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Abstract: The main purpose of this study is to design combinational logic gates based on a novel
configuration of insulator–metal–insulator (IMI) nanoring plasmonic waveguides. Plasmonic logic
gates are half adder, full adder, half subtractor, full subtractor, and one-bit comparator and are realized
in one structure. The performance of the logic circuits is based on constructive and destructive
interferences between the input and control signals. The transmission threshold value is assumed
to be 0.35 at the resonance wavelength of 1.310 µm. The transmission spectrum, contrast loss (CL),
insertion loss (IL), modulation depth (MD), and contrast ratio (CR) are calculated in order to evaluate
the structure’s performance. The maximum transmission of the proposed structure is 232% for full a
adder logic gate, and MD exceeds 90% in all plasmonic combinational logic circuits. The suggested
design plays a key role in the photonic circuits and nanocircuits for all-optical systems and optical
communication systems. The combinational logic gates are analyzed and simulated using the finite
element method (FEM).

Keywords: IMI plasmonic waveguide; optical combinational logic gate; transmission spectrum;
constructive and destructive interference

1. Introduction

In recent years, surface plasmon polaritons (SPPs)-based all-optical devices have
been of interest of researchers [1–8]. All-optical SPP devices overcome the diffraction limit
in photonic devices and limitations of semiconductor-based electrical devices such as
intrinsic delay and significant thermal production. Therefore, in SPP devices, the light
can be controlled in a scale smaller than the operational wavelength (subwavelength
scale) [3]. Constructive or destructive interference between two or more light signals
within two or more waveguides is the principle for controlling the operation of these
circuits [5–7]. Constructive and destructive interferences are used for switching operations
in SPP devices [8]. Subwavelength processors include plasmonic NOT, AND, NAND, OR,
NOR, XNOR, and XOR logic gates as their building blocks [2]. Recently, numerous optical
plasmonic devices have been proposed using micro/nanoscale logic gates [9–13]. Many
all-optical studies have been conducted on combinational logic circuits [14–23]. Some of
these studies have utilized SPPs for designing the combinational logic circuits [14–19].

A one-bit comparator using a MZI (Mach-Zehnder Interferometer) and two linear
control waveguides has been designed [17]. On-chip half and full adders with a high
CR, ultra-compact dimensions, and low threshold power, based on nonlinear plasmonic
nanocavities have been experimentally developed [18]. Four optical combinational circuits
with high transmission values based on square-shaped resonators and hybrid plasmonic
waveguides have been introduced [24]. One-bit and two-bit comparators with high CR
levels using two structures based on graphene waveguides have been designed [25]. The
one-bit and two-bit structures have footprints of 0.42 µm2 and 0.9 µm2, respectively. In [26]
a structure based on a MIM waveguide and having a footprint of 66 µm2 was suggested for
two combinational circuits. A pair of combinational logic functions that employed an IMI
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structure using an elliptical resonator with a size of 540 nm × 250 nm was suggested in [27].
Two combinational circuits with hybrid plasmonic waveguides, the high transmission, high
MD, and a 1300 × 400 nm footprint were proposed [28].

In this study, plasmonic combinational logic gates including half adder, full adder,
half subtractor, full subtractor, and one-bit comparator were designed in a single IMI-
based compact structure. Compared to MIM plasmonic waveguides, the IMI plasmonic
waveguides have the advantages of reduced coupling losses, manufacturing simplicity [29],
and a relatively higher quality factor [30,31].

Constructive and destructive interference between the signals control the status of the
output logic state. The performance of the structure was evaluated by the transmission
spectrum, CL, insertion loss IL, MD, and CR. Maximum transmission at the resonance
wavelength of 1.310 µm was achieved in full adder mode. The MD parameter was remark-
ably high in all combinational logic circuits; thus, the structure has been designed with
optimal structural parameters. According to the results, the proposed structure may be
considered to be a promising candidate for nanophotonic integrated circuits due to its high
CR. The designed structure was illuminated by a plane wave with transverse magnetic
(TM) polarization. A two-dimensional (2D) configuration within COMSOL Multiphysics
software was employed and FEM was utilized to solve Maxwell’s equations and obtain
the results.

