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Abstract: Network Diagnosis Tools with industrial-grade quality are not widely available for common
users such as researchers and students. This kind of tool enables users to develop Distributed
Embedded Systems using low-cost and reliable setups. In the context of RISC-V Extensions and
Domain-Specific Architecture, this paper proposes a Real-Time RISC-V-based CAN-FD Bus Diagnosis
Tool, named RiscDiag CanFd, as an open-source alternative. The RISC-V Core extension is a CAN-
FD Communication Unit controlled by a dedicated ISA Extension. Besides the extended RISC-V
core, the proposed SoC provides UDP Communication via Ethernet for connecting the proposed
solution to a PC. Additionally, a GUI application was developed for accessing and using the hardware
solution deployed in an FPGA. The proposed solution is evaluated by measuring the lost frame
rate, the precision of captured frames timestamps and the latency of preparing data for Ethernet
communication. Measurements revealed a 0% frame loss rate, a timestamp error under 0.001% and
an acquisition cycle jitter under 10 ns.
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1. Introduction

The fundamental problem that arose in the field of integrated circuits design and
fabrication at beginning of this century is the fact that the classical laws (or the hypothesis
today) of VLSI (Very Large-Scale Integration) became almost impossible to be applied
anymore. The number of transistors in an integrated circuit cannot be doubled every two
years from more than a decade nowadays (Moore’s Law [1]), and the power density will
not remain the same for embedding more transistors in the same silicon area (Dennard’s
Scaling [2]). These physical limitations of the classical performance improvement schema,
which was applied for decades in the previous century, are not the only problems that the
engineers are dealing with.

A lot of modern domains, which are planned to improve or already improve our
life quality, such as IoT (Internet of Things), Autonomous Driving and ADAS (Advanced
Driving Assistance Systems), Smart Home, Smart Cities, Electrical Vehicles and XaaS
(Everything-as-a-Service), need High-Performance Computing and Ultra-High-Speed Com-
munications to achieve the expected impact. Those domains are pushing the engineers and
physicists to find new solutions for delivering an increased speed of computations for an
unprecedented amount of data and extremely high-speed communication, all performed at
a low power consumption.

A major step forward for the Computer Architecture domain was made in 2014 when
Krste Asanovic and David Patterson from Berkeley University advanced the following
question: “why is one of the most important interfaces proprietary?” [3], referring to ISAs,
and proposed an open ISA (Instruction Set Architecture) and the associated architecture
called RISC-V. The RISC-V project empowered many academic and industrial players to
work together for accelerated development in the field of Computer Architecture and
opened the door for new types of multicore processors with a general purpose [4] or
application-specific extensions [5].
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In a previous paper, the authors proposed and extended an architecture of the RISC-V
Core which embeds a CAN-FD communication unit named RisCanFd CPU, which proved
to be three times faster than an ARM Cortex-M7 microcontroller with a classical CAN-FD
memory-mapped peripheral working at 6 times higher frequency. From our experience
and research, a communication RISC-V extension for controlling a CAN-FD interface has
not been developed yet, or, if they exist, nothing about them is public due to the industry
proprietary nature of the projects. In this paper, the solution is extended for illustrating
a real use case and not just the benefits of an RISC-V extension over classical CAN-FD
memory-mapped peripherals [6].

The CAN-FD communication buses are present in most of the cars nowadays besides
other high-speed protocols such as Automotive Ethernet and connect tens of ECUs placed
in the modern vehicles for ensuring premium functionalities such as ADAS (Advanced
Driving Assistance Systems), Autonomous Driving and Electrical Mobility. They extend
the CAN 2.0 protocol by permitting the payload to be transmitted at higher bit rates of
a maximum of 8 Mbps instead of 1 Mbps, and the maximum payload length became 64
instead of 8. Diagnosing such large CAN-FD communication buses, which are almost
permanently used at a 100% busload, may become a challenging task for classical microcon-
trollers containing CAN-FD-capable peripherals. The technologies, devices and software
licenses necessary for this purpose are sold at high prices, are affordable only for companies
and are kept as closed IPs (Intellectual Property) by their producers such as Vector, Kvaser,
Peak Systems, National Instruments and others.

In this paper, an open-source alternative for these proprietary solutions is presented.
The real-time RISC-V-based CAN-FD bus diagnosis tool enriches the SoC (System-on-a-
Chip) presented in [6] with the hardware logic needed for transferring all the CAN-FD
frames exchanged by the ECUs (Electronic Control Units) on the bus to a PC, together with
the information associated with bus error situations which may occur. The SoC is called
RiscDiag CanFd and communicates with the PC via a dedicated Ethernet port using UDP
(User Datagram Protocol) as the transport layer protocol for transferring captured frames
and bus error information from the SoC to the user’s computer.

All the data acquired from the CAN-FD bus and sent to the PC is displayed to the user
and placed within trace files by using a GUI (Graphical User Interface) application named
RiscDiag_CanFd_App developed in C# under .NET Framework 4.8.

Besides this introduction representing the first chapter, in the second chapter, the
work related to the current paper will be briefed. The third chapters will offer detailed
information on the Hardware Architecture of the solution (the RiscDiag CanFd SoC) and
will also cover the Software Architecture of the RiscDiag_CanFd_App running on the
PC connected to the Hardware Solution via Ethernet. The fourth chapter will introduce
the readers to the tests and measurements performed for evaluating and validating the
solution.

2. Related Work

The quest for the computing systems’ performance improvement has recently been
shifted towards Domain-Specific Architectures (DSAs), where the performance increase is
due to the addition of custom computing units that are designed to perform very specific
tasks in a very efficient manner. There are multiple domains that motivated the develop-
ment of custom digital units that can accelerate the processing for specific applications:
neural network processing, cryptographic computations and custom arithmetic processing.

Computing systems are involved in almost every aspect of human activities and have
a direct or indirect impact on the performance and quality of the systems that rely on
the provided results and computations. The themes of computing technology impact are
exhaustively presented in [7] and include societal, technical and business dimensions. The
need for continuous performance improvement drives the current research and develop-
ment in computer engineering, and we are currently witnessing a design paradigm shift to
DSAs, as presented in [8]. The classic design paradigm that fueled the innovations in the
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last 60 years was based on transistor improvements, microarchitectural improvements such
as pipelines and superscalar execution and, lately, on multiprocessing. These methods lead
to a spectacular performance increase in the general-purpose computing systems, but they
reached a point where the power consumption does not allow for further improvement.
The path to follow to obtain an additional and significant performance increase is develop-
ing DSAs that perform just a few tasks (i.e., are not general-purpose anymore) but do so
extremely well [9]. One of the first industry-proven accelerators is the Tensor Processing
Unit (TPU) [10] used by Google in its datacenters to speed up the inference phase of Deep
Neural Networks by 10x. Additionally, a power dissipation decrease is observed compared
to general-purpose CPUs and GPUs that perform similar tasks.

