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Abstract: With the development of intelligent manufacturing and mechatronics, robotic manipulators
are used more widely. There are complex noises and external disturbances in many application cases
that affect the control accuracy of the manipulator servo system. On the basis of previous research,
this paper improves the manipulator controller, introduces the Bernstein–Kantorovich–Stancu (BKS)
operator, and proposes a modified robotic manipulator controller to improve the error tracking
accuracy of the manipulator controller when observing complex disturbances and noises. In addition,
in order to solve the problem that the coupling between the external disturbances of each axis of the
manipulator leads to a large amount of computation when observing disturbances, an improved
full-order observer is designed, which simplifies the parameters of the controller combined with the
BKS operator and reduces the complexity of the algorithm. Through a theoretical analysis and a
simulation test, it was verified that the proposed manipulator controller could effectively suppress
external disturbance and noise, and the application of the BKS operator in the manipulator servo
system control is feasible and effective.

Keywords: robotic manipulator; Bernstein–Kantorovich–Stancu operator; full order observer; end
effectors; robotics

1. Introduction

The robotic manipulators have the characteristics of flexible movement and adaptabil-
ity to harsh environments, and have been used in more and more fields in recent years,
such as ocean exploration [1,2], health care [3], agricultural planting [4], and other fields.
With the increase in manipulator application fields, its disturbance types are becoming
more and more complex, so how to ensure its positioning accuracy and trajectory accuracy
under complex disturbances has become an important research direction.

Aiming at the high-precision trajectory control of the manipulator, in recent years,
many scholars have proposed a series of control and optimization methods to design
and develop the controller of the manipulator. Shang et al. [5] proposed a PD controller
with fuzzy logic combined with an RBF neural network optimization for the parameter
perturbation caused by the telescopic flexible manipulator when the linkage length changes
and the nonlinear rotation angle fluctuates, which reduces the trajectory error caused by the
change of the manipulator structure parameters. Yang et al. [6] proposed an improved PID
controller in order to identify the torque and stiffness of the manipulator, which improves
the trajectory tracking accuracy of the manipulator by correcting the servo motor trajectory
and satisfies the suppression of the disturbance generated by nonlinear friction. Fan et al. [7]
designed a recursive neural network by collecting motion data of redundant manipulators
and established a controller for the case of incomplete or unknown manipulator dynamics
models to improve the trajectory tracking accuracy of industrial manipulators. The control
method with an obvious effect on manipulator disturbance suppression is the sliding
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mode control, which can identify and track the disturbance for the characteristics of an
external disturbance so that the accuracy of the manipulator’s controller trajectory tracking
control can be improved [8,9]. It can be seen from the methods mentioned in the above
documents that to improve the trajectory tracking accuracy and positioning accuracy of the
manipulator, an accurate control model is required, and the controller needs to be improved
to identify the noise and disturbance in the manipulator’s working environment. Therefore,
designing an advanced observer for the controller is an effective method for improving the
trajectory-tracking accuracy of the robotic manipulator.

By designing an appropriate disturbance observer to estimate the disturbance, and
integrating the disturbance estimation into the manipulator controller, the negative effects
of noise and disturbance on the trajectory tracking control can be greatly attenuated. There-
fore, many scholars have studied and designed the disturbance observer. Shi et al. [10]
have developed a new integral disturbance observer to actively compensate the uncer-
tainty of the system and combined it with an adaptive sliding mode control to improve
the transient performance of the manipulator controller. However, the simulation verifi-
cation of this method on a 2-DOF robot manipulator cannot show the application effect
on redundant robots that are widely used in industry. Gao and Chen [11] proposed a
fixed-time extended state disturbance observer and proved its stability by improving the
extended state observer. However, while this method can make the robot complete the
task in a limited time, the global trajectory tracking accuracy cannot be guaranteed. Zhao
et al. [12] proposed a boundary control based on the disturbance observer and explored that
disturbance suppression can still be achieved under the premise that the time derivative
of the disturbance received by the manipulator is not zero. However, this research uses
a single-link flexible manipulator, which is difficult to apply to common manipulators.
Jung and Lee [13] analyzed the application similarity of the disturbance observer and time
delay controller in a manipulator, and found that the time delay controller can achieve
better results in Cartesian space. However, the definition of manipulator disturbance is not
complex enough to completely represent the case of manipulators in practical application.
In recent years, some disturbance observers designed based on sliding mode observers have
also achieved good results in the application of manipulator controllers, and the design
of initial parameters is low in difficulty and easy to achieve. However, with the change of
external disturbance characteristics, these parameters are difficult to evolve quickly and
accurately, resulting in weak adaptability of the controller and difficulty applying in the
presence of complex disturbances [14,15]. Therefore, a novel Bernstein–Kantorovich (BK)
operator is added to the disturbance observer in this paper. By using its excellent approx-
imation characteristics in statistics and data convergence estimation characteristics, the
updating speed and accuracy of the parameters in the controller and disturbance observer
are improved, and the identification accuracy of the manipulator controller for disturbance
is improved.

The BK operator and its improved methods have been applied in the engineering
field in recent years. They are mainly used to optimize the process of updating controller
parameters to make it approach quickly and ensure accuracy [16]. Moreover, with the
development of the BK operator, some improved BK operators, such as λ-BK [17,18], α-
BK [19], q-BK [20], and other methods, have also been developed [21–24]. In this paper, a
new BKS operator, which is introduced in [25], is implemented in the manipulator controller
to optimize the parameter update process of the disturbance observer and improve the
trajectory tracking accuracy of the robotic manipulator controller.