2. The Resonator, Structure Type, and Design Parameter Selection

In order to design an all-arithmetic logic unit with high transmission at a wavelength
of 1.310 µm, transmission spectra of the three basic IMI structures involving three strips
and one resonator are compared in Figure 1, where the selected metal and insulator are
silver and flint glass, respectively. Johnson and Christy’s data are used for the permittivity
of the silver in the simulation of this proposed design [32].
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Figure 1. The IMI structures with (a) square, (b) disk, and (c) nanoring resonators and (d) transmission
spectrum of the devices.

Flint glass with a refractive index of 1.8 was considered [33,34]. The IMI structures
with square, disk, and nanoring resonators are shown in Figure 1a–c, respectively. The geo-
metrical parameters of the devices are listed in Table 1. The transmission spectrum of the
devices is shown in Figure 1d. As shown, two input waves are injected and coupled to the
lower two strips and the output wave is extracted from the higher strip. According to the re-
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sults, maximum transmission is achieved using the IMI structure with a nanoring resonator.
Therefore, the all-arithmetic logic unit based on nanoring resonator was designed.

Table 1. The geometrical parameters of the devices shown in Figure 1a–c.

Parameter Description Value (nm)

H Height and width of the structure 300
Ls Length of the side stripes 160
Lm Length of the middle stripes 105

Y Side length of the nano square resonator,
Diameter of the nanoring resonator 80

a Nanoring inner radius 30
Ws Width of the stripes 15
d Distance between the stripes and resonator 5

In the next step, the transmission spectra of IMI and MIM plasmonic waveguides
which possess four strips and one nano ring were compared. The IMI and MIM plasmonic
structures are shown in Figure 2a,b, respectively. The structural dimensions of the strips
and resonators were the same as those assumed in Figure 1. As shown, the input waves
are coupled to the devices through the lower stripes. The output light is extracted from
the higher strip. The metal and insulator region are assumed to be silver and flint glass.
Transmission spectra of the IMI and MIM waveguides are shown in Figure 2c.
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(c) transmission spectra of the structures.

As shown the structure based on IMI plasmonic waveguides has the higher trans-
mission value at the wavelength of 1.310 µm. Therefore, the IMI-based waveguides were
considered hereafter. Next, the effect of changing the geometrical parameters on the trans-
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mission spectrum of the IMI plasmonic waveguides was studied. The width of the strips,
Ws, the length of the side stripes, Ls, the length of the middle strip, Lw, the inner radius of
the nanoring, a, and the distance between the resonator and strips, d, were considered. In
Figure 3a, the width of the stripes, W, was changed from 5 nm to 25 nm in increments of
5 nm. The maximum transmission at the desired wavelength was obtained when W was
15 nm. In Figure 3b, the length of the side stripes, Ls, is swept from 150 nm to 170 nm for
stripes with a width of 15 nm. As shown, the resonance wavelength was shifted to the
longer wavelength range. The maximum value of transmission was achieved when Ls was
set to 160 nm. Transmission spectra of the structure for different middle strip lengths of 95,
100, and 105 nm are shown in Figure 3c, where the w and Ls parameters are set to 15 nm
and 160 nm, respectively. According to the results, there is no change in the transmission
spectrum by changing the middle strip length. For simplicity of the structure, a middle strip
with a length of 105 nm was considered. Therefore, the distance between all stripes and
the resonator was 5 nm. By considering the desired parameters, the effect of the nanoring
inner radius on transmission is studied in Figure 3d. Inner radii of 20, 25, 30, and 35 nm
were considered. The transmission spectrum experienced red shift when increasing the
inner radius of the nanoring. The maximum value of the transmission was obtained at
the proper wavelength when a was set to 30 nm. The proper geometrical parameters were
used hereafter.
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3. Structure Layout and Theoretical Model

The proposed structure for the plasmonic combinational logic gates is shown in
Figure 4. The structure includes two substructures, including the designed IMI struc-
ture in Figure 4a with proper structural parameters. The size of both substructures is
300 nm × 300 nm. The substructures are separated by a perfect electrical conductor (PEC)
with a thickness of 50 nm for complete isolation of the substructures. Graphene material
may be used as a PEC [35,36].

