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Abstract: Carbon fiber-reinforced composites are widely used in automobile, aerospace and military
lightweight manufacturing due to their excellent mechanical properties such as light weight, excellent
fracture resistance, corrosion resistance and wear resistance, etc. However, because of their high hard-
ness, anisotropy and low interlayer strength characteristics, there are many problems with machine
carbon fiber-reinforced composites with traditional methods. As a non-contact processing technology,
laser machining technology has lots of advantages in carbon fiber-reinforced composites processing.
However, there are also some defects produced in laser machining process such the heat affected
zone, delamination and fiber extraction due to the great difference of physical properties between
the carbon fibers and the resin matrix. To improve the quality of carbon fiber-reinforced composites
laser machining, lots of works have been carried out. In this paper, the research progress of carbon
fiber-reinforced composites laser machining parameters optimization and numerical simulation was
summarized, the characteristics of laser cutting carbon fiber-reinforced composites and cutting quality
influence factors were discussed, and the developing trend of the carbon fiber-reinforced composites
laser cutting was prospected.

Keywords: laser machining; carbon fiber-reinforced composites; process optimization; heat affected
zone; numerical simulation

1. Introduction

The carbon fiber-reinforced composites (CFRP) have the advantages of high specific
strength, low density, light weight and have become a key material for the aerospace and
new energy vehicle light-weight manufacturing [1,2]. CFRP machining is an important pro-
cess in its application. The machining methods include mechanical and special processing
technique as shown in Figure 1 [3–6].

The mechanical machining includes cutting, drilling and milling, and the carbide tools are
used in the machining process [7,8]. Koklu et al. [9] applied a new low-temperature processing
method to the drilling of CFRP, immersed CFRP in liquid nitrogen, and directly processed it
in low-temperature coolant. The machining characteristics such as thrust, delamination, tool
wear, surface roughness and topography were compared with those under dry conditions.
The experimental results showed that the low temperature processing method can improve
the process-ability of CFRP. Morkavuk et al. [10] studied the milling performance of CFRP
in low-temperature medium. The results showed that the low temperature cooling makes
the structure of the workpiece brittle, prevents the thermal damage of the machined surface,
improves the chip’s crack resistance, and can obtain a smoother surface. Wang et al. [11]
studied the influence of drilling area temperature on the material properties and quality of
CFRP. The results showed that the temperature range of the optimum drilling area is lower

Micromachines 2023, 14, 24. https://doi.org/10.3390/mi14010024 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14010024
https://doi.org/10.3390/mi14010024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-7729-0315
https://doi.org/10.3390/mi14010024
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14010024?type=check_update&version=3


Micromachines 2023, 14, 24 2 of 21

than the glass transition zone temperature of CFRP composites, and higher than the brittle
deformation of resins. Ali et al. [12] studied the cutting performance of tungsten carbide
YG6X (WC-6 wt% Co) conventional double groove twist drill on multidirectional T700 CFRP
plate and analyzed the influence of different cutting speeds and tool wear modes on drilling
performance. Finally, a set of suitable drilling parameters is proposed. Under the conditions
of cutting speed of 9000 rpm and feed rate of 400 mm/min, the best quality hole can be
produced. The mechanical process is the common method in CFRP machining. However, the
cutting force of such tools in the machining process is too large to produce defects such as
burrs, delaminated tears and fractures [13–15] (Figure 2a), which influence the mechanical
resistance of the CFRP components.
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Figure 1. CFRP machining technology.

Besides the mechanical machining method, the special processing technology is also
important method to machining CFRP, which mainly includes waterjet cutting, ultrasonic
vibration auxiliary processing, laser processing, etc [16–18]. The waterjet cutting uses a high-
pressure abrasive water jet for processing [19,20]. Compared with mechanical machining,
the high-pressure water flow cutting technique is environmentally friendly. Pahuja et al. [21]
evaluated the machinability of stacked titanium (Ti6Al4V) and CFRP by using the abrasive
water jet (AWJ) processing technology. The results showed that the surface roughness and
corner width change greatly under the condition of low jet power (Figure 2b). Kumar et al. [22]
studied AWJ sections machined under two different process parameters. The results showed
that fiber pullout and interlaminar tear can be observed in AWJ cutting under higher jet
pressure. Alberdi et al. [23,24] studied the feasibility of machining CFRP/Ti6Al4V stack
with AWJ under different process parameters. The final results showed that under almost
all cutting conditions, Ti6Al4V has a positive cone angle. As mentioned above, waterjet
cutting technology has a low processing cost and there is no tool wear and excess heat during
process [25]. However, the high-pressure water jet will make the soaked polymer softer during
processing, exacerbating the adhesion of the carbon fiber matrix [26,27] and the ability of the
cutting surface to absorb moisture, resulting in defects in mechanical properties. Moreover,
the impact of water cutting process on CFRP is obvious, making it susceptible to defects such
as delamination, burrs, and tapers [28,29] (Figure 2c).