In this paper, we improve the robotic servo controller for the uncertainty of the robotic
manipulator model and trajectory tracking problem due to the external unknown complex
perturbations, and the main contributions of this paper are as follows:

1. Combining the BKS operator with the perturbation observer in the robotic controller.
2. A multi-turbulence simulation based on the new perturbation observer and the pre-

researched trajectory tracking controller [26] on the robotic manipulator is performed
to verify the effectiveness of the method.
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3. An experimental platform of the manipulator is built to verify the effectiveness of
the proposed controller in the actual manipulator, which reflects the feasibility of the
method in practical engineering applications.

2. Model Derivation and Control Objectives

Figure 1 shows the experimental setup. In this paper, a manipulator model is built, and
motion control is realized by using a single-chip computer. The model is STM32F13RBT6.
The trajectory optimization is updated and compensated by the upper computer. The
insulation cup near the robot can be regarded as an obstacle or a coordinate reference.
In this experimental environment, a vibration device is installed on the base to provide
background noise; that is, the influence of noise, such as simulated mechanical vibration is
added to the process of disturbance.
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2.1. Manipulator Dynamic Modeling

The dynamic equation of an n-DOF manipulator under external disturbance can be
given by the following equation:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + F

( .
q
)
= τ + τd, (1)

where q,
.
q, and

..
q ∈ Rn mean the vectors of manipulator joint positions, velocities, and

accelerations, respectively. M(q) ∈ Rn×n is expressed as the positive definite inertia matrix
of the manipulator joint; C

(
q,

.
q
)
∈ Rn×n represents the Coriolis force and centrifugal force

matrix of the manipulator joint in motion; G(q) ∈ Rn represents the gravity matrix of the
manipulator joint; F

( .
q
)
∈ Rn means the friction matrix, which is generally used to represent

the dynamic friction force in the state of joint motion, and the static friction of starting is not
considered here; τ ∈ Rn represents the control torque of each joint of the manipulator, which
refers to the torque required by each joint of the manipulator to complete the task in an ideal
state; τd ∈ Rn represents an uncertain external disturbance, which can also be regarded
as the additional torque required by the manipulator to suppress the error caused by the
external disturbance. In the application process of the actual robot manipulator, there are
factors such as geometric errors, sudden load changes, and environmental noises, as well
as uncertain emergencies such as obstacle avoidance, collisions, and human interference.
These factors lead to the value of the physical parameters of the model. It cannot be
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obtained accurately, which will cause an error in the controller system parameters, and the
uncertainty of the system can be expressed as:

M(q) = M0(q)− ∆M(q)
C
(
q,

.
q
)
= C0

(
q,

.
q
)
− ∆C

(
q,

.
q
)

G(q) = G0(q)− ∆G(q)
F
( .
q
)
= F0

( .
q
)
− ∆F

( .
q
) , (2)

where the symbol with the subscript 0, such as M0, represents the nominal matrix of mechan-
ical parameters of the robotic manipulator, and the symbol with ∆ in front represents the
parameter variation caused by uncertainty in the manipulator control system, such as ∆M.

Substituting Equation (2) into Equation (1), we can obtain the dynamic equation that
can express the uncertainty of the manipulator.

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + F

( .
q
)
= τ + τd + ∆M(q)

..
q + ∆C

(
q,

.
q
) .
q + ∆G(q) + ∆F

( .
q
)
. (3)

To organize the Equation (3) that expresses the system uncertainty, it can be written as:

..
q = M0(q)−1{−C0

(
q,

.
q
) .
q− G0(q)− F0

( .
q
)
+ τ + τd + ∆M(q)

..
q + ∆C

(
q,

.
q
) .
q + ∆G(q) + ∆F

( .
q
)}

. (4)

In order to facilitate subsequent calculation and derivation, the parameters in Equation (4)
can be classified according to the characteristics of the dynamic model, which can be
written as:

..
q = f0

(
q,

.
q
)
+ M0(q)

−1τ(t) + D(t), (5)

where D(t) represents the error caused by system uncertainty and disturbance to the joint
motion, which can also be regarded as the compensation of the manipulator to suppress
the uncertainty. f0

(
q,

.
q
)

is a bounded and known nonlinear function obtained from the
manipulator model.

In order to ensure the task trajectory accuracy of the robot manipulator, it is necessary
to ensure its end joint motion state. By designing the sliding mode surface of the controller,
the robustness of the sliding mode control is adopted to ensure that the controller can track
the desired trajectory in the presence of system uncertainty.

lim
t→t f
|e| = lim

t→t f
|q− qd| = 0, (6)

where qd ∈ Rn represents the given task of the manipulator, that is, the expected trajectory;
e = q− qd represents the trajectory tracking error caused by system uncertainty; t f is the
expected time to complete the task, that is, the given finite time. The controller designed in
this paper needs to establish the following assumptions and lemmas for the system and
uncertainty to ensure the stability of the system.

It is assumed that the joint position and velocity state of the manipulator are data that
can be measured by the joint or servo motor sensor. Uncertainty of ψD(t) meet |ψD(t)| ≤ ω0

and
∣∣∣ψ .

D(t)
∣∣∣ ≤ ω1, where diagonal matrix ψ is a constant, which is based on mechanical

properties of the manipulator. The constants ω0 and ω1 are unknown and positive.
When the above assumptions are satisfied, the stability of the following invariant

systems can be proved according to the correlation lemma.