Table 2 includes structural dimensions of the suggested plasmonic combinational
logic gate. The total height and width of the suggested device are 300 nm and 650 nm,
respectively. In practice, the third dimension is considered with a value greater than twice
the wavelength [37]. The suggested device has a compact size of 300 nm × 650 nm. Optical
diffraction occurred in optical components with a size of about the half the wavelength
of the light. This limitation affects light propagation as well as the scalability and size
of the optical devices [38,39]. This phenomenon can be attributed to the inherent three-
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dimensional (3D) nature of dielectric wave propagation, as dictated by Equation (1) [4].

β2 + k2
x + k2

y = εc
ω2

c2 (1)

where β is the propagation constant, kx is the wave number in x direction, ky is the wave
number in y direction, Ec is the dielectric constant of the core material, ω is the angular
frequency, and c is the speed of light in free space. In order to effectively couple light into
the IMI plasmonic waveguide, light propagation is realized into a dielectric slab waveguide
through one of the plasmonic excitation techniques [40–43]. The dielectric waveguide
facilitates the confinement of optical energy and supports the dielectric mode. The efficient
transmission of the mode into the IMI plasmonic waveguide is realized with a tapered
construction. The taper structure transforms micron-sized dielectric mode into a nano-sized
IMI plasmonic mode. The refractive index of the structure in the z-direction is constant;
thus, two-dimensional field distributions were considered. The resonance wavelength (λsp)
can be determined by Equation (2) [44]:

λsp =
(

4πDne f f

)
(2)

where D is the larger diameter of the nanoring and neff is the effective refractive index.
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Table 2. Structural parameters of the designed plasmonic combinational logic gate.

Parameter Description Value (nm)

H Height of the structure 300
W Width of the structure 650
Ls Length of the side stripes 160
Lm Length of the middle stripes 105
Wg Graphene layer width 50

b Nanoring outer radius 40
a Nanoring inner radius 30

Ws Width of the stripes 15
d Distance between the stripes and nanoring 5

The resonant wavelength of 1.310 µm is employed in optical communications [45].
The transmission is one of the parameters for measuring the performance of the device.
The transmission is defined by the ratio between the output optical power (Pout) and a
single-input optical power (Pin) as given in Equation (3) [46]:

T =

(
Pout
Pin

)
(3)
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The output state of the desired logic gate is determined by the threshold value of T.
In the proposed structure, the threshold value is assumed to be 0.35. Therefore, when T is
higher than the threshold value, the output logic state is considered as 1 (ON), and if T is
less than the threshold value, the output logic state is considered as logic 0 (OFF). On the
other hand, the CR, MD, IL, and CL are utilized to describe device performance. The CR is
defined as Equation (4) [47]:

CR (dB) = 10log
(

Pout|ONmin
Pout|OFFmax

)
(4)

A description of the CR’s value is provided in [43]. The MD is defined as the relation-
ship between the maximum level of the transmission in the ON state, denoted as (MaxTON)
and the minimum level of the transmission in the OFF state, denoted as (MinTOFF). The
MD parameter is obtained as in Equation (5) [48]:

Modulation depth (MD) =

(
MaxTON −MinTOFF

MaxTON

)
(5)

The ratio determines whether the chosen dimensions for the proposed design are opti-
mal [32]. Insertion loss (IL) is another parameter that demonstrates the relationship between
minimal output power in the ON state and input power. IL is defined by Equation (6) [49]:

IL (dB) = −10log
(

Pout|ONmin
Pin

)
(6)

The parameter measures the losses caused by the insertion of one device into another.
CL quantifies the losses caused by the CR; when the CR is high and insertion loss is low,
the induced losses are low, and vice versa. According to Equation (7), the total losses are
low whenever the CL is high.

CL (dB) = CR (dB) − IL (dB) (7)

The proposed structure operates based on constructive and destructive interference
between the control signal and the input signal(s).The constructive and destructive interfer-
ence between the control and the input(s) signal is dependent on the position of the control
and input ports and the phase of the incident light signal, where the structural parameters,
material, and the shape are not changed. The position of the control port and input port(s)
determines the form of interference.

The constructive and destructive interference between the control signal and the
input(s) is dependent on the position of the control and input ports and the phase of
the incident light signal; the structural parameters, material, and shape remain constant.
The position of the control port and input port(s) determines the form of interference.
Constructive interference occurs when the phase of the launched wave is the same across
all ports, including the control port, and aligns with the propagation direction.