Ultrasonic vibration machining is another important CFRP machining method, it can
reduce cutting force, reduce tool wear and improve machining quality [30]. Ning et al. [31]
studied the surface grinding of rotary ultrasonic machining to process CFRP. It was found
that the theoretical prediction trend is in good agreement with the experimental results on
the relationship between the forward cutting force and the input variables (Figure 2d). Cong
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et al. [32] compared rotary ultrasonic machining with carbon fiber-reinforced plastic twist
drill in terms of cutting force, torque, surface roughness, delamination, tool life, material
removal rate, etc. The experimental results showed that rotary ultrasonic machining has
advantages in almost all these aspects. At present, rotary ultrasonic machining is better
used in milling and drilling, but when it is used for composite cutting, problems such
as low efficiency, wide kerf, uneven fiber fracture and interlaminar fragmentation will
occur [33], which will affect the performance and life of CFRP parts (Figure 2e).
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Figure 2. (a) Illustration of the delamination failure emerging as a result of drilling Reprinted/adapted
with permission from Ref. [16]; Copyright 2018, Elsevier. (b) Experimental set up depicting AWJ
machining of Ti6Al4V/CFRP stack Reprinted/adapted with permission from Ref. [21]; Copyright
2019, Elsevier. (c) Delamination produced in CFRP waterjet cutting process Reprinted/adapted with
permission from Ref. [28]; Copyright 2008, Elsevier. (d) Illustration of rotary ultrasonic machining
(RUM) surface grinding process Reprinted/adapted with permission from Ref. [31]; Copyright
2017, Springer Nature. (e) Uneven fiber fractures and interlayer fragmentation in CFRP ultrasonic
machining Reprinted/adapted with permission from Ref. [33] Copyright 2014, Elsevier.

As a non-contact processing technology, laser machining has lots of advantages in
composites processing [34,35]. Compared with mechanical methods, there is no tool wear
and cutting force in the machining process (Figure 3a). Laser cutting has good quality, high
precision, narrow incision width and good surface roughness. Due to the anisotropy and
non-uniform structure of carbon fiber composites, non-traditional processing technology
will lead to material failure, such as fiber pullout, matrix cracking, delamination and
expansion. During laser cutting, there is no contact with CFRP composite materials, no tool
wear, and no need to replace the tool during processing. As long as the output parameters
of the laser are changed, the noise is low, the vibration is small and there is no pollution
during processing. Compared with ultrasonic-assisted processing and waterjet processing,
laser processing will not produce impact damage or vibration damage. The efficiency can
be improved by 20% and can machine CFRP components with various complex curves
and shapes [36]. However, due to the large difference in the physical properties between
the carbon fiber and the resin matrix, the resin matrix material produces ablation during
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the laser machining process, and the heat-affected zone (HAZ) [37], crack and broken fibre
was produced, which seriously affects the processing quality of CFRP [38,39] (Figure 3b–e).
In order to improve the quality of CFRP laser machining, lots of works about machining
process parameters optimization and theoretical model analysis have been carried out.
Laser scanning times, scanning speed and average power will affect the quality of laser
processed parts. The number of scans is the number of cycles of part pattern processing,
which determines the total number of pulses received and the heat absorbed by the CFRP
composite surface processing area. More scanning times can play a more sufficient role in
ablation and material removal of the processing area of CFRP composite and improve the
processing accuracy. Scanning speed refers to the movement speed of the laser spot on the
surface of CFRP composite materials during processing. It controls the number of pulse
overlaps and the processing path and will affect the energy absorbed in the unit area of
the sample surface processing area. The faster the scanning speed is, the fewer pulses are
received in the unit area of the processing area, and the smaller the absorbed energy is. The
average power of laser is also an important parameter that affects the processing quality of
parts. Too large or too small average power will reduce the processing quality of parts. It
should be adjusted reasonably according to the actual production and processing.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 22 
 

 

and non-uniform structure of carbon fiber composites, non-traditional processing tech-

nology will lead to material failure, such as fiber pullout, matrix cracking, delamination 

and expansion. During laser cutting, there is no contact with CFRP composite materials, 

no tool wear, and no need to replace the tool during processing. As long as the output 

parameters of the laser are changed, the noise is low, the vibration is small and there is no 

pollution during processing. Compared with ultrasonic-assisted processing and waterjet 

processing, laser processing will not produce impact damage or vibration damage. The 

efficiency can be improved by 20% and can machine CFRP components with various com-

plex curves and shapes [36]. However, due to the large difference in the physical proper-

ties between the carbon fiber and the resin matrix, the resin matrix material produces ab-

lation during the laser machining process, and the heat-affected zone (HAZ) [37], crack 

and broken fibre was produced, which seriously affects the processing quality of CFRP. 