RISC-V is a standardized Instruction Set Architecture (ISA) specification [11] that
explicitly provides the possibility to extend the base instruction set with custom extensions
that use (i.e., abstract) custom-designed accelerators. There is a recent and significant
academic body of work that uses the RISC-V specification as a tool to design custom
accelerators to improve specific classes of algorithms and applications.

The design of algorithms for Neural Networks (NN) is one of the most targeted
domains for building accelerators. In article [12], the authors propose an instruction set
extension that accelerates the dot product operation and loop control in a constrained
environment (i.e., embedded system) built with an RISC-V microprocessor. They report
a 73% decrease in computing time (i.e., latency) and a power reduction by 73%. The
authors of article [13] extend the base RISC-V instruction set with SIMD (Single Instruction-
Multiple Data) instructions for low-bit-count operands and report a 6× and 8× speedup of
QNN (Quantized Neural Networks) convolution kernels. Another extension is presented
in article [10], which uses a new floating point number representation and an RISC-V
extension that uses that representation and achieves speedups of up to 10× on inference
time. In article [14], the authors design a custom AI system which includes multiple AI cores
and evaluate it with an FPGA prototype using image and speech recognition testcases. They
consider various NN topologies and vector sizes for accuracy comparison. The acceleration
of neural networking workloads is presented in paper [15], where the authors design an
extension of the base RISC-V ISA that allows for the conversion between 8- or 16-bit posits
and 32-bit IEEE Floats or fixed point formats in order to offer a compressed representation
of real numbers with little-to-no accuracy degradation. The reported speedups are up to
10× for the sample inference processing time.

The design of accelerators for cryptographic computations is another frequently tar-
geted domain for building extensions for RISC-V. In article [16], the authors design in-
memory-computing (IMC)-adapted instructions for a hash algorithm and measure over
70% improvements in both performance and energy saving with a limited area overhead.
Paper [17] presents the design of an RISC-V-based crypto processor for storing sensi-
tive information and performing intermediate cryptography operations which performs
25× better than the software counterpart. The authors of paper [18] add cryptography-
accelerating instructions to the RISC-V base ISA for lightweight 64-bit block ciphers. The
reported gain in performance can reach 100× and is evaluated using an FPGA prototype. In
paper [19], design a secure RISC-V processor capable of always-on encryption to obfuscate
the code and pointers. With a 2% area overhead, the designed processor was deployed
on Amazon AWS F1 instances and successfully protected a database from attacks. In pa-
per [20], the authors propose a hardware implemented security extension to RISC-V, named
FIXER, that provides a defense mechanism against buffer overflow and return-oriented
programming (ROP) attacks by using fine-grained control-flow integrity (CFI) checking
hardware units. Compared to the existing software-based solutions, FIXER reduces the
energy overhead by 60% at a minimal execution time (1.5%) and area (2.9%) overheads.
Post-quantum cryptography is approached in article [21], where a new instruction set
extension for RISC-V ISA is designed to speed up the computations for CRYSTALS–Kyber
and Dilithium algorithms. The results show a modest increase in circuit area (3%) but with
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a significant speedup of the Kyber and Dilithium functions (20% to 65%) and an energy
saving of 20% to 45% compared to software implementation.

The arithmetic processing used in digital signal processing and SIMD processing is
often the subject of acceleration. In paper [22], the authors design a vector processing
extension for RISC-V which improved the performance by 5.8×compared to the scalar pro-
cessing and had a 2.6× area overhead. An industrial-grade implementation is presented in
paper [23]. A 64-bit high-performance embedded RISC-V processor with SIMD extensions
is designed, and its performance is comparable (i.e., within 20% on most benchmarks) with
ARM Cortex-A73. In article [24] the authors propose an ISA extension for DSP (Digital
Signal Processors) processing in IoT devices with power consumption constraints. The
reported speedups are over 50% for the FFT algorithm with an area overhead of 28%
compared to the RI5CY implementation of RISC-V. Bit manipulation instructions are added
to the RISC-V base instruction set, as indicated in [25]. The FPGA evaluation results show
improvements of 4× for Morton encoding/decoding, with a 3× area overhead for the
modified ALU.

The customization of communication interface operation is not commonly addressed
by systems designers. There is some effort invested in the development of RSIC-V exten-
sions targeted at digital communications, as presented in paper [26]. The authors develop
specific instructions that lead to a reduction in clock cycles (needed for certain algorithms
involved in 5G communications) of up to 47%, with an area overhead of 25%. Our approach
targets the CAN-FD interface operation handling at the instruction set architecture level.

3. Architecture of the Proposed Solution

In this chapter, the architecture of the RiscDiag CanFd is presented and explained. In
the subsections, details on each important module’s structure and function is provided
together with details about the implemented logic.

3.1. Architectural Overview

The Real-Time RISC-V-based CAN-FD bus diagnosis tool designed as an SoC contains
the following components:

• The RISC-V core named RisCanFd [6] containing the CAN-FD Communication Unit/Extension
with a dedicated ISA extension;

• The CAN-FD Bus Diagnosis module composed of:

# The CAN-to-UDP Bridge module (for prebuffering content of the CAN-FD
frames, which will be transferred by the Network Stack module to the Ethernet
PHY and further to the PC);

# The Network Stack module (contains an IP with a hardware-implemented com-
munication stack for all necessary protocols);

• The Program and Data Memories of the RISC-V Core;
• The UART Debugger module used for controlling the reset of the modules and for

write/read operations over the memories;
• GPO module (general purpose outputs) for debugging and performance measure-

ments.