In contrast, destructive interference occurs if the direction of propagation or the phase
of the launched wave at each port is different. Equation (8) [46] describes the destructive
and constructive interference between incident light signals:

m =


(

4ne f f dcosθ
)

λ

 (8)

where neff is the effective refractive index of the silver and m is the interference order as
a positive integer greater than zero. θ represents the phase of the incident wave, while λ
represents the incident wavelength. When θ = 0◦, the sign of Equation (7) is positive. This
shows that the modes propagate along the same paths; thus, constructive interference arises
between modes with identical phases, leading to an enhancement in transmission. When
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θ = 45◦, m has a positive sign and the mode direction aligns with the direction of wave
propagation. Therefore, constructive interference occurs between modes with the same
phases. The magnitude of the interference mode is smaller than that of θ = 0◦. Therefore,
there is a slight improvement in transmission. When θ = 90◦ is 90, Equation (7) results in
zero, indicating the absence of both constructive and destructive interference in the modes.

Transmission is linked to the phases of input and control light waves. When θ = 180◦,
the sign of Equation (7) is negative. This indicates that the modes propagate in opposite
directions. Consequently, destructive interference occurs between modes with different
phases. Therefore, transmission is decreased.

4. The Suggested All-Optical Combinational Logic Circuits

For all suggested plasmonic combinational logic circuits, the structure is excited by
a plane wave with a wavelength range of 1000 to 1800 nm. A plane wave with TM
polarization is injected into the input and control ports. To solve Maxwell’s equations,
COMSOL Multiphysics software was used. The results were obtained by the FEM.

4.1. Plasmonic Half Adder Logic Circuit

A half adder is a basic electronic circuit employed for binary addition. It accepts two
binary inputs, A and B, and generates two outputs: the summation (sum) and carry (Cout).
The half adder is capable of calculating the sum of the inputs, but it is unable to account for
any carry generated by prior addition operations. According to the truth table of the half
adder, the first output (sum) is approximated using the XOR gate and the second output
(Cout) is obtained using the AND logic gate. The schematics of the half adder circuit and
the truth table are shown in Figure 5a,b. In the proposed structure, the left substructure is
selected for obtaining the sum output. The right substructure is selected to generate the
carry output.
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To design XOR logic gate in the left substructure, ports 1 and 2 are input ports denoted
as input 1 and input 2, respectively. Ports 3 and 4 are the control port and output port
1 (sum), respectively. To design the AND gate in the right substructure, ports 5 and 6 are
input ports denoted as input 3 and input 4, respectively. Ports 7 and 8 are considered to be
the control port and output port 2 (Cout), respectively.

The constructive and destructive interference between the input signal(s) and the
control signal in the two substructures is utilized to realize the half adder combinational
logic circuit. According to the transmission spectra shown in Figure 5c, when the incident
light with a wavelength of 1.310 µm and a phase of 0◦ (logic 1) is applied to ports 7 and
3 (the control ports), while the state of ports 1, 2, 5, and 6 (input ports) is OFF (logic 0), the
transmission value is 0.07 below the threshold value of 0.35 and the state of ports 4 and
8 (output ports) is OFF (logic 0).

In the following two cases, when the light with a phase of 0◦ (logic 1) is launched to
one of the ports, an input port in the left substructure, while the state of the other port
is OFF (logic 0) and the state of port 3 (the control port) is in an ON state (logic 1) with
the phase of 0◦, constructive interference between the input signal and the control signal
occurred and the transmission value in port 4 (sum port) reaches 0.81 (greater than the
threshold transmission value). Therefore, the state of port 4 is ON (logic1).

Also, when one of the input ports, port 3 or port 4, in the right substructure, is in an
ON state (logic 1) with a phase of 45◦ and port 7 (the control port) remains ON with a phase
of 180◦, destructive interference between the signals of the input port and the control port
occurs and the transmission value of port 8 (the carry port) is 0.1 and its state is OFF.

