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Abstract: A tube-integrated flow sensor is proposed in this study by integrating a micro-electro
mechanical systems (MEMS) flow-sensing element and electrical wiring structure on the same copper
on polyimide (COP) substrate. The substrate was rolled into a circular tube with the flow-sensing
element installed at the center of the tube. The signal lines were simultaneously formed and connected
to the Cu layer of the substrate during the fabrication of the sensing structure, thus simplifying the
electrical connection process. Finally, by rolling the fabricated sensor substrate, the flow sensor
device itself was transformed into a circular tube structure, which defined the airflow region. By
implementing several slits on the substrate, the sensing element was successfully placed at the center
of the tube where the flow velocity is maximum. Compared to the conventional sensor structure in
which the sensor was placed on the inner wall surface of the tube, the sensitivity of the sensor was
doubled.

Keywords: MEMS; flow sensor; Cu on polyimide substrate; sensor integration

1. Introduction

Micro-electro mechanical systems (MEMS), which are realized by the semiconductor
micro- and nano-fabrication technology that enables nano-level processing of minute
mechanical structures, are able to provide ultra-compact and multifunctional devices.
Today, many MEMS sensors, such as pressure sensors, accelerometers, and gyro-sensors,
are indispensable in our daily lives and are used in various fields, such as automobiles,
smartphones, and wearable devices. Traditionally, MEMS sensors have been fabricated
based on Si materials [1]. This can be attributed to the excellent mechanical properties of Si
and its processability by the semiconductor microfabrication technology [2].

How widespread MEMS is can also be attributed to mature back-end processing
technologies, such as wire bonding and solder reflow. Such technologies have been readily
applicable to Si-based MEMS sensors. In addition to those traditional techniques, some
techniques aiming for integration of MEMS devices and other semiconductor devices
have been developed. For instance, the development of a through silicon via which
allows vertical electrical interconnection has led to the manufacturing of multi-layered
devices [3,4]. Wafer bonding technology is another key technology that has allowed
the three-dimensional stacking of heterogeneous devices at the wafer-level and device
encapsulation simultaneously [5,6]. A customizable wide choice of materials for wafer
bonding, from metallic materials [7], glasses [8] to polymers [9], has led to the practical
application of wafer-level packaging technology being widespread [10–12].

With the development of materials sciences and mechanical engineering, a wide variety
of materials have been implemented in MEMS. In particular, MEMS devices using polymer
and composite materials have a potential to rival the traditional MEMS devices made of
Si materials due to their excellent properties, such as low cost, flexibility, and biocompat-
ibility [13,14]. For instance, intraocular pressure sensors for glaucoma monitoring [15],
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intravascular shear stress sensors to investigate the interplay between hemodynamics and
arterial plaque formation [16], and flexible tactile sensors [17], have been developed using
polymer materials. Innovative fabrication methods taking the advantage of the flexible
materials have also been proposed. For instance, a sensor structure was fabricated by
folding the substrate like origami [18], and a 3D structure using a substrate consisting of a
metal and resin substrate bonded together have also been proposed [19].

MEMS thermal flow sensors have been traditionally fabricated using Si [20,21]. Due
to the high demand of flexible sensors, thin polymer materials have recently emerged as
substrate materials to form thermal flow sensors. Two types of MEMS thermal flow sensors
have been widely utilized, namely hot-wire anemometers and calorimeters. Hot-wire
anemometers utilize the dependence of the heat transferred from a heater working as a
flow-sensing element on the substrate to the surrounding fluid on the airflow velocity.
Meanwhile, calorimeters measure the flow velocity from the change in the heat distribution
around the heater due to the airflow. Free-standing structures are often implemented in the
Si-based flow sensors to limit the thermal capacity and maximize the sensor sensitivity and
response characteristic. To achieve the same feature in flexible sensors, the sensing structure
has been fabricated on a thin polymer substrate [22–24]. The flexible sensor structure made
of polymer material can be easily mounted in a circular tube or on the wing surface. A
series of flexible sensors using hydrogel as a conductive and stretchable material has also
been proposed [25–27]. These can be fabricated by printing with a fine nozzle or through
optical fabrication, where the hydrogel can be molded into arbitrary shapes. However,
challenges still remain to implement this technology for MEMS flow sensor, where the
conductive and insulating portions must be formed precisely.