Figure 1 illustrates the architecture of the RiscDiag CanFd SoC in the context of the
hardware environment used for deploying and testing the solution. The FPGA loaded with
a bit file (i.e., configuration) of the design is Xilinx Artix-7 XC7A100T-1CSG324C, and it is
the core component of the Digilent Nexys A7 FPGA Board. The CAN-FD transceiver used
for adapting CAN signals to 3V3 TTL signals is Microchip ATA6563, externally connected
to the board. The Ethernet physical layer transceiver used is SMSC LAN8720A; it offers an
RMII interface, and it is also a component of the FPGA development board.
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3.2. Architecture of the Hardware Modules
3.2.1. Architecture of the RisCanFd CPU

The RisCanFd CPU (Figure 2) was introduced in [6] as an extended RISC-V core. The
CPU implements a part of the RV32I ISA variant providing classical instructions such as
ADD, SUB, AND, OR, ADDI, LW, SW and BEQ. The core represents a modified version of
the Hennessy and Patterson design with a five-stage pipeline, a forwarding unit and no
hazard detection unit in the implementation provided as an open-source project [27].

The contributions added to this RISC-V core implementation are the CAN-FD Com-
munication Unit/Extension and the ISA Extension used for configuring and controlling it.
The CAN-FD Communication Unit is placed alongside the ALU (Arithmetic-Logic Unit) in
the Execution Stage of the core.

Architecture of the CAN-FD Communication Unit/Extension

The CAN-FD Communication Unit is the extension of the RISC-V core and represents
the module which interacts with the CAN-FD bus for sending and receiving frames. It is
controlled by a dedicated ISA Extension set but contains an FSM (Finite State Machine)
which allows it to perform tasks independently from other components of the CPU (e.g.,
transferring the contents of received CAN-FD frames to the Data Memory and to the
CAN-to-UDP Bridge).

The core component of the CAN-FD Communication Unit is a CAN-FD engine
developed at the Czech Technical University as an “IP core written in VHDL with no
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vendor-specific libraries needed” [28] and distributed with an open-source license (the only
open-source CAN-FD engine available), named CTU-CAN-FD.
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The FSM of the CAN-FD Unit controls the CAN-FD engine, described in the paragraph
above, by executing the instructions from the RisCanFd ISA Extensions, listed in Table 1,
and by independently checking the state of the CAN-FD Engine and performing specific
actions:

1. Waiting for the CAN-FD Engine to enter the bus integration state after it was reset
and acknowledging the state by writing a flag in the Data Memory;

2. Polling the CAN-FD engine for a received CAN-FD frame writing its contents to
the Data Memory and transferring them in parallel to the CAN-to-UDP Bridge for
prebuffering before it is transmitted on Ethernet to the PC;

3. Acknowledging that a new CAN-FD frame was received and transferred to the Data
Memory and to the CAN-to-UDP Bridge by writing a flag to a specific location;

4. Polling the CAN-FD Engine for any CAN-FD bus error detected and transferring
the error-specific information to the CAN-to-UDP Bridge to be sent via Ethernet to
the PC.

The CAN-FD Communication Unit writes data directly to the Data Memory and to the
CAN-to-UDP Bridge for accelerating the tasks performed by the rest of the RisCanFd CPU
with the data received from the CAN-FD bus by classical instructions execution and for
accelerating the process of sending all received CAN-FD frames and bus error-associated
information to a PC.

Table 1 illustrates the proposed ISA Extension Set designed for controlling the CAN-
FD Communication Unit. These instructions use a pseudo-R format, and they have the
same opcode but different funct7 field values.
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Table 1. The ISA Extension Set used for Controlling the CAN-FD Communication Unit [6].

instr_name funct7 rs2 rs1 opcode

cfd_swrst 0000001 xxxxx xxxxx 1111000
cfd_sndbr 0000010 $_DBR $_NBR 1111000
cfd_smden 0000011 xxxxx $_mode 1111000
cfd_sfmid 0000100 $_frame_ID $_frame_format 1111000
cfd_ststp 0000101 $_cycle_time_L $_cycle_time_U 1111000
cfd_sbyts 0000110 $_data_word $_data_offset 1111000
cfd_ssend 0000111 xxxxx xxxxx 1111000
cfd_enbrx 0001000 xxxxx xxxxx 1111000
cdf_disbl 1111111 xxxxx xxxxx 1111000

The rd register used as a destination register is not used for the CAN-FD Unit ISA
Extension Set; additionally, the ‘xxxxx’ is the notation for an operand register that is not
used by the specified instructions. The instructions are using the same opcode but have
different funct7 codes for simplifying the decoding logic.

The instruction “cfd_swrst” resets, in a software manner, the CAN-FD Engine inside
the unit. The Nominal and Data Bit Rates, which are the most important parameters of the
CAN-FD bus, are set using the “cfd_sndbr” instruction. Configuring the mode of operation
and enabling the CAN-FD Engine are performed by executing the “cfd_smden” instruction.
Setting the ID and other format details of a CAN-FD frame intended to be sent is carried out
by executing “cfd_sfmid”. The instruction “cfd_ststp” sets the cycle time of the CAN-FD to
be sent if the CAN-FD Engine must work in cyclic timestamped mode. For configuring
the payload bytes in the frame to be sent, the instruction “cfd_sbyts” is used, and it offers
the possibility of setting four bytes at once (the CAN-FD frame can have a maximum of 64
bytes in payload). For finally sending the CAN-FD frame after the parameters mentioned
above are configured, the user must execute “cfd_ssend” [6].

Enabling the reception of CAN-FD frames by repeatedly polling the CAN-FD Engine
is carried out by issuing the “cfd_enbrx” instruction. After a CAN-FD frame arrival, the
process of transferring it to the Data Memory and to the CAN-to-UDP Bridge will begin
immediately [6].

Disabling the CAN-FD Engine is performed by executing the “cfd_disbl” instruction,
the latest in the CAN-FD Communication Unit ISA Extension set.

3.2.2. Architecture of the Diagnose Module

The Diagnose module is composed of two modules and has the purpose of sending
the received CAN-FD frames and the CAN-FD bus error information to the PC via Ethernet
at a bit rate of 100 Mbps. It is composed of the CAN-to-UDP Bridge module, which is
responsible for sending the data from the CAN-FD Communication Unit to the UDP/ETH
Stack and the UDP/ETH Stack (the Networking Stack), an instance of the FC1001_RMII, an IP
core implementing the networking stack (DHCP, UDP, IPv4, ARP, ICMP and Ethernet) and
exposing an MAC/RMII interface to the Ethernet transceiver used and an UDP server via
an AXI stream to the CAN-to-UDP Bridge module. The FC1001_RMII IP core is provided
as a black-box netlist IP by FPGA-Cores from Linkoping, Sweden [29]. This module sends
the data to the Ethernet Transceiver, which will forward them to the PC.