In the last state, all ports in the two substructures are exposed to light waves with a
different phase for each port. In the left substructure, port 1 and port 2 (the input ports) are
in phases of 180◦ and 45◦, respectively. Port 3 (the control port) is in a phase of 0◦. Due
to the phase mismatch between the signals, destructive interference occurs between the
signals and the transmission value in port 4 (the sum port) is equal to 0.05, meaning that
port 4 (output port 1) is OFF. In the right substructure, the phase for all ports (the two input
ports and the control port) is equal to 180◦. In this case, the constructive interference occurs
between the signals and the transmission value in port 8 (the carry port) is 2.23, and the
state of port 8 (output port 2) is ON. Figure 5d,e shows the distribution of the magnetic field
of the plasmonic half adder for the logics 00 and 11 inputs, respectively. The simulation
results are summarized in Table 3.

Table 3. The summary of the simulation results of the half adder circuit.

Input
Port 1 Cont.1 Input

Port 2
Sum
(T)

Input
Port 3 Cont.2 Cout

(T)
CR

(dB) MD CL
(dB)

IL
(dB)

Ports number 1 3 2 4 5 7 8 8.67 97.8% 0.9 7.77

Ports statue 0 ON (0◦) 0 OFF
(0.07) 0 ON

(180◦)
OFF

(0.07)

0 ON (0◦) 1 (0◦) ON
(0.81) 0 ON

(180◦)
OFF

(0.11)

1 (0◦) ON (0◦) 0 ON
(0.81) 1 (45◦) ON

(180◦)
OFF

(0.11)

1 (180◦) ON (0◦) 1 (45◦) OFF
(0.05) 1 (180◦) ON

(180◦)
ON

(2.32)

The combinational logic circuit provides a medium CR, which indicates efficient
circuit performance [4]. The MD is remarkably high (97.8%), indicating an excellent design
with optimal dimensions [32] and very good IL. Finally, a moderate CL is obtained in
the structure.

4.2. Plasmonic Half Subtractor Logic Circuit

A half subtractor is a type of combinational logic circuit consisting of two inputs and
two outputs. These outputs are referred to as the difference (D) and the borrow (B). The D
output is produced by an XOR gate and the B output is obtained via a logic configuration
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indicated as A′B, as can be seen in Figure 6a,b. The left and right substructures are designed
to achieve D and B outputs, respectively. For the D output, the structure is the same
as that used for sum output in the half adder. For the B output, port 5 and ports 3, 6
and 7 are considered to be the input port, input port 4, the output port and the control
port, respectively.
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Figure 6. (a) The schematics and (b) the truth table of the half subtractor circuit, (c) transmission
spectra, the distribution of the magnetic field of the plasmonic half subtractor for the logics of (d) 00
and (e) 11 inputs.

According to the truth table, B output follows an XOR gate output, but in the third case,
when the input states are ON-OFF, the output is in the OFF state. This state is achieved by
applying the light to port 2 (input port 2) with a phase of 180◦ and to the control port with
a phase of 0◦ consistently. As shown in Figure 6c, the transmission value at the resonance
wavelength is 0.18 and the output port state is OFF.

Figure 6d,e illustrates the distribution of the magnetic field of the plasmonic half
subtractor for the logic 00 and 11 inputs, respectively. The simulation results are provided
in Table 4.

Table 4. The simulated transmission values for the suggested plasmonic half subtractor.

Input
Port 1

Input
Port 2 Cont.1 D

(T)
Input
Port 4

Input
Port 3 Cont.2 Borrow

(T)
CR

(dB) MD CL
(dB)

IL
(dB)

Ports number 1 2 3 4 6 5 7 8 8.1 93% 7.08 1.02

Ports statue 0 0 1
(180◦)

OFF
(0.077) 0 0 1

(0◦)
OFF

(0.07)

0 1
(180◦)

1
(180◦)

ON
(0.79)

1
(0◦) 0 1

(0◦)
ON

(0.81)
1

(45◦) 0 1
(180◦)

OFF
(0.12) 0 1

(0◦)
1

(0◦)
ON

(0.81)
1

(45◦)
1

(180◦)
1

(180◦)
OFF

(0.072)
1

(45◦)
1

(180◦)
1

(0◦)
OFF

(0.05)
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According to the results in Table 4, the combinational logic circuit has a medium CR;
thus, circuit performance is favorable and efficient [4]. The MD is remarkably high which
indicates an excellent design with optimal dimensions [32]. In addition, a low IL and
moderate CL are achieved.