.
z = f (z). (7)

Suppose there is a continuous function V(z) in the system shown in Equation (5)
which satisfies the following conditions, i.e., it is a positive definite function on D ⊆ Rn

and satisfy the constraint condition:
If V(z) is a continuous function and D ⊆ Rn is a positive definite function, the following

constraints can be obtained: .
V(z) + kVλ(z) ≤ 0, (8)
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When k > 0 and λ ∈ (0, 1), it can be seen from Equation (8) that the defined manipulator
control system is locally finite-time stable. In addition, if D = Rn is satisfied, the defined
system is globally finite-time stable.

It can be seen from the existing robot manipulator motion model that the constraint on
the disturbance is mainly the amplitude of the disturbance, but the change characteristics
of the disturbance are not discussed. From the actual application, it can be clearly seen
that if the nonlinearity of the disturbance is too strong, the controller and observer have
insufficient ability to suppress the disturbance, and the impact on the motion control
accuracy is very obvious. To solve this problem, this paper proposes a modified control
method of a robotic manipulator which can ensure high-precision motion control when the
manipulator works in complex environments such as underwater, picking, and so on.

2.2. Bernstein-Kantorovich-Stancu Operator

In this section, we apply the BKS operator to the manipulator and obtain the recursive
relationship of BKS polynomial according to the Bernstein polynomial [27]. Then, some
properties of the BKS operator applied to the robotic manipulator controller are given
according to the above-derived model.

The modified BKS operator is defined in [25] as

K(α,β)
n,λi

( f ; x) = (n + β + 1)∑n
i=0 b̃i,n(x)

∫ i+α+1
n+β+1

i+α
n+β+1

f (t)dt, x ∈ [0, 1], (9)

where 0 ≤ α ≤ β and f represent a continuous function defined on the interval [0, 1].
It is clear that each of these nth BKS basis polynomials are a linear combination of Bern-

stein basis polynomials for the higher order observer coefficients of complex manipulators,
and the higher order combination of BKS basis polynomials is proved below.

The Bernstein basis polynomial [25] can be defined as bi,n(x) = Ci
nxi(1− x)n−i;

b̃i,n(x) =


Ci

n−1+λi−1

Ci
n

bi,n(x) +
Ci

n−1−λi

Ci+1
n

bi+1,n(x) ; i = 0, 1, . . . ,
⌊ n

2
⌋
− 1

2λi−1
Ci

n
bi,n(x) ; i =

⌊ n
2
⌋

Ci−1
n−1−λi−2

Ci−1
n

bi−1,n(x) +
Ci−1

n−1+λi−1

Ci
n

bi,n(x) ; i =
⌊ n

2
⌋
+ 1, . . . , n

, (10)

For the sliding mode observer, which has an order up to the second order, it is necessary
to derive the case when n is an even number.

b̃i,n(x) =


C
b n

2 c
n−1 λn

i−1
Ci

n
bi,n(x) +

Ci
n−1−λi

Ci+1
n

bi+1,n(x) ; i = 0, 1, . . . ,
⌊ n

2
⌋
− 1

Ci
n−1+λi−1

Ci
n

bi,n(x) ; i =
⌊ n

2
⌋
,
⌊

n+1
2

⌋
Ci−1

n−1−λi−2

Ci−1
n

bi−1,n(x) +
Ci−1

n−1+λi−1

Ci
n

bi,n(x) ; i =
⌊

n+1
2

⌋
+ 1, . . . , n

, (11)

where b∗c denotes the floor function, and Ci
n =

(
n
i

)
for n ≥ i ≥ 0. The associated shape

parameters λi are constrained to be λ−1 = λn−1 = 0 [25].
However, if the observer is of full order, and n is odd, then it is called an nth extended

Bernstein basis polynomial and the associated parameters satisfy the following conditions:

λi, λn−2−i ∈
[
−Ci+1

n−1, Ci
n−1

]
, i = 0, 1, . . . ,

⌊
n− 1

2

⌋
− 1. (12)



Micromachines 2023, 14, 44 6 of 21

By derivation, it follows that in case λi, α, and β are any real numbers satisfying the
above conditions, the following moments were obtained in [25]

K(α,β)
n,λi

(e0; x) = 1

K(α,β)
n,λi

(e1; x) = n
(n+β+1) x + 2α+1

2(n+β+1) + Dα,β
n,λi ,1

(x)

K(α,β)
n,λi

(e2; x) = n(n−1)
(n+β+1)2 x2 + 2n(α+1)

(n+β+1)2 x + 3α2+3α+1
3(n+β+1)2 + Dα,β

n,λi ,2
(x)

K(α,β)
n,λi

(e3; x) = n(n−1)(n−2)
(n+β+1)3 x3 + 3n(n−1)(2α+3)

2(n+β+1)3 x2 + 6α2n+12αn+7n
2(n+β+1)3 x

+ 4α3+6α2+4α+1
4(n+β+1)3 + Dα,β

n,λi ,3
(x)

(13)

where

Dα,β
n,λi,k ,k(x) = 1

(k+1)(n+β+1)k

b n
2 c
∑

i=1

(
∆α

i−1,k − ∆α
i,k

)[Ci−1
n−1−λi−1

Ci
n

]
bi,n(x)

+ 1
(k+1)(n+β+1)k

n−1
∑

i=b n
2 c

(
∆α

i+1,k − ∆α
i,k

)[Ci−1
n−1−λi−1

Ci
n

]
bi,n(x).