Architecture of the CAN-to-UDP Bridge

This module (Figure 3) receives the bytes from the CAN-FD Communication Unit and
stores them in the buffer until all of them are received, and, when a complete packet is
formed, it sends it to the UDP server inside the UDP/ETH stack for being forwarded to the
Ethernet transceiver.
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The CAN-to-UDP Bridge contains the data buffer (the UDP payload which will be
sent on Ethernet), the demultiplexer of the data buffer (used for placing the bytes from
the CAN-FD Communication Unit), the UDP transmission FSM and the UDP transmission
counter.

For a captured CAN-FD frame, the UDP packet contains the fields of the frame—the
arbitration field composed of the ID of the frame, the RTR (Request for Transmission),
IDE (Extended ID), FDF (FD Frame) and DLC (Data Length Content) fields and the Data
payload—and the timestamp of the frame (on 64 bits). For a bus error situation, the UDP
packet contains the error type (bit, CRC, framing, ACK or stuffing) and the error subtype
(SOF Bit, arbitration fields, control fields, data, CRC field, ACK bit, EOF bit and others).

The UDP packet commit module informs the UDP server that all data have been trans-
mitted, so it can forward them to the UDP client on the PC via Ethernet.

3.2.3. Architecture of the Program Memory

The Program Memory consists of 4096 locations of 32-bit data words and contains the
RISC-V machine code, which is executed by the RisCanFd CPU. Memory Read operations
are performed asynchronously, and Memory Write operations are performed synchronously.
Two entities write into the Program Memory: the UART Debugger, with a higher priority,
for flashing the SoC with a new firmware, and the RisCanFd CPU, with a lower priority.
Writing into the Program Memory by the RisCanFd CPU will be used in a future update
for adding the CAN-FD bootloader capabilities, which are not available now.

The entities mentioned above are writing/reading the memory using different ports
for time efficiency reasons.

3.2.4. Architecture of the Data Memory

The Data Memory consists of 4096 locations of 32-bit data words. Memory Read
operations are performed asynchronously, and Memory Write operations are performed
synchronously. Three entities write into the Data Memory with the following priorities
(where a lower number represents a higher priority):

1. UART Debugger for directly writing sets of data, which is used in application-specific
scenarios (e.g., configurations for the CAN-FD Communication Unit, format and
contents of the CAN-FD frame intended to be sent later, masks and patterns for
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computations with CAN-FD-received frames data, the IP address that is used by the
UDP server inside the diagnose module, etc.);

2. CAN-FD Communication Unit for efficiently bringing to the memory the format and
content of every captured CAN-FD frame or other flag values. These values are
written without the intervention of the RisCanFd CPU in an emulated DMA manner;

3. RisCanFd CPU for storing computations results [6];
4. The entities mentioned above are writing/reading the memory using different ports

for time efficiency reasons.

3.2.5. Architecture of the UART Debugger

The UART Debugger is a module that interacts with the RisCanFd CPU, with the
Program Memory and with the Data Memory [6]. This module resets all SoC submodules,
writes/reads to/from the Program Memory (flashing and verifying a new firmware),
writes the Data Memory with values used by the program flashed and reads it for obtaining
execution results and for debugging purposes.

The UART Debugger (Figure 4) contains the UART RX-TX engine, the Command
Translator, the U-Word-Sender (Unsigned 32-bit word) and the Debugger. The UART RX
submodule forwards the command (on eight bytes) to the Command Translator which
controls the Debugger. The Debugger sends the requested data or a success/failure code to
the U-Word-Sender, which transforms this information into the four-bytes response and
forwards it to the UART TX submodule [6].
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The functionalities of the UART Debugger are accessed by the user within the RisCanFd
IDE, composed of a dedicated assembler which supports the ISA Extension Set and a GUI
Application [6].

The UART RX-TX Control module uses a hardcoded baud rate of 921,600 bps, one
of the highest reliable baud rates for UART communication (Universal Asynchronous
Receiver–Transmitter). The UART protocol was chosen because the FPGA development
board contains an FTDI 2232H, “a USB 2.0 Hi-Speed (480 Mb/s) to UART/FIFO IC” [30]
with two communication pipes, one using the MPSSE (Multi-Purpose Synchronous Serial
Engine) for flashing the bitfile of the FPGA via JTAG and other a spare UART FIFO, which
can be used by the designer using the development board. Because writing/reading
into/from Program and Data Memory are not time-critical operations for the end user, this
spare UART FIFO channel was used for controlling the UART Debugger module of the
RiscDiag CanFd.
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3.3. Description of the Firmware used by the SoC for CAN Bus Diagnosis

The firmware used by the RiscDiag_CanFd for achieving the goal of capturing all the
CAN-FD frames present on the bus and all the bus errors and sending the information on
UDP via Ethernet to the PC follows the following steps:

1. Issuing software reset to the CAN-FD Communication Unit;
2. Configuring the Nominal and Data Bit Rates of the CAN-FD Engine to the values of

the bus to be diagnosed;
3. Setting the mode of operation of the CAN-FD Engine (ACK of the received frames

disabled and bus monitoring mode enabled—passive CAN-FD node on the bus) and
enabling the CAN-FD Engine;

4. Waiting in a loop and checking a specific Data Memory location flag value for validat-
ing that the CAN-FD Engine inside of it entered the bus integration state [28];

5. Issuing to the CAN-FD Communication Unit the command to start listening for
CAN-FD frames (this operation also ensures the detection of the bus error situations);

6. Checking if any CAN-FD frame is captured by permanently polling the value of a
specific Data Memory location written by the CAN-FD Unit when receiving frames
without the intervention of the RisCanFd CPU;

7. If a CAN-FD frame is captured, the instruction for starting to listen again for frames is
issued to the CAN-FD Communication Unit; the RisCanFd CPU does not perform
supplementary actions for sending the frames to the diagnose module for sending
them on Ethernet because at a CAN-FD frame receival or at a bus error detection, all
the information is sent directly by the CAN-FD Communication Unit to the CAN-to-
UDP Bridge inside the diagnose module, which functions independently and forms
the UDP packet to be sent to the PC.