4.3. Plasmonic Full Adder Logic Circuit

A schematic of a full adder logic circuit with the truth table is shown in Figure 7a,b.
The full adder considers three input bits including A, B and carry (Cin) [50]. The left
substructure is utilized to compute (sum), the output sum, in the full adder combinational
logic circuit, while the right substructure is considered to calculate (Cout), the output carry.
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The transmission spectrum of the full adder is shown in Figure 7c. According to the
transmission curves, if one of the input ports is in the ON state and the Cin is in the OFF
state, only the output sum is in the ON state. The transmission peak value is 0.39 in this
case. The peak value of the transmission spectrum for the Cout is 0.07 related to the OFF
logic state. According to the truth table and transmission spectrum, the Cout is in the ON
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state in the fourth case and the transmission value of 1.55 is achieved. The output sum
remains in the OFF state and the transmission value of 0.003 is below the transmission
threshold. For the sixth and seventh cases, the carry output is activated with transmission
values of 0.77 and 0.8, respectively. On the other hand, the output sum remains in the OFF
state and the transmission values are 0.12 and 0.002, respectively. In the eighth state, both
outputs are activated with an ON state and the transmission value is 2.3. Constructive
interference occurs when the input signals have identical phases. Destructive interference
occurs when the phases of the input signals are different.

Figure 7d–g indicates the distribution of magnetic field of the logics of 011, 100, 101,
and 111 inputs in the plasmonic full adder, respectively. Table 5 provides a summary of the
simulation results of the suggested plasmonic full adder combinational logic circuit.

Table 5. The simulated transmission values for the suggested plasmonic full adder.

Input
Port 1

Input
Port 2 Cin Port Sum

(T)
Input
Port 3

Input
Port 4 Cin Port Cout

(T)
CR

(dB) MD CL
(dB)

IL
(dB)

Ports number 3 2 1 4 5 6 7 8 4.8 99.8% 4.3 0.5
Ports statue 0 0 0 OFF 0 0 0 0

0 0 1
(180◦)

ON
(0.39) 0 0 1

(0◦)
OFF

(0.073)
Ports number 3 2 1 4 6 7 5 8

Ports statue 0 1
(0◦) 0 ON

(0.37) 0 1
(0◦) 0 OFF

(0.073)
Ports number 3 2 1 4 7 6 5 8

Ports statue 0 1
(180◦)

1
(45◦)

OFF
(0.0039) 0 1

(0◦)
1

(0◦)
ON

(1.55)
Ports number 1 2 3 4 7 6 5 8

Ports statue 1 (0◦) 0 0 ON
(0.39)

1
(0◦) 0 0 OFF

(0.07)
Ports number 3 2 1 4 7 6 5 8

1 (45◦) 0 1
(180◦)

OFF
(0.12)

1
(0◦) 0 1

(0◦)
ON

(0.77)

1 (180◦) 1
(45◦) 0 OFF

(0.11)
1

(0◦)
1

(0◦) 0 ON (0.8)

1
(0◦)

1
(0◦)

1
(0◦)

0
(2.3)

1
(0◦)

1
(0◦)

1
(0◦) ON (2.3)

Based on the results in Table 5, the combinational logic circuit has a moderate CR
which indicates efficient circuit performance [4]. The MD is remarkably high (99.8%);
thus, an excellent design with optimal dimensions is completed [32]. An acceptable IL is
calculated. The circuit has an acceptable CL.

4.4. Plasmonic Full Subtractor Logic Circuit

A full subtractor is a combinational logic circuit that requires three inputs: the minuend
(A), the subtrahend (B), and the borrow-in (Bin), and produces two outputs: the difference
(D) and the borrow out (Bout). A schematic of the full subtractor with truth table is shown
in Figure 8a,b.

The left substructure is utilized to compute the output difference (first output) in
the full-subtractor combinational logic circuit. Additionally, the right substructure is
employed to calculate the output borrow (second output). This combinational logic circuit
operates through the constructive and destructive interference of input signals within
each substructure.