[38,39] (Figure 3b–e). In order to improve the quality of CFRP laser machining, lots of 

works about machining process parameters optimization and theoretical model analysis 

have been carried out. Laser scanning times, scanning speed and average power will affect 

the quality of laser processed parts. The number of scans is the number of cycles of part 

pattern processing, which determines the total number of pulses received and the heat 

absorbed by the CFRP composite surface processing area. More scanning times can play 

a more sufficient role in ablation and material removal of the processing area of CFRP 

composite and improve the processing accuracy. Scanning speed refers to the movement 

speed of the laser spot on the surface of CFRP composite materials during processing. It 

controls the number of pulse overlaps and the processing path and will affect the energy 

absorbed in the unit area of the sample surface processing area. The faster the scanning 

speed is, the fewer pulses are received in the unit area of the processing area, and the 

smaller the absorbed energy is. The average power of laser is also an important parameter 

that affects the processing quality of parts. Too large or too small average power will re-

duce the processing quality of parts. It should be adjusted reasonably according to the 

actual production and processing. 
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machining. Copyright 2021, Elsevier.

By reviewing papers on laser machining of CFRP, it was found that most of the
investigations focused on machining parameters optimization and numerical simulation
(Figure 3f). The laser machining parameters mainly include the laser wavelength, the laser
mode, the laser power and the machining velocity, ect. The numerical simulation includes
mathematical model established and numerical calculation of laser machining CFRP. In
this work, the research progress of machining parameters optimization and numerical
simulation was discussed, the characteristics of laser machining CFRP and machining
quality influence factors were summarized, and the developing trend of the technology of
CFRP laser machining was prospected.
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2. CFRP Laser Processing Optimization

During CFRP laser machining, the energy to evaporate or sublimate carbon fibers is
higher than that of the resin matrix [40,41]. Therefore, in the beam-material interaction
process, the time vaporizing the carbon fibers is longer than that vaporizing the resin
matrix. Before the carbon fibers are vaporized, a large amount of heat conducts through the
carbon fibers and overheats the resin matrix. This heat makes the resin matrix experience
thermal degradation and causes the fibers to peel from the substrate, which will lead
to delamination [42,43]. Previous investigations show that these thermal defects can be
minimized by optimizing the machining parameters such as the mode, the scanning speed,
the laser power, the pulse characteristics and the wavelength of the laser [44].

2.1. Effect of Laser Wavelength on CFRP Machining Quality

CFRP has different absorption coefficients for lasers with different wavelength. To this
end, the CFRP machining quality is different for different wavelength lasers [45]. Takahashi
compared the effects of infrared (IR) and ultraviolet (UV) lasers on CFRP cutting quality
experimentally [46]. For the IR laser, the polymer matrix absorption rate of laser is less
than 15%, and 85% of the energy passes through the polymer matrix to heat the carbon
fibers directly. On the other hand, the UV laser energy is absorbed by the resin matrix
almost completely (Figure 4a). To this end, the UV laser has a better cutting edge quality
compared to IR laser in CFRP cutting, and the HAZ is larger for IR laser than that for UV
laser (Figure 4b). According to Xu’s research [47], the absorption rate of infrared light by
carbon fibers is close to 80%, and the laser energy is mainly absorbed by carbon fibers,
while the matrix is indirectly heated by hot carbon fibers, rather than the laser beam itself.
On the other hand, in the ultraviolet wavelength range, the polymer matrix and fibers can
absorb the laser well, infrared light can pass through the CFRP epoxy resin. Wolynski cut
CFRP with IR and UV lasers and concluded that the cutting quality of ultraviolet light is
better than that of IR laser [48]. Qi cut CFRP with 266 nm wavelength lasers and performed
a multivariate linear regression analysis on the data, and the empirical formula of CFRP
incision width and heat affected zone width was obtained, which provided a reference for
laser parameter selection for CFRP laser cutting [49].
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Yun et al. [50] studied IR laser surface treatment and UV laser surface treatment of
CFRP laminates under different laser treatment parameters and analyzed their microstruc-
ture characteristics and the results of energy dispersive spectroscopy (EDS). The results
showed that the thermal effect of IR laser leads to the combustion of carbon fibers, and the
UV laser surface treatment without thermal effect ensures the integrity of carbon fibers
(Figure 5a–d). Hong et al. [51] studied the IR laser surface treatment and peeling layer
treatment of various laser processing parameters. The results showed that the average
shear strength of the adhesive joint obtained by IR laser treatment is 20.158 MPa, while
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the average shear strength of the joint obtained by peeling layer treatment is 32.574 MPa.
Yuan et al. [52] proposed a staggered scanning mode (ISM) based on the top-down default
sequential scanning mode (SSM) of the multi-layer concentric circle filling scanning process,
which improves the surface quality of CFRP plates through nanosecond ultraviolet laser
drilling. Compared with SSM, the overall average HAZ width of ISMs is reduced by 25.85%
by reducing the heat accumulation effect of adjacent tracks (Figure 5e–f). Yu et al. [53]
controlled the scanning speed of UV laser, and the surface of CFRP was completely cleaned
and partially cleaned. The results show that the main damage form of CFRP bonded joints
obtained by complete and partial UV laser cleaning is mixed damage, in which interface
damage and cohesive damage play an important role in the tensile properties of the two
types of joints respectively.
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2.2. Effect of Laser Mode and Parameters on CFRP Machining Quality