3.4. Implementation of the Hardware Solution

The RiscDiag CanFd SoC was designed in using the VHDL (VHDL-2008) and Verilog
(Verilog-2001) hardware description languages under Vivado 2022.1 IDE. Most of the
modules were written in VHDL—the RISC-V core and its submodules (the exception is the
CAN-FD Unit), the Program and Data Memories, etc., and a few were written in Verilog—
the CAN-FD Communication Unit/Extension, the UART Debugger and its submodules,
the CAN-to-UDP Bridge, etc.

For validating all the instructions in Extended ISA of the CAN-FD Unit and its in-
tegration into the RISC-V core, simulations were performed using the Vivado Simulator
targeting mixed language (VHDL + Verilog) with simulation files written in Verilog.

3.5. Architecture of PC Software Application

For showing and saving into trace files the captured CAN-FD frames and the bus
errors information, a PC GUI application was necessary. The GUI Application, named
RiscDiag_CanFd_App, was developed in C# under .NET Framework 4.8. It uses a DLL
(Dynamic Linked Library) called RiscDiag_CanFd_Library containing the UDP Driver named
RiscDiag_CanFd_Driver.

Architecture of the RiscDiag_CanFd Library

The library contains classes for the UDP Packets, for the CAN-FD decoded frames, for
the CAN-FD frames cache and for the main application logic. UdpFrame is a serializable
class used for storing the UDP frames received from the UDP server inside the diagnose
module of the SoC. The CanFrame class is designed for decoding the information inside
the UdpFrame and storing them into specific CAN-FD frame fields. This class also has
methods for exporting the CAN-FD frames information into string or TreeNode objects
for listing the frames contents on the GUI application. The CanFrameCache class stores the
CAN-FD frames and monitors their number; when there are 500 frames stored, a thread for
saving them into TXT or XML files is instantiated and started.
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The core class of the library is the RiscDiag_CanFd Driver. The driver is responsible
for starting a UDP socket as a UDP client using the IP address and port of the UDP server
in the SoC, receiving the UDP packets from the SoC, converting the information from the
UDP packet into CAN-FD-specific fields, using this information to form a TreeNode to be
added on the TreeView of the GUI Application and saving the CAN-FD frames and Bus
Error information in TXT or XML files.

The main application of the driver consists of three threads which are described in this
section. Even though, initially, there were just two threads, one for receiving UDP packets
with the socket and enqueueing them into a ConcurrentialQueue and one for dequeuing
them, converting them to CAN-FD frames and showing them on the GUI, this approach
created a loss of UDP packets on the way from the Socket to the ConcurrentialQueue.
Because of this problem, another MSMQ (Microsoft Message Queue) was inserted into the
logic together with another thread. The threads used and illustrated in Figure 5 by the
driver have the following roles:

1. The first thread represents the UDP client which reads the UDP packets with a socket
opened at the SoC endpoint using its connection data (IPv4 address and port) and
enqueues them into the MSMQ (Microsoft Message Queue), called “UdpCanQ”;

2. The second thread dequeues the UDP packets and enqueues their payload represented
as byte array objects to an .NET Framework ConcurrentialQueue;

3. The third thread dequeues the byte array objects from the ConcurrentialQueue and
extracts the CAN-FD frame or CAN-FD bus error-associated information for building
the TreeNode, which are displayed in the GUI and which are stored in the CanFrame-
Cache for writing them into XML or TXT files.
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Because the ConcurrentialQueue provided by the .NET Framework caused a loss of
UdpFrame instances, the MSMQ was introduced for “slowing down” the information flow
using a reliable queueing instrument offered by the Windows operating system.

4. Performance Evaluation
4.1. Evaluation Criteria for the Bus Diagnosis Tool

In this subsection, the criteria used for evaluating the CAN-FD bus diagnosis tool are
discussed. The point is not necessarily to prove that the proposed solution performs better
than other solutions available on the market but to demonstrate that it will properly and
correctly work in all possible use cases and scenarios. These criteria are:

1. The number of CAN-FD frames lost for different bus loads, which must be 0 for a
busload of 100%; the bus load represents the percentage of time during which the bus
is populated with messages or, in general, with useful data—for example, if in 1 ms
there is a sequence of five cyclical messages during a 150 µs transmission for each of
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them and every message is followed by a break of 50 µs, the bus load is calculated
with the formula presented in Equation (1):

busload =
∆tbusoccupied

∆tbusoccupied
+ ∆tbus f ree

=
5× 150 µs

(5× 150 µs) + (5× 50 µs)
=

150 µs
200 µs

= 0.75 = 75% (1)

2. The timestamp precision for the valid captured CAN-FD frames; the trace containing
all CAN-FD frames information packets must contain their timestamp for being able
to diagnose every problem, which occurred in the Distributed Embedded System,
which uses CAN-FD as the data exchange environment; the difference between a cycle
time of CAN-FD frames measured with the diagnose tool and a cycle time measured
with an oscilloscope/logic analyzer must be as small as possible.

3. The time duration needed by the diagnosis tool for sending the captured CAN-FD
frames and the bus error situations to the PC, as well as the delay between the moment
the information of the captured frame is sent to the PC and the moment another frame
arrives on the bus and has to be captured; it is required that the diagnosis tool finishes
sending the captured information before another frame has been completely transmitted on
the bus; in an ideal scenario, the diagnosis tool may send all the captured information
within a CAN-FD frame even before the next CAN-FD frame starts to be transmitted on the
bus; for evaluating in the perspective of this criteria, the time needed for sending the
captured information from the bus on the Ethernet and the time passed between all
data had been transmitted, and the diagnose tool is waiting before another CAN-FD
frame arrives on the bus.

4.2. Test and Measurement Setup

For testing the RISC-V-based CAN-FD diagnosis tool, a bus with several CAN-FD-
capable devices and an oscilloscope or at least a logic analyzer capable of decoding the
CAN-FD frames is required.

The test setup, illustrated in Figure 6, contains four devices on the CAN-FD bus and a
measurement tool. The devices on the bus are two NXP MIMXRT 1062 ARM Cortex-M7
microcontrollers (with internal CAN-FD controllers as memory-mapped peripherals), one
ESP32 microcontroller (with an external CAN-FD controller, also used as a secondary
CAN-FD logger) and the DUT (Device Under Test); the FPGA is loaded with the RiscDiag
CanFd hardware configuration. The DUT is passive on the CAN-FD bus—it does not
acknowledge frames and it does not send frames.
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The tool used for performing tests and measurements is the Saleae Logic Pro 8 logic
analyzer and protocol decoder.