(14)

Based on the form of Equation (13), according to the role of dynamics in the movement
process of the robot arm, we can use it in the dynamic model of the robot arm in two
ways. One is that the time when the sliding mode controller passes through the sliding
mode surface is taken as the starting point of the sampling time, and the subsequent time
when the sliding mode controller continuously passes through the sliding mode surface
is taken as the subsequent sampling time. The other way is to set the boundary layer of
the sliding mode control. When the control function output crosses the boundary layer,
it is used as the starting point of the sampling time. If the output is always outside the
preset boundary layer, the sampling time interval is set according to the actual application
results. Both methods have corresponding application scenarios. The former is suitable for
the continuous occurrence of external force disturbance, while the latter is suitable for the
occurrence of disturbance according to impulse noise.

In order to ensure that the operator converges in the course of the iteration, it is
necessary to prove Dα,β

n,λi,k ,k(x). The range of its interval can be obtained as follows:

Dα,β
n,λi ,k

(x) = 1
(k+1)(n+β+1)k

b n
2 c
∑

i=1

(
∆α

i−1,k − ∆α
i,k

)[Ci−1
n−1−λi−1

Ci
n

]
bi,n(x)+

+ 1
(k+1)(n+β+1)k

n−1
∑

i=b n
2 c

(
∆α

i+1,k − ∆α
i,k

)[
Ci

n−1−λi−1

Ci
n

]
bi,n(x)

≤ 1
(k+1)(n+β+1)k

n
∑

i=0

(
∆α

i+1,k − 2∆α
i,k + ∆α

i−1,k

)
bi,n(x)

≤ (n+α+2)k+1−3(n+α+1)k+1+3(n+α)k+1−(n+α−1)k+1

(k+1)(n+β+1)k .

(15)

In addition, the following results were obtained in [25]:

lim
n→∞

−
6C3

k+1nk−2

(n + β + 1)k ≤ lim
n→∞

Dα,β
n,λi ,k

(x) ≤ lim
n→∞

6C3
k+1nk−2

(n + β + 1)k . (16)

and
lim

n→∞
Dα,β

n,λi ,k
(x) = 0. (17)

Therefore, it can be proved that the modified BKS operator proposed in this paper
does not cause the divergence of the control system due to the change of the operator
coefficients caused by the perturbation when the alternative parameters are involved in the
calculation in the control system and can be applied in the manipulator control system.
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3. Controller Design

The design of the manipulator controller needs to be based on the actual engineering
task requirements. In order to more clearly express the dynamic control of the manipulator
in the process of completing the task, a simple definition of the finite-time generator is
created. It is mainly aimed at the dynamic control of manipulator tasks, assuming that
there is a double integral system

..
e(t) = u(t) in the manipulator. According to the work

in [28], in order to achieve local convergence of the manipulator control system within the
desired target time of the task, it is necessary to ensure that the input u(t) in the controller
tracks the desired trajectory of e(t) and

.
e(t).

3.1. Manipulator’s Task Definition

This section focuses on the manipulator configuration error caused by the difference
between the given motion trajectory output by the controller and the expected trajectory of
the human-made task when the robot manipulator performs the task, and the mapping
relationship between the coordinates in the manipulator system and the actual motion
coordinates. The error function can be written as:

e = x(q)− xd. (18)

We need to assume that Equation (18) has a quadratic differential with respect to
time, and then define that x(q) is the trajectory of the manipulator obtained from the
solution of the positive kinematics, and xd is the desired trajectory defined in the given task
requirements, then

.
e =

.
x = J

.
q where J = ∂e/∂q is the Jacobian matrix expression of the

desired trajectory of the task.
..
e = J

..
q +

.
J

.
q. (19)

Substitute Equation (5) into (19) to obtain the following form:

..
e = Qτ + µ, (20)

where Q = JA−1 and µ = −Qb +
.
J

.
q are the influence of the error between the expected

trajectory and the actual trajectory of the manipulator during a given task on the motion
control of the manipulator. Then we can obtain the dynamic model of the manipulator
movement under the influence of the tasks as follows:

τ = QA(u− µ), (21)

where
QA = AQT

[
QAQT ]−1 = JT [ JA−1 JT ]−1 (22)

means the generalized matrix inverse of JA−1, and u represents the parameter used to
adjust the input of the manipulator controller.

In defining the manipulator dynamics model, it is mentioned that the inertia matrix,
A, is a positive definite matrix, so the following assumptions can be given:

Amin ≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣ ≤ Amax < ∞, (23)

where Amin and Amax are defined as positive constants.
In addition, we also need to define another constant α to satisfy the constraints of

0 < α < 1 and ∣∣∣∣∣∣A−1 Ã− I
∣∣∣∣∣∣ ≤ α, (24)

where the uncertainty of the dynamic model of the manipulator controller in the above
model derivation section is represented by Ã.
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Based on this, the manipulator dynamics model can be written as

M = JA−1 JT [J Ã−1 JT ]
−1

= QQA;
||M|| =

∣∣∣∣QQA
∣∣∣∣ ≤ Mmax

(25)

where Mmax is a normal number representing the upper limit of the inertia matrix variation.
It is worth mentioning that if there is no other interference, that is, satisfying A = Ã, then
M = I can be obtained.