Both continuous wavelength (CW) laser and pulsed lasers have been applied to
machine CFRP [54–56]. The CW laser has a high power and can remove material quickly,
so the efficiency can be improved about 25%. However, the heat input into the material
is large for the CW laser, which is easy to cause thermal damage. In order to reduce the
thermal damage in machining CFRP with CW lasers, investigations have been carried
out to optimize the machining process. Goeke [57] used CW fiber lasers to cut CFRP and
found that both HAZ and seam width decreased significantly with increasing of the laser
scanning speed. Klotzbach [58] also confirmed that the HAZ can be reduced greatly by
increasing the laser scanning speed. Bluemel [59] studied the effect of machining speed on
HAZ width with 6 KW of CW lasers and found that HAZ decreases with increasing of the
cutting speed under the given laser power. Rao [60] used a 400 W CW laser to cut CFRP,
and investigated the effect of laser power, beam scanning speed and auxiliary gas flow on
the cutting quality by using the response surface method.

Bluemel [61] applied CW lasers and the pulsed lasers to cut CFRP, and found that the
efficiency is higher than the pulsed laser about 25%. However, the short-pulsed laser has
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the smallest HAZ (Figure 6) and maximum tensile strength is larger than the CW lasers.
Riviiro [62,63] used CO2 lasers with CW and pulsed mode to cut CFRP and studied the
effect of processing parameters on incision width, HAZ and cross-sectional quality. Li [64]
studied the cutting quality and cutting surface topography of CFRP laminates cutting by
CW fiber lasers with single-channel and multi-channel processing paths.
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Figure 6. (a) Cutting CFRP with picosecond laser (laser power 50 W, Pulse duration 6 ps, cutting
speed 15 m/min); (b) nanosecond laser (laser power 750 W, Pulse duration 30 ns, cutting speed
15 m/min); (c) CW lasers (laser power 4000 W, cutting speed 9.1 m/min). Reprinted/adapted with
permission from Ref. [61]. Copyright 2014, Elsevier.

Sehyeok et al. [65] studied cutting CFRP sheets using a 2 KW multimode fiber laser
(Figure 7). The research results showed that with the increase in laser passing times, the
corner width, the matrix evaporation width and the matrix recession width will also increase
until cutting through, but once through cutting occurs, they will not change too much. In the
process of laser irradiation, the pressure inside the corner edge increases significantly, and
the carbon fibers at the corner edge can change into liquid, thus forming a molten section.
Wei et al. [66] irradiated CFRP with a high intensity CW laser and proposed a tensile strength
prediction model of orthogonal CFRP under CW laser irradiation. It was found that the
prediction model can reflect the decreasing process of tensile strength under laser irradiation,
especially in the case of high intensity laser irradiation and high tensile load.
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Jun [67] cut a CFRP-laminated plate overlay structure with fiber lasers and adjusted
the processing parameters to study the change of the surface quality of the laminated plate.
The results showed that the HAZ level of laser cutting CFRP laminates is highly related
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to the fiber orientation, laser power and cutting speed (Figure 8a–c). Tao [68] studied and
proposed a new double beam dislocation (DBOD) laser drilling technology (Figure 8d). The
thickness of CFRP specimen reaches 10 mm by using DBOD process, which is significantly
improved compared with other studies. Leone et al. [69] used 150W Nd: YAG pulse laser
to cut 1 mm thick CFRP plate. It is found that the laser used can cut CFRP plates with a
maximum speed of 12 mm/s (Figure 8e).
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geometry Reprinted/adapted with permission from Ref. [69]. Copyright 2018, Elsevier.

The irradiation time of each pulse is very short for the ultrashort pulse laser relative
to the CW laser and the long-pulsed laser. So, there is a sufficient cooling time between
two pulses and cutting profile with less thermal damage can be obtained [70–73]. In CFRP
cutting with pulsed lasers, the process parameters such as the pulse width, the frequency,
and the processing path are the key parameters affecting the cutting quality. Freitag [74]
optimized the pulse energy and the repetition rate of the pulsed laser to reduce the width
of the HAZ and found that a high cutting quality can be obtained with a high pulse
energy and high repetition rate at the same average laser power. Leone [75] cut CFRP
with a Yb:YAG pulsed laser, and it was found that a better cutting quality was obtained
with multi-channel technology at a higher scanning speed, and the width of HAZ can be
reduced significantly. He also [69] used the Nd:YAG laser to cut CFRP and investigated the
influence of process parameters on the geometry of the cutting slit and the HAZ at a speed
of 12 mm/s. Yang [76] monitored the quality of nanosecond UV laser processing using
acoustic emission technology and found that the CFRP laser cutting acoustic emission
signal is consistent with the kerf width in both time and frequency domains (Figure 9a).
Salama [77] drilled CFRP composites using a 400 W picosecond laser, and studied the
influence of laser power, repetition rate, and scanning line distance on material removal
efficiency and HAZ. A through-hole with diameter of 6 mm was drilled on a 6 mm thickness
CFRP plates using scanning galvanometer ring cutting technology, and it was found that
the laser inlet had a small HAZ (<25 µm), but the hole taper angle is larger, which is about
15◦, and the processing time is about 3 min (Figure 9b).