The two ARM Cortex-M7 NXP MIMXRT 1062s running at 600 MHz have an internal
classical CAN-FD memory-mapped peripheral, and their purpose in the setup is to simulate
the exchange of messages at a 100% busload, a scenario imitating the communication of
ECUs in a vehicle in the automotive industry. The ESP32 running at 240 MHz is used for
comparing, in terms of time, the efficiency of the use of external and internal CAN-FD
controllers and also has the purpose of the secondary CAN-FD frames tracer on the bus.

Because of the high prices of the protocol decoding licenses for oscilloscopes, a high-
end logic analyzer with protocol decoder capacities was chosen as the measurement and
decoding tool. For about EUR 1000, it offers digital acquisition for signals with a maximum
frequency of 100 MHz and analog acquisition for signals with a maximum frequency of
5 MHz. The PC Software provides a reasonable number of protocol decoder extensions.
The protocol decoder for CAN-FD was not provided by the producer, so an open-source
CAN-FD extension was developed and published as an open-source project [31].

4.3. Evaluating the Lost Frames Rate of the Solution
4.3.1. Test Conditions and Methodology

For validating that the CAN-FD diagnosis tool does not lose any frame, two scenarios
were elaborated upon:

• Sending from one Teensy 4.1 MCU 65,536 CAN-FD frames on the bus on a busload of
100% (no breaks between frames);

• An exchange of 65,536 CAN-FD frames between Teensy 4.1 and Teensy 4.0 MCUs: for
an agreed frame, Teensy 4.1 increments a fixed position counter placed on two bytes
(for 65,536 frames exchanged) if the counter value received from Teensy 4.0 is odd,
and Teensy 4.0 increments the 16-bit counter only if the counter value received from
Teensy 4.1 is even; this approach simulates a request–reply communication scenario.

For the tests, all CAN-FD frame lengths were used (0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20,
24, 32, 48 and 64). The scenarios were tested for two combinations of Nominal and Data
Bit Rates—500 kbps–2 Mbps, the most used combination in the Automotive Industry, and
1 Mbps–4 Mbps, the highest values supported by the Teensy Devices’ internal CAN-FD
controllers. The Data Bit Rates of 5 and 8 Mbps are not largely adopted and not supported
by all CAN-FD Transceivers; 1 Mbps is the maximum value for the Nominal Bit Rate of
CAN-FD Communication (the same as the Arbitration Rate).

Both test scenarios were run 50 times. All the traces generated by the RiscDiag_CanFd_App
were parsed, and the vehiculated counter values were verified for checking if any frame was
lost/not captured by the RiscDiag_CanFd solution and determining the lost frame rate.

4.3.2. Test Results and Discussion

The test results listed in Table 2 prove that, for the combinations of Nominal-Data Bit
Rates used and for all possible CAN-FD frame lengths, the RISC-V-based CAN-FD bus
diagnosis tool designed does not lose any frame, so the first evaluation criterion described
in Section 4.1 is satisfied.

4.4. Evaluating the Timestamp Precision of the Solution
4.4.1. Context for Timestamp and Cycle Times

CAN and CAN-FD have a collision avoidance mechanism based on the priorities
derived from frames’ IDs (a lower ID for a higher priority), and it can easily be used in an
event-triggered paradigm for Embedded Computing Applications with tens of MCUs on
the bus. If a node/MCU loses arbitration because the frame it tries to send on the bus has a
higher ID than another “winning” node, it tries a retransmission for a configurable number
of times.

For preventing frame losses due to nodes waiting to win arbitration on the bus forever
and other timing hazards such as OS tasks not having their input data at a specified mo-
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ment, Automotive Real-Time Embedded Applications with buses containing tens of nodes
implement methods for shifting from an event-triggered paradigm to a time-triggered
paradigm. Both paradigms are thoroughly described in the book [32].

Table 2. Test Results for Measuring the Lost Frame Rate in the various scenarios described above.

DLC Field of the
CAN-FD Frame

Length of the
CAN-FD Frame Data

Payload

Lost Frame Rate (%)
at 500–2000 kbps

Lost Frame Rate (%)
at 1000–4000 kbps

0 0 0 0
1 1 0 0
2 2 0 0
3 3 0 0
4 4 0 0
5 5 0 0
6 6 0 0
7 7 0 0
8 8 0 0
9 12 0 0
10 16 0 0
11 20 0 0
12 24 0 0
13 32 0 0
14 48 0 0
15 64 0 0

For time-triggered events and for each OS task of each MCU on the bus to know
exactly when it will have to send/receive frames on/from the bus, each MCU saves
“databases” of frames information in its memory, one of these being the cycle time for
sending/receiving frames. Other methods such as Time-Triggered CAN (TTCAN) [33,34]
include more elaborated architectures and mechanisms for achieving the real-time behavior
of the CAN/CAN-FD Distributed Embedded Systems.

Taking the oscillograms of the Automotive CAN/CAN-FD bus reveals a 100% bus
load because there are hundreds or thousands of frames arrived upon at a precise time
known by each node “interested” in sending or receiving that frame as the cycle time. The
resolution of the cycle time is the millisecond. Each CAN/CAN-FD frame has a cycle time
of 1 ms, 10 ms, etc.

4.4.2. Test Conditions and Methodology

For evaluating the precision of the timestamps provided by the proposed solution for
the captured frames, the cycle times of the frames with the same IDs were measured by
computing the differences between the timestamps of the sniffed frames and comparing
the results with the cycle times measured by the logic analyzer.

The tests were performed at the maximum bit rates supported by all the nodes on
the bus, a Nominal Bit Rate of 1 Mbps and a Data Bit Rate of 4 Mbps. Nine groups of
measurements were performed for CAN-FD frames with a maximum length of 64 bytes
(DLC field with the value 15). The programmed cycle times of the frames go from 10 ms to
90 ms, with a step of 10 ms.

For each measurement group, 100 differences between the timestamps were computed
after parsing the trace files saved by the PC Application of the solution. The results were
compared with the cycle times measured with the logic analyzer using its automation API.

4.4.3. Test Results Discussion

Each cycle time measurement from Table 3. represents the average of 100 samples
of cycle times measured for each theoretical cycle time in the first column of the table.
Considering that the absolute error values are in the same order of magnitude and they
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are under 0.001%, it may be said that the solution can be used for offering a precise image
about the history of events on the CAN-FD bus. The increasing difference between the two
sources of measurements obtained from increasing the cycle time comes from the fact that
the solution does not implement any mechanism of clock synchronization or clock drift
correction. This solution will be included in a further implementation.