3.2. The Designed Controller

To solve the trajectory tracking problem using only the position feedback, the control
inputs and observer dynamics can be written as:

u(t) = −Kd
.
ê− Kp ê +

..
qd − D̂(t), (26){ .

ê = ρ + Ld(e− ê)
.
ρ = Lp(e− ê)

, (27)

where Kd and Kp are positive the diagonal gain matrices; ê(t) = q̂(t)− qd(t) is the approxi-
mate accurate value observer output of e(t); Ld and Lp are the observer gain matrices, and
D̂(t) represents the estimation of D(t). The following assumptions are considered for the
values of the above parameters:

Kp = µdKd
Kd = (kd + γ)In

Lp = µdld In
Ld = (ld + µd)In

, (28)

where µd, kd, γ and ld are positive constants, satisfying kd > µd, and In shows the iden-
tity matrix of dimension n. Substituting Equation (26) into Equation (20) and using the
definition of Equation (28) yields

..
e = −Kd

.
ê− µdKd ê + D(t)− D̂(t). (29)

Then we define
s1(t) =

.
e(t) + µde(t), (30)

s2(t) =
.
q(t)− .

q0(t). (31)

where
.
q0(t) =

.
q̂(t) − µd q̃(t) and q̃(t) = e(t) − ê(t) = q(t) − q̂(t) denotes the position

estimation error of the manipulator joints. Therefore, we can write the closed-loop error
dynamics equation of the system as:

..
e = −Kds1 + Kds2 + D(t)− D̂(t) (32)

.
s2 + (ld In − Kd)s2 = −Kds1 + D(t)− D̂(t), (33)

In Section 2.2 we proved that the proposed BKS operator is a mathematical tool, which
is a simplified calculation and it is easier for making polynomials used to estimate different
functions. By combining multiple polynomials, the BKS operator is able to estimate any
complex and real-valued function with any degree of accuracy. The ideal form of the
dynamic equation of the robotic manipulator can be regarded as a linear system. The
traditionally obtained algebraic linear system is derived from the least squares solution of
the minimum norm using accurate data. However, the introduced disturbance cannot be
completely regarded as a nonlinear part. Some complex noise disturbances are difficult
to be completely distinguished from the linear system in the discrete sampling process.
Therefore, we need to adopt a method to suppress this noise as much as possible while
retaining the linear system, even if the basis function of the control system is smoother.
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The BKS can introduce a regularization feature to obtain a more smooth solution. In
Equation (26), u(t) is the auxiliary function for constructing the sliding mode controller
and the dynamic model in Equation (5) is substituted. However, the mean square error
of u(t) is approximated to the unknown function in the first kind of integral equation by
the given form of the BKS operator. The obtained linear equations are transformed into
algebraic linear equations, and a more stable numerical solution can be obtained after
approximating with a higher order modified BKS operator. According to the design of the
controller, we rewrite Equation (9) as follows:

K(α,β,γ)
mp ( f , t) = ∑m+p

k=0

(
Cm+p

k

) t(k,−α)(1− t)(m+p−k,−α)

1(m+p,−α)
f
(

k + β

m + γ

)
. (34)

In Equation (34), Cm+p
k denotes the binomial coefficient, which is described as

Cm+p
k =

(m + p)!
(m + p− k)!k!

. (35)

The kth order factorial power with increment (−α) of t is shown by t(k,−α), which is
described as

t(k,−α) =

{
∏k−1

v=0(t + vα) if k ≥ 1 and t > 0
1 else

. (36)

For ease of representation, it can be directly presented as:

K(α,β,γ)
mp ( f , t) = WT

f Z f , (37)

where

W f =

[
f
(

β

m + γ

)
(m + p) f

(
1 + β

m + γ

)
(m + p)(m + p− 1)

2!
f
(

2 + β

m + γ

)
. . . f

(
m + p + β

m + γ

)]T
, (38)

and

Z f =

[
(1− t)(m+p,−α)

1(m+p,−α)

t(1,−α)(1− t)(m+p−1,−α)

1(m+p,−α)

t(2,−α)(1− t)(m+p−2,−α)

1(m+p,−α)
. . .

t(m+p,−α)

1(m+p,−α)

]T

. (39)

Therefore, we can express the basis function for D(t) using a linear form based on the
BKS and approximation theorem as

D(t) = WT
DZD + εD, (40)

where the number of basis functions used is determined by the filtering accuracy of the
controller, and the ideal weighting vector is given by WD. The approximation error denoted
by εD and ZD is the basis function vector. The WD, ZD, and εD are determined by the filter
and observer in the controller. The selection of the basis function parameters has an impact
on the filtering accuracy. By establishing the relationship between the probability density
function of the filter estimation error and the filter gain matrix, the filtering dynamic system
is uniformly bounded in the mean square sense, indicating that the feedback particle filter
will cause system divergence at low sampling rates. In this paper, full order observers are
used to determine the filtering accuracy. Using the same set of basis functions, it can be
written as

D̂(t) = W̃T
DZD. (41)

Next, substituting Equation (40) and Equation (41) into Equation (32) and Equation (33),
we can conclude that

..
e = −Kds1 + Kds2 + W̃T

DZD + εD; (42)
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.
s2 + (ld In − Kd)s2 = −Kds1 + W̃T