Li et al. [78] used a 532 nm nanosecond fiber laser with adjustable pulse duration to
drill holes in the CFRP plate. It was found that under the condition of short pulse duration,
the HAZ width was narrow, the minimum HAZ width at the edge of the hole inlet was
18.74 µm, and the matrix material near the HAZ was less damaged. Ma et al. [79] used 1064
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nanosecond pulse laser to cut CFRP and GFRP materials and compared the propagation
speed and breakdown time of the plasma plume. Kumar et al. [80] use a femtosecond laser
system to generate the wettability transformation of the surface of CFRP with micro/nano
structures. It was found that laser induced periodic surface structure was realized on
carbon fiber surface at different defocusing distances and pulse energy (Figure 10).
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Figure 9. (a) Cutting CFRP with nanosecond laser (max.7mJ@10 kHz, 30 ns) Reprinted/adapted
with permission from Ref. [76]; Copyright 2022, Elsevier. (b) drilling 6 mm diameter hole on a
6 mm thickness CFRP plate with picosecond laser (21 W, 0.5 MHz, 10 Ps) Reprinted/adapted with
permission from Ref. [77]. Copyright 2016, Springer Nature.
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Figure 10. (a) Formation of laser induced periodic surface structure on carbon fiber surface (b) high
spatial frequency laser induced periodic surface structure (HSFL)micrograph, and (c) schematic
of scanning and beam polarization direction Reprinted/adapted with permission from Ref. [80].
Copyright 2020, Elsevier.

Freitag et al. [81] proposed an approximate analytical expression for the minimum
feed rate required to avoid evaporation of the matrix material during the ultra-short pulse
processing of CFRP. It was found that the residual heat is related to the pulse energy and
pulse repetition rate. Hu et al. [82] used a 355 nm emitting Nd: YVO4 picosecond pulsed
laser system to study the effects of milling parameters on surface quality and material
removal rate. The results showed that the laser grinding process of CFRP is complex, and
the optimized laser power, grinding speed and hatch distance are 11.76 w, 2200 mm/s and
0.015 mm, respectively. Oliveira et al. [83] used a femtosecond laser with a wavelength of
1024 nm and a duration of 550 fs to treat unidirectional carbon fiber-reinforced epoxy matrix
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composites. The results showed that a selective removal of epoxy resin and exposure of
carbon fibers can be achieved by using appropriate processing parameters (Figure 11a,b).
Dittmar et al. [84,85] studied the effects of pulse overlap, focus diameter and the resulting
flux on process quality and processing time. The results showed that the nanosecond
pulsed UV laser can process two kinds of fiber-reinforced composites and achieve good
surface quality without burn marks or other thermal damage areas (Figure 11c,d).
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Jiang [86] conducted CFRP cutting experiments using picosecond lasers and studied
the influence of laser parameters on cutting quality. The results showed that, when the
cutting direction was parallel with the upper carbon fibers, the HAZ is minimal, and
when the cutting direction is perpendicular to the upper carbon fiber arrangement, the
HAZ is maximum. The HAZ increases with the increasing of the repetition rate, and
the cutting efficiency increases 15% firstly and then decreases with the increasing of the
cutting speed. Weber [87] studied the influence of different parameters such as the pulse
energy and the repetition rate on heat accumulation through analytical models and gave
the maximum number of pulses that can be tolerated to avoid thermal influence. Peter [88]
performed cutting and punching experiments on CFRP using a nanosecond laser (maximum
parameters: 7 MJ, 10 kHz, 30 ns), and obtained a good delamination-free cut seam using a
high-speed scanning galvanometer fill processing mode. Jiao [89,90] used picosecond and
nanosecond lasers with a wavelength of 532 nm to cut hole on CFRP plates. The effects of
laser rotary cutting, parallel fill cutting and cross-fill cutting on the processing quality at
different laser power were analyzed, and the results showed that the laser rotary cutting
method had the highest removal efficiency, the smallest taper and the small thermal impact
zone on CFRP (Figure 12).

