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Abstract: In this paper, a D-band direct conversion IQ receiver with on-chip multiplier chain is
presented. The D-band LNA with gain-boosting and stagger-tunning technique is implemented
to provide high gain and large bandwidth. X9 multiplier chain including Marchand balun and
quadrature (90◦) hybrid is employed to provide four path LO signal to drive IQ mixer. This receiver is
implemented in a 130nm SiGe process and consumes a core area of 1.04 mm2. From the experimental
results, the proposed receiver exhibits a 20 GHz bandwidth from 150 GHz to 170 GHz, with CG of
28 dB and NF of 7.3 dB at 158 GHz.
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1. Introduction

Due to the abundant spectrum resources, THz and sub-THz systems attract more and
more attention to high-speed communication systems and high-resolution radar [1–9].
Especially, with the emergence of advanced silicon processes which offer fmax above
400 GHz [10,11], the development of D-band (110–170GHz) front-ends grows rapidly.
Nowadays, several D-band transceivers are being reported in communication and radar
systems [12–15].

For the D-band receiver, high gain, low noise, and large bandwidth are the key
requirements to strict the building block of the front-ends. To meet these above-mentioned
requirements, in this paper, we present a D-band direct conversion IQ receiver with on-chip
LO multiplier chain. Benefiting from the on-chip LO chain, this receiver has great potential
to be integrated into the digital backend for communication and radar systems.

2. Receiver Architecture and Building Block
2.1. The Direct Conversion IQ Receiver

The architecture of the proposed D-band direct conversion IQ receiver is shown in
Figure 1. It is implemented in a 130 nm SiGe process with an ft/fmax of 300/450 GHz.
This receiver integrated the LNA, LO chain, and IQ mixer. Due to the high gain and large
bandwidth of the LNA, the D-band receiver can suppress the noise contribution due to
all the blocks after the front-end LNA. To drive the IQ mixer, x9 LO multiplier chain with
buffer amplifier, Marchand balun, and quadrature (90◦) hybrid are implemented which can
provide four paths of D-band signal.

2.2. The D-Band LNA

The schematic of the proposed LNA is shown in Figure 2. The design of the LNA
mainly focuses on optimizing NF, bandwidth, and gain. Firstly, to obtain a sufficient
power gain at such high frequency, four stage amplifier is cascaded in which the first and
second stages are the cascade structure, with the third and the fourth stages being the
common source structure. The sufficient power gain of the LNA is also beneficial to make
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the contribution of other blocks to the overall chain noise negligible. Secondly, for the
NF optimization, since the first stage amplifier dominates the NF of the whole LNA, the
source degeneration inductor TLS and gain-boosted inductor TLg are employed in the
first stage amplifier, respectively, to obtain a low NF and high gain. Finally, to obtain a
wide bandwidth, a gain control stagger-tuning technique is employed in this four-stage
amplifier [16–19]. The peak gain of the first, second, third, and fourth-stage amplifiers is
located at 160 GHz, 175 GHz, 145 GHz, and 145 GHz, respectively.
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Figure 1. The D-band receiver structure.
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Figure 2. The schematic of the proposed wideband LNA.

The S-parameters and NF simulation results of the proposed wideband LNA are
shown in Figure 3. From 150–170 GHz, the proposed LNA exhibits a flat gain range from
23.1 dB to 24.6 dB, it also achieved well input and output conjugate matching. Figure 3b
shows the NF simulation result, from 150–170 GHz the proposed LNA exhibits a low NF
value range from 6.93 dB to 7.45 dB.
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2.3. The Mixer

The schematic of the D-band quadrature mixer is shown in Figure 4; it is based on a
pseudo-differential Gilbert cell.
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Figure 4. The schematic of the down-conversion mixer.

The pseudo-differential transconductance stage eliminates the linearity penalty caused
by the tail-current source. As a down conversation mixer, the inductive emitter degen-
eration technique is employed at high frequency for enhancing linearity. The size of the
transconductance stage was determined as minimum as possible to provide a high input
impedance to relieve the stress of impedance matching. The size of the switching quad was
also determined as a minimum to relax the LO requirement [20]. The mixer drives a 500 Ω
load, a relatively large load that provides high voltage gain. Simulating the conversion
gain, the S-parameter quadrature mixer results are shown in Figure 5.
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2.4. The LO Multiplier Chain

The receiver employs the frequency multiplier chain to generate the 160 GHz LO
signal with an external reference of 17 to 19 GHz. The schematic of the multiplier chain
with buffer amplifiers is shown in Figure 6.
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The core part of the LO chain is a two-stage x3 injection-locked frequency multiplier
(ILFM) to produce a x9 signal. Then, three-stage cascade amplifiers, 90◦ hybrid coupler,
and Marchand balun are utilized to generate differential I/Q signals to drive mixers.