Table 3. Test Results for Comparing Cycle Times measured using the Proposed Solution with the
results from the Saleae Logic Analyzer.

Database
Cycle Time

(ms)

Cycle Time
Measure-

ments from
Saleae (ms)

Cycle Time
Measurements from

RiscDiag_CanFd
(ms)

Difference
(ms)

Difference
(ns)

Absolute
Error (%)

10 9.992663 9.992702 0.000039 39 0.000390286
20 20.156012 20.1561 0.000088 88 0.000436594
30 30.106394 30.1065 0.000106 106 0.000352085
40 40.274748 40.2749 0.000152 152 0.000377408
50 50.149134 50.1493 0.000166 166 0.000331013
60 59.936526 59.9368 0.000274 274 0.00045715
70 70.62186 70.6222 0.000340 340 0.000481437
80 80.677238 80.6776 0.000362 362 0.000448702
90 89.859636 89.86 0.000364 364 0.000405076

4.5. Evaluating the Time Effort and Efficiency for the Communication over Ethernet to a PC

In this subsection, the proposed solution is evaluated in terms of the time effort needed
for sending the captured CAN-FD frames and CAN-FD bus error information to a PC via
Ethernet using the UDP transport layer protocol. There are two metrics that are used:

• The time effort for forming the Ethernet package containing the 82 bytes of useful data
and sending it over Ethernet to the PC;

• The time duration between the Ethernet transmission is finished, and another CAN-FD
frame arrives on the bus (the resting or “recovery” time after one captured CAN-FD
frame is sent to the PC and another one starts to be out of the bus).

4.5.1. Test Conditions and Methodology

The time effort for packing the useful data into an Ethernet frame is measured with
the Logic Analyzer based on the debug signal UdpOutIsEmpty illustrated in Figure 6. This
duration is equal to the time during which this signal has the logic value of ‘0′.

The amount of time needed for the Ethernet packet to be transmitted from the Ethernet
transceiver to the PC can be calculated by considering the dimensions of the packets, which
encapsulate the useful data. The useful data sent by the solution comprise 82 bytes, and
the UDP protocol has a header of 8 bytes [35] (Equation (2)). The result is that the IPv4
packet has 90 bytes of payload plus the header consisting of 20 bytes [36] (Equation (3)).
The Ethernet Packet has a data payload of 110 bytes and a header of 18 bytes [37], for a total
of 128 bytes (Equation (4)) transmitted with a speed of 100 Mbps, resulting in an Ethernet
transmission time of 10.24 µs (Equation (5)).

BytesUDP = BytesUDPHeader + BytesUDPPayload = 8 bytes + 82 bytes = 90 bytes (2)

BytesIPv4 = BytesIPv4Header + BytesIPv4Payload = BytesIPv4Header + BytesUDP = 20 bytes + 90 bytes = 110 bytes (3)

BytesETH = BytesETHHeader + BytesETHPayload = BytesETHHeader + BytesIPv4 = 18 bytes + 110 bytes = 128 bytes (4)

∆tETHtransmission
=

BytesETH × 8 bits
byte

100 Mbits
s

=
128 bytes× 8 bits

byte
108 bits

s

=
1024 bits

108 bits
s

= 10.24 µs (5)
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The recovery time between an Ethernet transmission and the next CAN-FD frame that
must be captured is measured as the delay between UdpOutIsEmpty, which changes its
value from logical ‘0’ to logical ‘1’, and the SOF bit of the next CAN-FD frame.

The tests and measurements are performed using the two combinations of bit rates
used and explained previously: 500 kbps–2 Mbps and 1000 kbps–4 Mbps at a 100% busload
(no breaks between CAN-FD frames). CAN-FD frames with all possible lengths were used
for validating that the length of CAN-FD frames does not impact either the time effort for
transferring the data to the Ethernet Transceiver or the recovery time.

4.5.2. Test Results Discussion

The results of the measurements performed for determining the time effort needed by
the solution for embedding the captured CAN-FD frame data or bus error information into
an Ethernet packet are listed in Table 4.

Table 4. Time effort of the solution for forming the Ethernet frame containing the 82 bytes.

CAN-FD Frame
Payload Length

Nominal-Data Bit Rates:
1000–2000 kbps

Nominal-Data Bit Rates:
1000–4000 kbps

Time Duration
(µs) Jitter (ns) Time Duration

(µs) Jitter (ns)

0 2.902706 0.23053 2.902471 0.12046
1 2.902571 0.36498 2.902769 0.17818
2 2.902750 0.18641 2.902556 0.03550
3 2.902375 0.56141 2.902632 0.04053
4 2.903500 0.56359 2.902100 0.49105
5 2.903875 0.93859 2.902588 0.00282
6 2.902625 0.31141 2.902105 0.48579
7 2.902875 0.06141 2.902000 0.59105
8 2.903375 0.43859 2.902667 0.07562
12 2.903000 0.06359 2.902615 0.02433
16 2.903286 0.34930 2.903250 0.65895
20 2.902762 0.17451 2.903111 0.52006
24 2.902250 0.68641 2.901818 0.77287
32 2.903765 0.82829 2.902857 0.26609
48 2.902824 0.11288 2.903222 0.63117
64 2.902444 0.49197 2.902696 0.10460

The measurements confirm that the effort time described above is not impacted by
the CAN-FD communication bit rates nor the CAN-FD frame length. This result is the
consequence of using the same UDP payload length for all the captured CAN-FD frames
for ensuring a deterministic behavior. Additionally, the jitter values prove a deterministic
behavior.

Another time measurement necessary for validating once more that the solution is fast
enough to send the information contained in every captured CAN-FD frame is the recovery
time between the termination of a UDP packet transmission and the SOF bit of the next
CAN-FD frame to be captured. The results for these measurements are listed in Table 5 and
plotted in the chart displayed in Figure 7.

For using Nominal-Data Bit Rates combination 500 kbps–2 Mbps (most used in the
Automotive Industry), it can be observed that the transmission of all the data associated
with a captured CAN-FD frame is finished within 2.624–3.232 µs before the next CAN-FD
frame to be captured starts to be sent on the CAN-FD bus. Taking this into account, it may
be said that the solution meets the ideal criterion described in the third point from the
beginning of the chapter.
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Table 5. Delay between the captured CAN-FD frame information sent on Ethernet and the beginning
of a new CAN-FD frame to be captured.