In summary, comparing the CFRP machining quality with CW laser and pulsed laser,
CW laser is 25% more efficient, but has a larger thermal effect on CFRP and results in a poor
processing quality. So, CW laser is suitable for CFRP machining which require low processing
accuracy and high machining efficiency. For pulsed lasers, the HAZ can be effectively reduced
on the CFRP surface due to the continuous periodic cooling time between the adjacent pulses.
So, it is suitable for the processing CFRP component which requires high-precision and low-
damage. Comparing the nanosecond laser and the picosecond laser with different frequencies,
it was found that the size of the HAZ decreases with decreasing of the time interval between
adjacent pulses and the laser scanning speed. Therefore, a higher machining quality can be
obtained for pulsed laser with a shorter pulse duration.
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2.3. CFRP Field-Assisted Laser Processing Method

Machining CFRP with energy field-assisted laser machining method can improve
the cutting efficiency and quality. The commonly used auxiliary energy fields include
airflow fields and water flow fields. Riveiro [91] used a 3 kW CO2 laser to cut a 3 mm
thickness CFRP plate with off-axis supersonic nozzles and subsonic nozzles using Ar
gas assistant (Figure 13a,b). It was found that the HAZ can be effectively reduced by
using of auxiliary gases during the cutting process, but there are some long fibers on
the cutting profile. Negarestani [92] found that adding oxygen into the inert gas can
accelerate the decomposition of the resin matrix and promote material removal rate. At the
same time, the HAZ can be reduced due to the nitrogen cooling in the cutting process. It
concluded that the low oxygen volume fraction (typically 12.5%) and 0.8 MPa air pressure
are the optimal parameter configurations to improve the quality of laser cutting of CFRP.
Ramanujam et al. [93] made micropores on CFRP with carbon dioxide laser, and adjusted
input parameters such as laser power, cutting speed and argon pressure. It was found that
the cutting speed is the main factor affecting the hot dye area and the edge width, followed
by the power. Kononenko et al. [94] used a picosecond laser to cut the depth multipass of
bidirectional and unidirectional carbon fiber-reinforced plastics (CFRP). It is found that
the auxiliary oxygen flow can significantly improve the cutting efficiency, and the oxygen
support cutting can also solve the problem that occurs when cutting CFRP parallel to the
fiber direction, where the angle appears strong deformation and widening (Figure 14).

Water jet-guided laser processing technology combines the laser and the water jet,
which can reduce the HAZ and increasing cutting depth in CFRP cutting process. Zhang [95]
proposed a water jet-assisted cutting method of CFRP, which can greatly reduce the width
of the cut slit and the HAZ comparing with the laser direct cutting method. It was found
that the width of the seam on the upper surface increases first and then decreases with
increasing of the flow rate of the water jet. The HAZ is smaller, and the morphology of the
cutting inner wall is better than that of the laser direct cutting. Wu [96] investigated the
influencing law of the process parameters such as laser power, CFRP feed speed and water
jet speed on the cutting quality, and the influences of carbon fiber arrangement direction
and laser cutting path on the CFRP cutting damage mechanism are analyzed (Figure 15).
CFRP plates with the thickness of 1 mm, 2 mm, 4 mm and 10 mm CFRP is realized by
adopting the parallel path layered scanning method.
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Hua [98] cut CFRP with a 500 W millisecond Nd:YAG pulsed laser under water. The
experiment results showed that the HAZ can be effectively reduced in CFRP laser cutting
under water, which due to a large amount of heat can be absorbed by the water in the
cutting process. Tangwarodomnukun et al. [98] studied the influence of laser transverse
velocity, carbon fiber orientation, water flow rate and flow direction on cutting size and
HAZ size. It is found that the use of high water flow rate can limit the expansion of HAZ
and also help to remove materials. In addition, the water flow in the transverse direction of
the laser can increase the cutting depth (Figure 13c,d). Sun et al. [99] uses three types of
water jets to guide laser cutting CFRP. The study found that the characteristics of water
jet guided laser cutting CFRP were significantly different from those of dry laser cutting
in the case of multiple cutting with parallel path and without parallel path, while in the
experiment using the multi pass scanning strategy without parallel path, the cornea was
serrated on the side wall.
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From the above analysis, it can be seen that in the CFRP laser machining process,
water-assisted processing, underwater processing and gas-assisted methods can control
the extraction of fibers and reduce the accumulation of residual heat in the processing area,
so as to achieve a high machining quality.
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3. CFRP Laser Processing Theoretical Model and Numerical Simulation

Due to the large difference between the matrix resin materials and carbon fibers in the
physical properties, and the complexity of spatial composition for CFRP, it is difficult to
understand the interaction mechanism between lasers and CFRP in machining process by
experimental methods. So, it is helpful to analyze the interaction between materials and
laser energy by using numerical simulation [100].

Theoretical models of CFRP laser machining can lay a theoretical foundation for
experiments and numerical simulations. Xu et al. [101] proposed a numerical model to
study the material removal mechanism of CFRP laser grinding (Figure 16a). Through
parameter analysis, it is found that the distance between two adjacent laser pulses with
completely degenerated matrix should be used to effectively utilize mechanical erosion.
Li et al. [102] proposed a one-dimensional transient model, which is based on the volume
ablation of carbon fiber composites by continuous high power density lasers (Figure 16b).
It was found that the higher the laser power density is, the smaller the pyrolysis zone is.
Ge et al. [103] analyzed and compared the ultrasonic echo signals with different defect
characteristics in CFRP and calculated the depth and length of the defect according to the
time of longitudinal scattering wave (Lr) reaching the depth. It was found that the error
of defect depth and length calculated by this method can be controlled within 7% and 5%.
Chen et al. [104] used continuous wave fiber-reinforced laser to cut 2.0 mm thick carbon
fiber-reinforced polymer laminate, established a modified thermal conductivity model,
analyzed the heat transfer in unidirectional carbon fiber-reinforced polymer laminate, and
compared with the experimental results, found that the model can be used for pretreatment.