DZD + εD (43)

where the BKS operator weight approximation error is denoted by W̃D.
A simulation case was used to verify the performance of the proposed manipulator

controller combined with the BKS operator. The trajectory of each joint used in the simula-
tion, the controller inputs, and the perturbations added to the joint #1 are shown in Figure 2.
The simulation results are shown in Figure 3. During the activation of the joint servo motor,
a disturbance exists between 6 and 8 s. Figure 3a shows the controller without the BKS
operator, which lacks sufficient suppression capability in the face of the externally imposed
disturbance, while the controller with the BKS operator applied has a higher accuracy in
tracking the disturbance, as shown in Figure 3b, where the impact caused by the imposed
disturbance is significantly reduced.
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However, it is worth noting that only one joint of the manipulator is perturbed in this
simulation. Due to the series connection of the manipulator, the disturbance of one joint
will affect the other joints. Taking the above simulation as an example, if all three joints
are disturbed, then there is a complex coupling relationship between the total disturbance
of each joint. When the controller uses the standard model to calculate such problems, it
will consume a lot of time, which cannot meet the requirements of real-time control in the
actual application of the manipulator and will have a great impact on the communication
throughput. We propose an effective solution to this problem.

3.3. Design of the Modified Observer

Real-time control is an important parameter index of the manipulator, so the observer
in the articulated rotary axis servo control system should consider more influencing factors
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at the same time, including parameter observation accuracy, observation speed, parameter
setting, and computational complexity [29]. The controller method proposed above can
only guarantee the observation accuracy in the servo control system, so a new full-order
state observation scheme for manipulator servo systems is designed. Combining the
BKS operator allows the controller to take into account both observation performance
and execution capability. Combining the BKS operator allows the controller to achieve
a compromise between system tracking capability and noise sensitivity by introducing
only one adjustable parameter. At the same time, determining whether the value of the
parameter is reasonable can optimize the performance of the required observer, thereby
simplifying the controller parameter adjustment steps.

Considering that there is a transmission device such as a reducer in the servo motor
of the manipulator, the observer of the manipulator servo system actually considers the
data of two rotating bodies. So, the models of two observers can be designed at the same
time, that is, the motor side of the joint and the actuator. The state directly observed on
the motor side includes the motor position θ̂m and speed ω̂m. From this, the motor-side
observer model can be obtained:

θ̃m(k) = θ̂m(k− 1) + Tω̂m(k− 1)

+ T2

2

[
Te(k−1)−T̂s(k−1)−b1ω̂m(k−1)

J1

]
ω̃m(k) = ω̂m(k− 1)

+T
[

Te(k−1)−T̂s(k−1)−b1ω̂m(k−1)
J1

]
ãm(k) = âm(k− 1).

. (44)

In the designed motor-side observer, the motor position θm measured by the encoder
can be used to correct the estimated value in real time, so as to meet the requirement of the
observer in order to continuously improve the observation accuracy. We use the difference
∆θ(k) between the directly measured actual value and the predicted estimated value as
one of the input signals for the next sampling point of the motor-side observer. In addition,
the driver of the servo motor can also obtain the electromagnetic torque Te in real time by
measuring the q-axis current. Thus, the transfer torque Ts can be obtained indirectly by
observing the motor speed and acceleration derived from Equation (45).

T̂s(k) = Te(k)− b1ω̂m(k)− J1 âm(k). (45)

Directly observed conditions, include load position θ̂l , speed ω̂l , and acceleration âl .

θ̃l(k) = θ̂l(k− 1) + Tω̂l(k− 1)

+ T2

2

[
Ts(k−1)−T̂L(k−1)−b2ω̂l(k−1)

J2

]
ω̃l(k) = ω̂l(k− 1)

+T
[

Ts(k−1)−T̂L(k−1)−b2ω̂l(k−1)
J2

]
ãl(k) = âl(k− 1).

. (46)

By observing the load speed and acceleration, the load torque TL can be indirectly
observed. The equation is as follows:

T̂L(k) = T̂s(k)− b2ω̂l(k)− J2 âl(k). (47)

Considering that the load-side observer does not have a direct input signal, it is
necessary to obtain the position difference between the motor-side and the load-side and
solve the following differential equation:

d(θm − θl)

dt
+

Ks

cs
(θm − θl) =

T̂s

cs
. (48)
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In Equation (48), Ts is the value obtained by the observer on the motor-side, and θm
is measured by the encoder of the motor. The purpose of correcting the state observation
is achieved by solving the equation, and then the input signal of the load-side observer
is constructed.

The parameter form of the BKS operator in the fixed gain matrix of the controller can
be further derived as follows:

K =
[
α

β
T

2γ
T2

]T
, (49)

where α, β, and γ are dimensionless constants that can actually be solved analytically,
and the solution can be represented by a parameter, that is, the ratio of motion state to
observation uncertainty, defined as:

λ =
T2σw

σv
. (50)

Then, all feedback gains from the servo system observer can be derived in terms of λ.
When this parameter is obtained, the optimal steady-state gain parameters α, β, and γ, as
well as the resulting performance, can be obtained by Equation (51)

λ = 2γ√
1−α

γ = β2

4α
β = 4− 4

√
1− α− 2α

. (51)

The influence of traditional observer parameters on observation performance is not
obvious. In order to simplify the process of parameter formulation and to keep the stability
of the best gain matrix of the observer, an adjustable parameter s =

√
1− α is introduced.

At this point, through the explicit expression of the elements in K, s can be obtained, as
shown in Equation (52). By analyzing the stability of the observer, the value range of s can
be refined. 