Our research group has fabricated a micromachined tube-type flow sensor by forming
a gold-sensing element on a thin polyimide substrate and mounting it inside a small
tube [28,29]. However, some challenges remained in the mounting process since there is no
general packaging technique applicable for flexible sensors [30]. On the other hand, it is
practically challenging to implement the packaging technologies developed for Si sensors,
which have been developed based on the semiconductor microfabrication technology, to
the flexible sensors fabricated using polymer substrates. Manual insertion of the substrate
into the tube package and thermo-compression bonding for electrical wiring connection
was required for each sensor, which was labor-intensive in terms of the time, effort and
complexity.

A MEMS fabrication method using a copper on polyimide (COP) substrate has been
proposed to simplify the sensor mounting process [31]. The COP substrate consists of a
thin copper layer laminated on a polyimide film. The thin copper layer can be used as
embedded wiring for the sensing element by forming the sensor structure on the COP
substrate. Then, the plastic deformation of the copper layer at the COP substrate can
be utilized to maintain the deformed shape. By forming the sensor device and electrical
wiring structure simultaneously on the same COP substrate, the process of connecting the
fine wiring on the sensor substrate to external wiring substrates can be eliminated. In the
previous study, a COP flow sensor has been proposed, in which the sensor device, a tube,
and electrical connection substrate were integrated through the plastic deformation of a
part of the sensor substrate to form a tube structure, as shown in Figure 1. However, the
sensor had a limited sensitivity, because the sensing element was installed on the inner
wall of the tube [32]. In this study, the position of the sensor is optimized by computational
fluid dynamics (CFD) simulation. Based on the simulation results, a sensor structure and
fabrication method are proposed to place the sensing element at the optimized position.
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Figure 1. Photograph of a tube-type flow sensor previously fabricated using COP substrate. The flow
measurement element was installed on the inner wall of the tube.

2. Fluid Analysis of Conventional and Proposed Flow Sensor

In our previous work, we fabricated a MEMS flow sensor based on COP substrate
with an integrated tube structure as shown in Figure 1. A flexible COP substrate was
utilized to fabricate the sensing structure and electrical wiring simultaneously on the same
substrate. The substrate was then transformed into a tube structure by rolling it into a
cylindrical shape. The flow-sensing element was placed on the tube inner wall and the
airflow measurement using the tube-shaped sensor was demonstrated. The fine wirings
of the sensing element were directly connected to larger electrical pads on the substrate,
from which the electrical wiring can be further extended using conventional solder. In the
photograph in Figure 1, the electrical pads are very large in order to facilitate the evaluation
by manual wiring connection using solder. The size of the electrical pads can be adjusted
in accordance to the purpose by changing the mask pattern in the fabrication process. It
is also possible to make the electrode pads smaller and connect them to another flexible
printed circuit with anisotropic conductive paste. The integration of the driving circuit
was also demonstrated on the COP substrate [33]. In this study, a CFD simulation was
performed to analyze the optimum place for the sensing element.

OpenFOAM, an open-source fluid analysis software, was utilized to simulate the
fluid flow in a circular tube. The analysis conditions are shown below and in Table 1. The
channel length and inner diameter of the tube were 11 mm and 5.0 mm, respectively. The
flow analysis procedure is described as follows. First, a 3D tube model was created using
FreeCAD, an open-source 3D modeling software. The circular tube model of conventional
sensor was designed as depicted in Figure 2a.

Table 1. Fluid simulation analysis conditions when the sensor is placed on the inner wall of in the
center of the tube.

Sensor installation location Tube wall Tube center

Inlet flow velocity (m/s) 1.0

Outlet pressure static

Mesh Number of meshes 150,000 150,000

Model geometry

Flow channel length (mm) 11.0 11.0

Inner diameter (mm) 5.0 5.0

Beam width (mm) - 2.0

Beam thickness (mm) - 0.088
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Figure 2. Fluid analysis in the conventional structure. The sensing structure was installed on the wall
of the circular tube (at −2.5 mm).