Xu [101] studied the absorption behavior of CFRP on lasers and established a single-
fiber surface absorption rate model by analyzing the refraction and reflection of lasers on
the surface of uniaxial crystals. Genna [105] proposed a theoretical model that took into
account the spatial distribution of the laser beam, the interaction time between the laser
and the working material, the absorption coefficient, and the thermal properties of the
material, and the cut seam width, the material removal rate, and the energy transmitted
through the cut slit in CFRP laser cutting process were predicted. Sato [106] established the
cauterization mass model and studied the dynamic energy change process in CFRP laser
cutting. It was found that the laser energy was converted into heat, radiant energy, kinetic
energy and ionization energy, and most of which was converted into ionization energy of
oxygen and carbon. The model was established, and the ablation quality was predicted,
the result showed that the ablation rate that calculated result (0.028 µg/pulse) is agree well
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with the experimental result (0.03 µg/pulse). Mucha [107] calibrated the temperature field
in CFRP laser cutting by embedding thermal sensors in CFRP sample at different distances
from the cutting seam, and dividing the HAZ into two different parts, which is a direct
sublimation zone of the resin and a zone where the resin matrix is completely destroyed
but not removed. A one-dimensional heat flow model was established, and the CO2 laser
was used to cutting CFRP with different laser power and found that the error between the
experimental data and theoretical model data is about 5%.
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Figure 16. (a) Schematic diagram of laser milling and non-uniform mesh for the numerical model
Reprinted/adapted with permission from Ref. [101]; Copyright 2017, Elsevier. (b) Schematic of
volumetric ablation of CFRP composite with a CW laser and the corresponding one-dimensional
numerical model Reprinted/adapted with permission from Ref. [102]. Copyright 2021, Elsevier.

Based on the mathematical model of CFRP laser machining, lots of works were car-
ried out by numerical method. Ohkubo [108] used the finite element volume method to
perform a three-dimensional numerical simulation of the laser processing of CFRP, and the
simulation results showed that the cross-sectional quality can be improved by adjusting the
processing parameters and the appropriate value of carbon fiber and resin removal speed
was achieved (Figure 17a). Li [109] established the progressive damage failure mode of
open-hole CFRP laminate based on the two-dimensional Hashin failure criterion by using
ABAQUS finite element software, and the results showed that the full-field stress distribu-
tion is non-uniform and asymmetrical, and the crack propagation and failure modes are
consistent with the development of high-level strain around the hole. At the same time, it
was also found that the full-field strain of CRRP plates is closely related to tensile load level
and fiber orientation, and the numerical model results is consistent with the experimental
results well (Figure 17b).

Hou [110] defined laser heat source models in the thermal analysis process considering
three types of boundary conditions by using the ANSYS software, and the influence of the
laser power, the laser scanning speed and the laser spot radius on the temperature that along
the thickness direction of carbon fibers and perpendicular to the laser scanning direction
were analyzed. The relationship between laser cutting process parameters and temperature
was obtained, which provided a theoretical guidance for laser heat propagation and control
of thermal impact zone. Di [111] established a multiphysics model of laser cutting carbon
fiber composites by using COMSOL software based on the anisotropy characteristics of
carbon fiber composites. A three-dimensional temperature field distribution was obtained,
as well as the transmission law of heat in fibers and resins and the influence of laser
parameters on cutting quality was predicted.
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Ohkubo [112] performed numerical simulations on CFRP laser cutting, which is
helpful to understand the generation mechanism of the HAZ and improve the cutting
quality. Li [113] summarized the surface defects and suppression methods of CFRP laser
processing, and took femtosecond laser processing CFRP as an example, a process scheme
for improving processing quality and efficiency is proposed through the combination of
theory, simulation and experiment analysis. Yu [114] studied the influence of the laying
direction and resin content of carbon fibers on the direction of laser energy transmission and
the cutting quality, and established a three-dimensional finite element model in which the
resin content increased from 30% to 50% when the laying angle of carbon fiber was 0◦, 45◦,
and 90◦, respectively. It was found that the fiber laying angle influenced the temperature
field and the HAZ width and maximum temperature show approximate linear changes
with the increase of resin content. Furthermore, comparing the numerical result and the
experimental results, the average error of the surface carbon fiber ablation width in the
numerical simulation results is 10.66%, and the average error in the HAZ width is 13.09%.

Liu [115] established a three-dimensional thermal calculation model of carbon fiber
composite plate based on the theory of thermodynamics, the temperature field and stress
field of carbon fiber composite material under laser irradiation were predicted. The results
showed that the temperature rise trend of laser irradiation was consistent with the change
of the temperature reduction trend, which was basically consistent with the experimental
temperature results. Cao [116] investigated the bottom depression phenomenon in the
blind hole processing with the picosecond pulsed laser. The numerical simulation was
carried out by using COMSOL software, and the effects of segmented variable speed and
linear variable speed scanning speed strategies on the machining depth, thermal impact
zone and bottom micromorphology of blind holes were studied.