α = 1− s2

β = 2(s− 1)2

γ = (1− s)3/(s + 1)
. (52)

The relationship between s and λ can then be derived as shown in Equation (53). By
analysis, s is a monotonically decreasing function of λ. Since λ > 0 and s ∈ (0, 1), the
performance of the observer can be adjusted according to s.

s =
σ

6
− λ

6
+

λ(λ− 18)
6η

+ 1, (53)

where η =
3
√

27λ2 − 108λ− λ3 + 3
√

3λ
√

432− λ2.
In order to ensure the stability of the controller of the manipulator, it is necessary

to refer to the poles and zeros of the system to realize the requirement of adjusting the
amplitude and phase of the unit impulse response of the system. Therefore, the value
interval of s can be determined by the position of the pole in the characteristic equation of
the observer. From the perspective of the servo system model of the manipulator joints, the
characteristic equation of the relationship between the state matrix and the system output
can be expressed as:

<(z) = (−s− 1)z3 + (7s− 1)z2 +
(

s3 − 7s2
)

z +
(

s3 + s3
)

. (54)

According to Equation (54), the transfer function between the input signal and the
observed state shows that the amplitude of Equation (55) is equal to 1 when z = 1. This
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indicates that after reaching steady state, the observation of the position is able to track the
actual value without error, regardless of the input signal.

Gθ(z) =
θ̂(k)
θ(k)

=

(
s3 + s2 − s− 1

)
z3 +

(
−3s3 − 3s2 + 7s− 1

)
z2 + 4

(
s3 − s2)z

<(z) (55)

4. Simulation and Discussion

This section will first explain the calculation results of the BKS operator in the process
of manipulator controller parameter tuning and give appropriate controller parameters.
Then, four disturbance cases are used to test the manipulator model to verify that the
proposed controller can suppress the disturbance in the manipulator control process.
Finally, to illustrate the role of the proposed observer in the controller, signals with a certain
mechanical vibration noise are used to show the tracking effect of the proposed observer
on noise and disturbance.

In the simulation, we use a CPU with Intel Core i7-7700@4.20. A personal computer
with GHz and 8 GB RAM uses MATLAB 2021a to simulate the designed controller.

4.1. Disturbance Cases and Control Parameters

In the subsequent simulation, we introduced the following four kinds of disturbance
properties into the three joints of the manipulator: two cases with different joint strengths
between 6–8 s and two cases with multiple high-frequency disturbances between 5–9 s.
The forms of the four disturbances are shown in Figure 4.
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In the simulation, the degree of freedom of the manipulator is 6, so we can take n = 6.
At this time, the error between the trajectory obtained by using the basis function of D̂(t)
determined by the BKS operator in the numerical simulation and the expected trajectory is
shown in Table 1. The comparison with other BK operators shows the advantages of the
BKS operator proposed in this paper.

Table 1. Maximum absolute error of approximation for the function D̂(t).

Type of Operator n = 6 n = 40

BK 0.89441 0.31056
q-BK 1.08117 1.07137
α-BK 0.80731 0.30193
λ-BK 0.87743 0.30175
BKS 0.71316 0.24901

As shown in Table 1, compared with the classical BK operator [18], q-BK [24] (q = 0.6),
α-BK [19,30] (α = 0.5), and λ-BK [31] (λ = −0.3) make a comparison, and the error of the
BKS operator proposed in this paper is smaller. Under the condition that n = 6 of the
model in this paper is satisfied, the error is the smallest. If we conduct iterative calculation,
when n = 40 is tested, it can obtain a more reasonable basis function, which makes the
error of the model lower.
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We can adjust the value of s according to the different needs of the user for the
manipulator and the adaptation to the environment. For example, if the observer is used
for a task that requires a high completion time, the observation speed is the most important
indicator, so the s should be designed to be appropriately decreased. If it is a high-precision
system, such as precision machining, or a system that pursues high data smoothness, the
value of A should be appropriately increased. In addition, adjustable parameters can be
adjusted according to the different observation requirements. In addition, the adjustable
parameters can be optimized under different observation requirements. Considering the
requirements of most working conditions, s = 0.55 is selected as the parameter of the
observer in this paper. The parameters of the BKS operator are α = 0.5, β = 0.7, and
γ = 0.1. The parameters of the controller are shown in Table 2.

Table 2. Parameters of the controller in simulation.

Parameters Value

Kp 14 ∗ In
Kd 10 ∗ In
µd 5
kd 10
ld 2/3

λi * (−2.0, 4, 5.5, 4, −2.0)
* Parameter values when n = 6.

4.2. Simulation Results of the Proposed Controller Using the BKS Operator

In this section, the four disturbance cases shown in Figure 4 are used to verify the
controller’s ability to suppress different disturbances in different disturbance environments
by taking the starting process of the servo motors at each joint of the manipulator as the
experimental environment. The control effects of the improved means proposed in this
paper on various characteristic disturbances are illustrated, respectively, by using and not
using the BKS operator controller proposed in this paper.

It can be seen from Case 1 and Case 2 in Figure 4 that the difference between the first
and the second disturbance is that the amplitude of the disturbance applied to the three
joints is different, but it can be seen from Figures 5 and 6 that the vibration caused by the
disturbance with a large amplitude applied in Case 2 during the starting process of the
servo motor is less obvious than that in Case 1 because there is a coupling relationship
between the disturbances between joints. That is to say, the disturbance result of the front
joint may be applied to the joint at the end, and the disturbance compensation of the
end joint will affect the control signal of the front joint. Therefore, it is not possible to
judge whether the stability of the manipulator servo system is severely affected by the
given disturbance amplitude strength alone, but when it is compared through Figure 5a,
Figure 5b, Figure 6a, and Figure 6b, respectively, it can be seen that the controller with
the BKS operator proposed in this paper can effectively suppress the influence of external
disturbance on the manipulator servo motor.

