated particles. Table 4 summarizes how sample
preparation, data collection, and data analysis could be improved to make this methodology
more reliable for future researchers.

Table 4. Guidance for data collection and analysis using SEM particle deformation methodology.

Process Guidance Description Benefits

Sample
Preparation

Digest use mild digestion to
remove organic matter

reduces organics surrounding MNPs
to better observe particle deformation

Fraction separate particles of
specific size ranges

improves homogeneity of particles,
enabling expedited particle selection

Dilute reducing concentration of
particles in sample

reduces aggregation, enabling
expedited particle selection

Data
Collection

E-Beam optimize beam settings
for voltage and current

enables observation of more discrete
differences in particle deformation

Contrast optimize contrast settings
of instrument

improves identification of particle
boundaries during data analysis

Resolution optimize beam scan rate
and image resolution

improves identification of particle
boundaries during data analysis

Selection identification of discrete
particles

improves reliability of computational
methods for measuring particles

Sample increase number of
particle observations

improves statistical power of particle
deformation characterization

Data
Analysis

Materials collect data on a wide
variety of materials

expands library of particle
deformation behaviors, improving
characterization of particles from

different source materials

Condition collect data on particles
of different condition

expands characterization of particles
that have been UV aged or degraded

through different processes

Analytics pair method with other
analytical techniques

other techniques (such as EDS) may
help characterize particles

Training provide additional
training data to AI

improves computational analysis,
reducing error and variability

Software develop SEM software
package and database

enables cataloging of deformation
behavior and more rapid analysis

Successful implementation of this method would help highlight the extent to which
plastic persists in the environment, paving the way for a more comprehensive understanding
of the risks associated with plastic pollution. Identifying nanoplastics by polymer type in
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complex environmental matrices is the ultimate validation of this methodology, providing a
novel approach to help close the methodological gap for studying environmental MNPs.
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