Next, the 3D model was represented by grid meshes using OpenFOAM’s standard
utilities, blockMesh and SnappyHexMesh. The total number of meshes was set to 150,000.
The CFD analysis was performed with the boundary conditions of 1.0 m/s inlet flow
velocity into the tube and static pressure at the tube outlet. The analysis was performed
using OpenFOAM’s simpleFOAM solver. The analysis results were visualized using
paraView. The simulation result of the flow inside the circular tube is visualized as shown
in Figure 2b. Figure 2c shows the simulated flow velocity as a function of the radial axis
across the tube. The sensor surface indicates the mounting location of the flow-sensing
element. According to the simulation result, the flow velocity was the lowest near the inner
wall, which was the installation place of the sensing element in the conventional design
(red dotted line). The flow velocity increased as it moved toward the center of the tube. In
agreement with the Hagen–Poiseuille law, when the flow inside a circular tube is laminar,
the flow velocity distribution inside the tube generally follows a rotating parabolic plane,
with zero flow velocity at the tube wall and maximum velocity at the center of the tube.

In the conventional MEMS flow sensor structure based on COP, the sensing element
was fabricated on the COP substrate, which was then rolled into a cylindrical shape.
Through such a process, the flow-sensing element was installed on the tube wall surface
where the flow velocity was the slowest in the tube. Therefore, the sensor sensitivity was
limited. According to the above simulation results, a new structure with the flow-sensing
element placed at the center of the tube is proposed as depicted in Figure 3a. The result of
the CFD analysis of the proposed structure is shown in Figure 3b. The boundary conditions
were maintained the same as the previous simulation. Figure 3c shows the relation of the
flow velocity and the radial position near the sensing element. The sensor was placed at
0 mm on the vertical axis. The flow velocity is zero on the plate where the sensing element
is installed because the plate containing the sensing element disturbs the flow path. The
flow velocity on the plate where the sensing element is placed is 0 m/s; however, the flow
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velocity increased significantly as it moves away from the plate to the maximum value
at the distance of around 0.55 mm above the surface of the sensing element. Since the
flow sensor works as a hot-wire anemometer that measures flow based on the thermal
principle (see below for the measurement principle), the flow velocity is measured using
the heat convention at the vicinity of the surface of the sensing element. As a consequence,
a higher sensitivity can be expected due to the greater slope of the flow velocity relative to
the distance from the surface of the sensing element. Figure 4 shows the comparison of the
relationship between the distance from the surface of the sensing elements and the flow
velocity extracted from the graphs in Figures 2c and 3c. According to the simulation results,
the slope of the flow velocity was larger for the structure with the flow-sensing element
installed in the center of the tube; therefore, a higher sensitivity can be expected.
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3. Sensor Structure and Detection Principle

Based on the results of CFD simulation, a new COP flow sensor is proposed with
the sensing element placed at the center of the tube. Figure 5 illustrates the development
view and the assembled view of the sensor. The flow-sensing element, embedded electrical
wiring, and connection pads are formed on the COP substrate. A cavity is provided for
thermal insulation underneath the sensing element. The sensor substrate is slit, rolled
and assembled to form the flow sensor device with the sensing element placed at the
center of the tube as illustrated in Figure 5b. The flow-sensing element consists of a heater
working as the flow sensor and 2 temperature sensors each on the upstream and the
downstream directions of the heater to identify the flow direction as shown in Figure 6a.
The flow-sensing element was fabricated using a Au thin film.