Figures 7 and 8, respectively, show the simulation results of Case 3 and Case 4 shown
in Figure 4. The disturbances in these two cases are high-frequency and have a longer
duration. It can be seen from the simulation results that in this case, if the control method
of the BKS operator proposed in this paper is not applied, the applied disturbance cannot
be suppressed. Consequently, the controller cannot effectively suppress the disturbance
during the application process, which shows that the manipulator servo control system with
the BKS operator proposed in this paper can effectively suppress the complex disturbance,
and it is effective and feasible.
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In addition, there is another thing to note. From the comparison between (a) and (b)
in Figures 5–8, it can be seen that the starting stability time of the servo system without
the BKS operator proposed in this paper is longer than that of the controller with the BKS
operator, which shows that the controller with the BKS operator proposed in this paper can
not only improve the stability of the manipulator in complex disturbance environments
but also improve the starting performance of the servo system.

4.3. Experiment Results of the Manipulator Controller in a Complex Environment

In order to verify the advantages of the robotic manipulator control method proposed
in this paper, we compared it with the new method in the same field in [14] and used the
disturbance of Case 2 in Figure 4 carried out under the condition that the disturbance has
no background noise and there is background noise in the disturbance–to illustrate the
effectiveness of the method in this paper.

In this part, we used a manipulator model with an open source driver and compared
its application effect with other methods in the model. This also reflects the positive
influence of the servo control method proposed in this paper on the trajectory tracking
control of the controller. The control flow of the model is shown in Figure 9.
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As shown in the position estimation and velocity estimation in Figure 10, the method
in [14] can observe the position and velocity during the operation of the manipulator servo
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system, and as shown in the disturbance estimation in Figure 10, it can better control the
manipulator joints. However, in the initial stage of the servo system operation, that is,
during the start-up process, it can be seen that there are obvious observation distortions.
As shown by the error between the estimated result and the given result, the method is
stable when observing the position, speed, and disturbance. There are obvious errors,
especially the observation error, which is very large in the starting process. Compared with
the disturbance imposed in Figures 6–8, the influence on the stability of the system is not
obvious. This shows that the method proposed in [14] is not timely enough to update the
model after the system state changes, and it is not suitable for manipulators that require
high-precision positioning accuracy and trajectory accuracy.
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The experimental results of the method proposed in this paper are shown in Figure 11.
Compared with Figure 10, both the position estimation accuracy and the speed estimation
accuracy are improved. Especially for the tracking of the disturbance error, not only is
the estimation error of the disturbances between Figures 6–8 greatly reduced, but also the
method proposed in this paper can quickly track the control signal of the upper manipulator
servo system during the starting process, ensuring the overall control accuracy.

Then, when the disturbance occurs, we apply high-frequency vibration noise with
different amplitudes to the manipulator to simulate the mechanical vibration noise in
the actual application process. As shown in Figure 12, the method in [14] can be used to
estimate this complex disturbance to a certain extent, but the details after the combination
of the two disturbances are not accurately estimated, so there is a large estimation error,
resulting in a large estimation error in the velocity signal of the estimated location.

However, using the method proposed in this paper, we can estimate the details of the
combination of noise and disturbance. As shown in Figure 13, the influence of simulated
mechanical vibration noise on the disturbed signal can be seen in the disturbance estimation,
and the estimation error is also significantly reduced. At the same time, the advantages
of the method proposed in this paper compared with the method proposed in [14] in
the application of a manipulator controller can be seen in the position estimation error
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and speed estimation error. Additionally, the effectiveness and feasibility of the method
proposed in this paper can be proven through experiments.
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5. Conclusions

In this paper, we combine the BKS operator and the sliding mode controller of a
robotic manipulator to establish a novel trajectory tracking control scheme for the robot
manipulator servo system to solve the problem of low trajectory tracking accuracy under
complex external perturbations. The BKS operator can accurately estimate the parameter
update trend of the system and the observer based on the previous sampled data and the
results of the perturbation observer; the method effectively reduces the steady-state error
due to the perturbation estimation error. Introducing an estimation function effectively
reduces the steady-state error of the servo control system due to the perturbation estimation
error. The proposed control strategy retains the advantages of the traditional sliding
mode controller while improving the tracking accuracy of the robotic servo system under
complex perturbations. Finally, simulations and experiments comprehensively verify the
effectiveness and feasibility of the proposed method.

The scheme proposed in this paper is applicable to scenes with complex disturbances
and noises or to industrial tasks with high requirements for accuracy. However, in some
scenes with low requirements for accuracy or a single disturbance, the calculation amount
of the method proposed in this paper is larger than that of traditional methods and is
not suitable for cases with requirements for running time. Therefore, in the future, we
will develop a disturbance identification system to switch different control strategies in
complex scenes where the disturbance form changes frequently. While improving the
control accuracy, we also need to ensure the running speed of the robotic manipulator so
that it can be applied to a wider range of application cases.
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23. Kanat, K.; Sofyalıoğlu, M. Approximation by (p, q)-Lupaş–Schurer–Kantorovich operators. J. Inequalities Appl. 2018, 2018, 1–17.
[CrossRef]
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