Based on the “element birth and death” technique in the finite element method, the three-
dimensional transient temperature field of heterogeneous fiber matrix and the subsequent
material removal model are established by Zhang [117]. Under this model, the influence of
the duty cycle of laser pulse on the temperature field distribution of materials was studied,
and the model was verified by experiments under the same process conditions (Figure 18).
The results showed that CFRP composites processed by water jet-guided laser processing
have obvious advantages over traditional laser processing. Adjusting the duty cycle of laser
pulses affects the shape and temperature distribution of the composites after drilling.

In summary, machining CFRP with lasers is a complex thermos-physical process. The
carbon fibers and resins will rapidly absorb laser energy as the laser irradiation on the
CFRP plate, and the resin matrix material melts firstly, and then the carbon fiber material
continues to absorb the heat and transfer the heat into the material, thereby forming the
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cut slit and the HAZ. From the melting of the matrix material to the transfer of heat inside
the material, many disciplines such as materials science, chemistry and thermodynamics
are involved, as well as a series of influencing factors such as the laser pulse width, the
laser scanning speed, the laser power and the basic properties of the CFRP material have
impacts on the internal heat transfer and the HAZ formation. Therefore, the relevant
research considering the characteristics of laser and the anisotropy of CFRP, the numerical
multi-physics model was established, and the simulation analysis was carried out by using
finite element software such as ANSYS, ABAQUS and COMSOL, to predict the cut seam
width and the thermal impact zone with different laser parameters and material parameters,
which can improve efficiency and guides the experiment effectively.
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4. Conclusions

With the increasing application of CFRP in industry and the developing of laser ma-
chining technology, using of lasers to drill, cut and precision machine CFRP composites
becomes more and more important in lightweight manufacturing. However, due to the
anisotropy and heterogeneity characteristic of carbon fiber composites, lots of process-
ing problems such as delamination, burrs and thermal damage during processing was
produced in machining process. On the basis of summarizing and sorting out different
CFRP processing methods such as mechanical machining, waterjet processing, ultrasonic
vibration machining, the defects in different processing methods were pointed out, and the
research on process optimization and numerical simulation of laser machining CFRP was
reviewed systematically, and some conclusions and the development trends of CFRP laser
cutting technology are draw as below.

(1) Comparing the CFRP cutting quality with CW laser and pulsed laser, it can be found
that it has a higher processing efficiency but a larger thermal effect for CW laser. So,
CW laser is suitable for CFRP cutting which require low processing accuracy and high
cutting efficiency. Different scanning strategies (process optimization) can be used in
the future to process carbon fiber composites with high efficiency and high quality.
For pulsed lasers, the HAZ can be effectively reduced on the CFRP surface due to
the continuous periodic cooling time between the adjacent pulses. So, it is suitable
for the machining CFRP component which requires high-precision and low-damage.
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Moreover, the selection of suitable laser parameters (pulse width, frequency, scanning
path, etc.) is conducive to the cooling of materials in the processing process and
improves the processing quality.

(2) CFRP has different absorption coefficient for lasers with different wavelength. For the
infrared laser, the polymer matrix absorption rate of laser is less than 15%, and 85% of
the energy pass through the polymer matrix to heat the carbon fibers directly. On the
other hand, the UV laser energy is absorbed by the resin matrix almost completely. To
this end, the CFRP material removal mechanism is different for these two types of
lasers, and the UV laser has a better cutting edge quality than the IR laser, and the
HAZ is larger for IR laser than that for UV laser. In this regard, in the future, we can
use high-power ultraviolet lasers for high-precision, low-damage CFRP cutting.

(3) Cutting CFRP with energy field assistant laser machining method can improve the
cutting efficiency and quality. Summarizing the common auxiliary means in the laser
processing process, such as water-assisted laser processing, gases-assisted laser pro-
cessing and underwater processing. All of these techniques can control the extraction
of fibers and reduce the accumulation of residual heat in the processing area, so as to
achieve a high cutting quality. In the future, other energy filed can be introduced in CFRP
laser cutting to improve the quality and efficiency such as magnetic field, electric field,
ultrasonic field, flow field and external force field, which needs further investigated.

(4) To understand the mechanism of CFRP laser cutting and with lasers more clearly and
obtained the temperature distribution in cutting process, the numerical multi-physics
model was established, and the simulation analysis was carried out by using finite
element method. The cut seam width and the thermal impact zone with different laser
parameters can be predicted, which providing a certain theoretical and experimental
basis for laser cutting of CFRP. However, the numerical analysis of material removal
physical process of CFRP under the action of short pulse laser is still lacking, especially
the simulation of temperature field, stress field and material removal process under
the action of ultrashort pulse laser, such as femtosecond laser and picosecond laser,
which needs further research.
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