The proposed flow sensor measures the airflow through the tube by using the metal
heater (resistive element) as a hot wire anemometer as illustrated in Figure 6b. The heater
was externally incorporated in a Wheatstone bridge and driven by a constant temperature
driving feedback circuit combined with an integrating circuit. When the circuit is driven,
a driving voltage is applied to the heater and the heater generates heat. The heating
temperature is controlled by adjusting the voltage applied to the heater using a variable
resistor in the Wheatstone bridge. When an airflow passes through the heater that is
operating at a certain temperature, the heat from the heater is lost to the airflow and its
temperature drops. Since the resistance of a metal heater changes with the temperature,
the equilibrium of the Wheatstone bridge is disrupted by the drop in temperature of the
heater. In such a case, the integrating circuit operates to maintain the equilibrium in
the Wheatstone bridge by supplying extra voltage. As a result, the heater heats up and
returns to its original set temperature (resistance), thus maintaining the equilibrium of
the bridge. Taking advantage of such a correlation between the amount of the electrical
energy consumed by the heater and the airflow velocity, the sensor can measure the flow
rate through the tube [34,35].
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Figure 5. Schematic of the proposed flow sensor. Development of the sensing element fabricated on a
COP substrate (a). The substrate deformed into a tube structure (b).

The proposed sensor is also equipped with a flow direction detection function by using
temperature sensors installed on both the upstream and downstream sides of the heater.
The airflow detection direction mechanism is illustrated in Figure 6c. In the absence of the
airflow, the two temperature sensors are evenly heated by the heater. When the airflow
passes through the heater, the heat from the heater is carried downstream by the airflow. As
a result, the heat distribution of the heater is disrupted and a difference of readings between
the temperature sensors is generated. The flow direction can be detected by measuring
the difference in resistance between the temperature sensors caused by the disrupted heat
distribution using a voltage divider circuit and a differential amplifier circuit.
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measurement (calorimetry).

4. Sensor Fabrication and Basic Characteristic Evaluation

The fabrication process of the sensor is illustrated in Figure 7. A COP substrate
(SR-1220, UBE EXSYMO CO., LTD., Tokyo, Japan) was used as the substrate material.
The substrate consists of a 38 µm-thick Cu layer laminated on a 50 µm-thick polyimide
film as illustrated in Figure 7a. A photosensitive polyimide (PW-1500, TORAY DUPON
CO., LTD., Tokyo, Japan) was spin-coated on the Cu layer of the COP substrate. The
thickness of the spin-coated photosensitive polyimide was 3.8 µm. Next, hole patterns
were formed using the photosensitive polyimide layer by photolithography for selective
sacrificial etching of the Cu layer in the final step, as shown in Figure 7b. Then, the spin-
coated polyimide layer was cured in a thermostatic oven at 140 ◦C for 30 min and 260 ◦C
for 60 min, subsequently. A negative photoresist (ZPN-1150, ZEON corporation) was
further spin-coated and patterned through photolithography on top of the photosensitive
polyimide layer. The 5 µm-thick pattern was used to form the pattern for the metal heater,
temperature sensors, and electrode pads, as illustrated in Figure 7c.
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Figure 7. Fabrication process for sensing element on a COP substrate.

Au and Cr thin films were then deposited on the patterned photoresist by sputtering,
as shown in Figure 7d. The Cr was used as the adhesion promotion layer and the Au layer
plays a role as the sensing element. The thickness of Au and Cr layers were 250 nm and
10 nm, respectively. Then, the metal patterns of the sensing element and electrical pads were
formed by removing the photoresist using acetone solution (lift-off process). The electrical
wiring from the sensing element was connected to the Cu layer via the holes pattern formed
previously in the step indicated in Figure 7b. Then, another layer of negative photoresist
(ZPN-1150) was spin-coated and patterned to selectively protect the electrical pads exposed
in the previous step. In the following step, the copper layer was selectively etched from the
holes formed indicated in Figure 7b. When the photoresist was spin-coated in this process,
the resist also penetrated into those holes. To prevent etching defects, the photoresist in
the holes must be completely removed. To prevent the photoresist in the holes from not
being removed due to insufficient exposure, a negative type photoresist was selected for
this process. Finally, a cavity for thermal insulation of the heater and electrical wiring
were formed by selectively etching the Cu layer using ferric chloride solution at 30 ◦C
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through the holes formed in the photosensitive polyimide layer in step shown in Figure 7b.
After the underlayer etching was completed, the protective photoresist in patterned in step
shown in Figure 7e was removed with acetone solution. Finally, the sensor was cleaned
with a de-ionized water, and dried after immersion in isopropyl alcohol.