The transmission of the full subtractor for different states of the inputs is shown in
Figure 8c. In the first and second cases, the output difference is in the ON state according
to the transmission values of 0.39 and 0.37, respectively. In the fourth state, however, only
the output borrow is in the ON state and the transmission value exceeds 0.6; while the
state of the output difference is OFF. In the fifth state, only the output difference is in the
ON state, based on the transmission value of 0.39. The output borrow is in the OFF state.
In this case, the transmission at the resonance wavelength is 0.07. For two consecutive
cases, the transmission values of the output difference are 0.12 and 0.002, respectively. The
output difference remains in the OFF state because the transmission values are below the
transmission threshold. The output borrow is also in the OFF state and the transmission
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peak values of 0.11 and 0.13 are obtained, respectively. In the eighth state, both outputs are
activated and in the ON state. The transmission peak exceeds 2.3.

Additionally, Figure 8d–g demonstrates the distribution of magnetic field of the logic
001, 011, 110, and 111 inputs in the proposed plasmonic full subtractor, respectively. Table 6
provides a summary of the results of the proposed plasmonic full subtractor combinational
logic circuit.

As shown in Table 6, the combinational logic circuit has a moderate CR [4]. The MD
is remarkably high (99.91%); thus, an excellent design with optimal dimensions is carried
out [32]. The circuit has acceptable IL. Finally, the circuit achieves an acceptable CL.

4.5. Plasmonic One Bit Comparator Logic Circuit

A one-bit comparator is a combinational logic circuit that compares two bits and
determines their relative magnitudes. It receives a pair of input bits, namely A and B, and
generates three output signals namely equal (EQ), greater than (GT), and less than (LT).
The output signal for equality (EQ) is represented by an XNOR gate, while the second and
third output signals are combined and represented by an XOR gate, as shown in Figure 9a.
The truth table of the circuit is shown in Figure 9b.
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Figure 8. (a) The schematics and (b) the truth table of the full subtractor circuit, (c) transmission
spectra, the distribution of the magnetic field of the plasmonic full subtractor for the logics of (d) 001,
(e) 011, (f) 110, and (g) 111 inputs.
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Table 6. The simulated transmission values for the suggested plasmonic full subtractor.

Input 1 Input 2 Input 3
(Bin)

D
(T) Input 1 Input 2 Input 3

(Bin) Bout (T) CR
(dB) MD CL

(dB)
IL

(dB)

Ports number 3 2 1 4 7 6 5 8 4.89 99.91% 0.59 4.3
Ports statue 0 0 0 OFF 0 0 0 OFF

0 0 1
(0◦)

ON
(0.39) 0 0 1

(0◦)
ON

(0.37)

0 1
(0◦) 0 ON

(0.37) 0 1
(0◦) 0 ON (0.4)

Ports number 1 3 2 4 5 7 6 8

Ports statue 0 1
(180◦)

1
(45◦)

OFF
(0.11) 0 1

(0◦)
1

(45◦) ON (0.6)

Ports number 1 2 3 4 7 6 5 8

Ports statue 1
(0◦) 0 0 ON

(0.39)
1

(0◦) 0 0 OFF
(0.07)

1
(45◦) 0 1

(180◦)
OFF

(0.12)
1

(180◦) 0 1
(45◦)

OFF
(0.11)

1
(180◦)

1
(45◦) 0 OFF

(0.002)
1

(45◦)
1

(180◦) 0 OFF
(0.13)

1
(0◦)

1
(0◦)

1
(0◦) ON (2.3) 1

(0◦)
1

(0◦)
1

(0◦)
ON

(2.29)
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In our structure, the left substructure is employed for EQ operation. On the other
hand, the right substructure is utilized for inequality operations, GT and LT outputs.

In the left substructure, to achieve an XNOR logic gate, the input ports 1 and 2 are
considered to be ports 2 and 3, respectively. Port 1 is assumed to be the control port, and
the output port 1 (EQ) is considered to be port 4. For the right substructure, port 5, port 6,
port 8, and port 7 are considered to be input port 3, input port 4, output port 2 and the
control port, respectively.

The inequality operation of the combinational logic circuit is similar to the sum
operation in a half adder and the difference operation in a half subtractor. In the proposed
plasmonic inequality circuit, the output represents the functions of “LT” (less than) or
“A < B” in the second case, and “GT” (greater than) or “A > B” in the third case.
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The transmission spectrum of the circuit is shown in Figure 9c. For achieving equality
output, the XNOR gate is realized in the left substructure. By applying light with a
wavelength of 1.310 µm wavelength and a phase of 180◦ to the control port, the output
port 1 (EQ) is in the ON state and the transmission value exceeds the threshold of 0.35.
In the second and third cases, the destructive interference between the input signal and
control signal occurs due to the phase difference. Consequently, the transmission value is
below the threshold and the output is in the logic 0. In the fourth state, there is a substantial
constructive interference between the control signal and the input signals with the phase of
180◦. Therefore, the transmission is significantly enhanced by 232% and the output is in the
logic 1 state. Thus, the desired operation of the one-bit comparator combinational logic
circuit is successfully accomplished.