For the ILFM, Figure 7 represents the schematic of the transformer-based VCO. The
x3 ILFM adopts the third-harmonic enhancement technique [21] in transformer-based LC
VCO, ensuring the multiplier is working at the fundamental and third harmonic wave.
Due to the nature that the frequency is locked at fundamental, with the amplifying and
detecting function of the resonant tank in the collector, it is easier for the multiplier to be
locked with a wider locking range. As a trade-off between large third harmonic and phase
noise, Km is about 0.5 and 0.6 for the transformers of the first and second stages, which
use the planar and overlay structure, respectively, to keep a relatively high and constant
Km and avoid the inductor self-resonance. The equivalent Q-factor of the transformer in
Figure 7 can be calculated as:

Qeq =
1 + αpαsk2

m − αpαs
αp
Qp

+ αs
Qs

− αpαs

(
1

Qp
+ 1

Qs

) , (1)

where αp = ω2LpCp, αs = ω2LsCs, Qp, and Qs are the Q-factor for the primary and
secondary winding. When equals to the fundamental and third harmonic, assuming
Qp = Qs, (1) can be simplified to:

Qeq

∣∣∣∣ω=ω f und,3rd = Qp

(
1 +

2αsk2
m

1 + X − 2αs

)
, (2)

where X = LsCs/LpCp. For a transformer based dual tank resonator, when ω = ω f und,
αs < 1 while ω = ω3rd, α > 1/

√
1 − k2

m. From (2), it can be concluded that a smaller Km
brings a larger Q-factor and impendence at the third harmonic, which is desired for the
enhancement and multiplying. However, a large Km is still required for a high Q-factor at
the fundamental, because the reduction in Km makes the phase noise performance degrade.
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For the core part, the output power at the second amplifier reaches 0.3 dBm at 160 GHz
with an input power of 6 dBm. The amplitude and phase mismatch at 150 to 170 GHz is
<0.5 dB and <4.5◦, respectively, with a –3 dBm input at the third amplifier. The total power
consumption is 355 mW, in which the core consumes 91 mW from a 1.6 V supply, while the
amplifier chain occupies 264 mW from a 3 V supply.

2.5. The Quadrature (90◦) Hybrid

In the LO chain, to generate the quadrature-hybrid signal, a compact quadrature
(90◦) hybrid is implemented. The layout of the quadrature-hybrid is shown in Figure 8a.
Co-planner waveguides (CPW) are chosen to realize the 50 Ω and 35 Ω transmission lines
for their better shielding and higher integration at D-band. The 35 Ω CPWs are meandered
to reduce the total size of the quadrature-hybrid. Simulation results show that the insertion
loss is 1–1.5 dB and the phase/gain error is within ±3◦ and ±1 dB over 150–170 GHz.
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2.6. The Marchand Balun

Marchand balun is employed to achieve the function of single to differential signal
conversion. The 3D structure picture and model picture of Marchand balun are shown in
Figure 9.

The Marchand balun consists of two couplers. TopMetal2 and TopMetal1 are utilized
to generate the coupler and the length of the transmission line in the coupler is 187 µm.
The odd and even impedances of the quarter-wave-length coupler in the balun should be
26 and 96 Ω, respectively [22]. To save the chip area, this balun has been folded and it
exhibits a symmetrical layout.

The proposed balun structure is EM-simulated by a fully-wave EM simulator. Figure 10a
shows the simulation results of S-parameters. The S11 of balun is lower than −20 dB and
the amplitude imbalance is less than 0.4 dB from 150 GHz to 170 GHz. Figure 10b shows
the phase imbalance of the proposed balun; it exhibits a 6◦ phase imbalance at 160 GHz.
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3. Experimental Result

The die photograph of the proposed D-band direct conversion IQ receiver is shown
in Figure 11; it consumes a DC power of 428 mW and a total area of 1.04 mm2 excluding
all these RF and DC pads. Due to the measurement limitation, experimental results of
conversion gain and linearity of the receiver are presented, with the results of the LNA part
being measured and the results of the mixer part simulated.
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3.1. The Conversion Gain

Conversion gain results at 1 GHz IF for the proposed receiver are shown in Figure 12.
From 150 GHz to 170 GHz, the proposed receiver achieves an overall CG above 25 dB and
a maximum CG of 28 dB was achieved at 158 GHz.
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3.2. NF

Due to the low noise and high gain performance of the D-band LNA in the receiver
front-end, the proposed receiver exhibits a simulated NF result below 8 dB from 150 GHz
to 170 GHz as shown in Figure 13. The lowest NF of 7.3 dB is achieved at 158 GHz.
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3.3. 1-dB Compression Point

1-dB compression point results at 160 GHz are shown in Figure 14. The proposed
receiver achieved an input compression point of −19 dBm.
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3.4. S-Parameters

Measured and simulated S-parameters for the RF input of the proposed receiver are
shown in Figure 15. It shows great matching on the RF input. The S11 is below –10 dB from
150 GHz to 170 GHz.
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4. Conclusions

This work presents a D-band direct conversion IQ receiver in a 130 nm SiGe process.
The proposed fundamental receiver features a low NF D-band LNA and on-chip LO chain.
The performance comparison between our work and the prior silicon-based D-band receiver
is presented in Table 1. The proposed receiver is working at the high side of the D-band
frequency range with large bandwidth, high gain, and low noise properties. It has great
potential for sub-THz communication and high-resolution radar systems.

Table 1. Performance comparison and results summary.
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NF [dB] 7.3 * 11.8 * 10 * 8.5 * 9
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* Simulated; # experimental result.
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