The assembly process of the fabricated COP MEMS flow sensor is described as shown
in Figure 8. First, the unit sensor was cut out from the substrate using scissors. Then, using
a design knife, a cut was made around the flow-sensing element. To assist the creation
of the tube structure, slits were also made in several positions, as shown in Figure 8a.
Then, the sensor was rolled from the longitudinal direction to form a cylindrical shape as
illustrated in Figure 8b. When a semicircular shape was formed, one end of the flow sensor
part was fixed at the opposite position of the circumference using a polyimide tape. This
step defined the position of the sensing element at the center of the tube which will be
formed. Next, the sensor was further rolled up to form a cylindrical shape as shown in
Figure 8c. After a full circle was formed, the slits formed in step indicated in Figure 8a were
overlapped with each other to fix the circular shape. A hole remained at the cylindrical
shape due to the cut around the sensing element produced in first step. To prevent airflow
leakage due to the hole existing in the previous step, the substrate was further rolled in the
longitudinal direction as illustrated in Figure 8d. After a circular tube with double outer
circle layers was formed, the tube was fixed in the circular shape using polyimide tape.
The circular shape was fixed and defined by the plastic deformation of the thin Cu layer
and the polyimide tape. A photograph of the fabricated sensor is shown in Figure 8e. As
shown in the figure, the COP flow sensor with the sensing element formed at the center of
the tube was successfully fabricated.

Finally, the performance of the fabricated sensor was evaluated. The sensor output
as a response to the amount of airflow through the cylinder was evaluated using a flow
measurement equipment as schematically shown in Figure 9. The airflow was supplied
by an air compressor. The supplied airflow was controlled using a commercially available
mass flow controller (MODEL 3200, KOFLOC Corp., Kyoto, Japan) and passed through to
the sensor. The experiment was performed with two types of flow sensors: the proposed
one and the conventional one with the flow sensor installed on the wall surface, shown
in Figure 10. The output signals from the sensors were processed by the same circuit and
observed through it using an oscilloscope.
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wall and the proposed sensor with the sensing element installed at the center of the tube.

Figure 11 shows the measured sensor output in response to the supplied flow rate. The
vertical axis in Figure 11 is the square of the sensor output which corresponds to the amount
of thermal energy transferred during the sensing process. The sensor output of both types
of sensors increased with the flow rate. The change in sensor output could be expressed
by King’s equation, which shows the relationship of the amount of the heat transfer to
the applied flow rate according to the hot wire anemometer principle [35]. The change
in sensor output at 10 L/min airflow supply corresponds to 0.22 V2 for the conventional
sensor and 0.46 V2 for the proposed structure, which shows almost twice the increase in
sensitivity. In the future, we plan to confirm the flow direction detection function, and
develop a sensor that also integrates a driving circuit on the COP substrate.
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5. Conclusions

In this study, a tube-integrated MEMS flow sensor with the sensing element and
electrical wiring on the same substrate was proposed and demonstrated. The sensor
substrate itself was rolled to form a tube package. Furthermore, the sensing element was
successfully placed at the center of the tube during the rolling process, where the flow
velocity is maximum. For the proposed tube-integrated MEMS flow sensor, a COP substrate
with a thin Cu layer on a polyimide film was used. The flow-sensing element was formed
on a photosensitive polyimide layer patterned on the COP substrate. Then, the thin Cu
layer was selectively etched through the holes in the photosensitive polyimide layer to
form a cavity for thermal insulation and electrical wiring for the flow sensor. The structures
fabricated on the COP substrate were incised and rolled to form a tube structure for the flow
sensor. The sensing element was placed at the center of the tube during the rolling process,
which is the place where the flow velocity is maximum. Finally, the flow characteristics of
the fabricated sensor were evaluated, and the sensor sensitivity was approximately doubled
in comparison to the conventional structure in which the sensing element is located on the
tube wall.
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