Figure 9d,e depicts the magnetic field distribution of the logic 00 and 11 input in
the plasmonic one-bit comparator, respectively. The simulation results of the suggested
plasmonic one-bit comparator are summarized in Table 7.

Table 7. The simulated transmission values for the suggested plasmonic one-bit comparator.

Cont.1 Input
Port 1

Input
Port 2

Output
Port

A = B

Input
Port 3

Input
Port 4 Cont. 2

Output Port
A > B or

A < B
(T)

CR
(dB) MD IL

(dB)
CL

(dB)

Ports number 1 2 3 4 5 6 7 8 5.49 99.87% 4.08 1.41

Ports statue ON
(180◦) 0 0 ON

(0.39) 0 0 ON (0◦) OFF
(0.07)

ON
(180◦) 0 1 (45◦) 0FF

(0.11) 0 1 (0◦) ON (0◦) ON
(0.81)

ON
(180◦) 1 (45◦) 0 0FF

(0.003) 1 (0◦) 0 ON (0◦) ON
(0.77)

ON
(180◦) 1 (180◦) 1 (180◦) ON

(2.32) 1 (180◦) 1 (45◦) ON (0◦) OFF
(0.05)

According to the results in Table 7, the combinational logic circuit provides a mod-
erate CR [4]. The MD is remarkably high (99.8%); thus, an excellent design with optimal
dimensions is completed [32]. The circuit has a moderate IL and an acceptable CL.

4.6. Comparing the New Work with Previous Research Efforts

A comparison between the suggested plasmonic combinational logic circuit and the
other previous works is listed in Table 8.

Table 8. Comparison between the suggested plasmonic combinational logic circuit and the other
previous works.

References Used Software
Number of

Combinational
Circuits

Proposed
Combinational

Function
Size Operating

Wavelength Complexity Performance
Parameters

[24] FEM-2D 4-comb.
Logic circuits

Half Adder,
Half Subtractor,

Full Adder,
4-bit converter

850 nm × 400 nm
1750 nm × 400 nm 1310 nm more T, CR, MD, IL

[25] FDTD 2-comb.
Logic circuits

One-bit comparator,
Two-bit comparator 0.42 µm2 15 µm more T, CR

[26] FDTD 2-comb.
Logic circuits

Half Adder,
Half Subtractor 66 µm2 66 µm more T, CR, IL

[27] FEM-2D 2-comb.
Logic circuits

Half Adder,
Half Subtractor 540 nm × 250 nm 850 nm more T, MD, CR, IL

[28] FEM-2D 2-comb.
Logic circuits

2 × 1 Multiplexer,
Comparator

400 nm × 400 nm
1300 nm × 400 nm 1310 nm more T, CR, MD, IL

[51] FEM-2D 4-comb.
Logic circuits

One-bit comparator,
Half Adder,
Full Adder,

Half Subtractor

850 nm × 400 nm 1550 nm more T

This paper FEM-2D 5-comb.
Logic circuits

One-bit comparator,
Half Adder,
Full Adder,

Half Subtractor,
Full Subtractor

650 nm × 300 nm 1310 nm less T, CR, MD, IL,
CL
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5. Conclusions

In this paper, five combinational logic gates based on IMI nanoring plasmonic waveg-
uides are designed. These combinational logic gates, including a half adder, full adder, half
subtractor, full subtractor, and one-bit comparator are realized by a single structure. The
transmission spectrum, CL, IL, MD, and CR are calculated for all logic gates. The transmis-
sion value can be controlled by the position and the phase of input and control ports of
the structure. The transmission threshold value is assumed to be 0.35 at the wavelength
of 1.310 µm to determine the logic states of the outputs. The transmission of the designed
structure is 232% in the full adder logic gate. The MD value of above 90% is obtained for
all logic gates. FEM is used to simulate and analyze the proposed structure.
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