CAN-FD Frame Payload
Length

Nominal-Data Bit Rates:
500–2000 kbps (Time

Duration in µs)

Nominal-Data Bit Rates:
1000–4000 kbps (Time

Duration in µs)

0 3.232 0.066
1 3.222 0.044
2 3.216 0.06
3 3.218 0.066
4 3.18 0.062
5 3.162 −0.014
6 3.2 −0.014
7 3.222 −0.12
8 3.198 −0.002
12 3.146 −0.044
16 3.066 −0.11
20 3.06 −0.154
24 3.042 −0.194
32 2.958 −0.24
48 2.82 −0.446
64 2.624 −0.596
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For the case of using the 1–4 Mbps values of the Nominal-Data Bit Rates negative
delay values, it can be observed that for capturing a CAN-FD frame with a payload of at
least five bytes, all of the frame’s information will be transmitted to the Ethernet PHY in
less than 1 µs after the SOF bit of the next CAN-FD frame starts to be transmitted. Even
in this case, it is concluded that the solution will not drop any CAN-FD frame Ethernet
transmission, because a new Ethernet transfer will start after the whole CAN-FD frame
becomes present and acknowledged on the bus. Considering that the SOF bit is transmitted
at a Nominal Bit Rate of 1 Mbps, the SOF bit of the next CAN-FD is not even completely
sent on the bus (596 ns out of 1 µs) when the proposed solution finishes sending the current
frame information to the Ethernet PHY.

In both cases, the value of delay between ending an Ethernet transmission and the
arrival of a new CAN-FD frame decreases with the increase in the CAN-FD frame payload
length because the CAN-FD Unit has more data to transmit to the CAN-to-UDP Bridge
inside the Diagnose Module.
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The interpretation of these measurement results confirms that the time effort of the
proposed solution is low enough for sending the captured data to the PC without dropping
any captured CAN-FD frame.

The CAN-FD frame acquisition cycle starts when the ACK bit of the frame appears on
the bus and ends when all its information is sent on the Ethernet lines. The acquisition cycle
time can be considered the CAN-FD—Ethernet transfer delay. The measurements for the
acquisition cycle were performed for both Nominal-Data Bitrate combinations mentioned
above, with a CAN-FD payload of all lengths and a busload of 100%. The results of the
CAN-FD frame acquisition cycle times are listed in Table 6. Comparing the duration of the
acquisition cycle with its jitter values proves the real-time behavior of the solution.

Table 6. Results of CAN-FD frame acquisition cycle time measurements.

CAN-FD Frame
Payload Length

Nominal-Data Bit Rates:
1000–2000 kbps

Nominal-Data Bit Rates:
1000–4000 kbps

Acquisition
Cycle (µs) Jitter (ns) Acquisition

Cycle (µs) Jitter (ns)

0 22.691706 7.73053 22.703471 4.37954
1 22.699571 0.13502 22.700769 1.67818
2 22.696750 2.68641 22.697556 1.53550
3 22.703375 3.93859 22.699632 0.54053
4 22.694500 4.93641 22.706100 7.00895
5 22.705875 6.43859 22.704588 5.49718
6 22.697625 1.81141 22.698105 0.98579
7 22.702875 3.43859 22.691000 8.09105
8 22.693375 6.06141 22.695667 3.42438
12 22.706000 6.56359 22.702615 3.52433
16 22.701286 1.84930 22.706250 7.15895
20 22.694762 4.67451 22.695111 3.97994
24 22.706250 6.81359 22.695818 3.27287
32 22.699765 0.32829 22.701857 2.76609
48 22.701824 2.38712 22.693222 5.86883
64 22.695444 3.99197 22.693696 5.39540

The main difficulty in measuring the acquisition cycle time was capturing the moment
when the Ethernet transmission ends. Because of the lack of an Ethernet decoding license for
the oscilloscope and because the logic analyzer is not capable of differential measurements
and Ethernet decoding, the RMII signals between the FPGA and the Ethernet transceiver
were used. The two-bit-wide ETH_TXD parallel bus used for transferring the Ethernet
package to the transceiver and the ETH_TX_EN control signal were used for capturing
the moment when the Ethernet transmission ends. These signals, together with the CAN-
FD decoded frame, are illustrated in the oscillogram printed in Figure 8. The capture is
performed for the worst-case scenario, where the CAN-FD busload is 100%, the data length
of the frames’ payload is 0 and the Nominal Bitrate is the highest possible, 1 Mbps; these
are all conditions that are necessary for proving not only that the solution is not losing
frames but that it has a deterministic and real-time behavior, as presented in Table 6.

The results from Figure 8 also show that the content of the latest captured CAN-FD
frames finishes being transferred on Ethernet before the ID of the next CAN-FD frame is
completely output on the CAN-FD bus. The time duration marked in the oscillogram with
P0 is the time needed for transferring the CAN-FD frame content from the CAN-FD Unit to
the CAN-to-UDP Bridge and represents the reaction time of the RisCanFd CPU for CAN-FD
frames. The duration marked with P1 represents the time effort for forming the Ethernet
frame by the UDP/ETH Stack module; the measurements for this delay were presented in
The results of the measurements performed for determining the time effort needed by the
solution for embedding the captured CAN-FD frame data or bus error information into an
Ethernet packet are listed in Table 4.
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Figure 8. Oscillogram of the CAN-FD frame acquisition cycle captured with the logic analyzer.

The duration marked with P2 represents the time needed for the Ethernet transmission,
measured as the duration of the ETH_TX_EN signal (Ethernet transmission enabled) and
computed theoretically above in Equations (2)–(5). The duration marked with P3 represents
the duration of the full CAN-FD acquisition cycle, starts with the ACK bit of the CAN-FD
frame and ends with the negative edge of the ETH_TX_EN signal; the measurements of
these delays are listed above in Table 6.

The oscillogram in Figure 9 shows multiple CAN-FD acquisition cycles with duration
measurements for packing the data into the Ethernet frames (time delay markers P0 to P8)
and for Ethernet transmissions (time delays marked P9 to P17).
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4.6. Evaluating the Performance of the CAN-FD RISC-V Extension

After validating the proposed solution through tests and measurements, in this sub-
section, the focus is moved to the performance of the CAN-FD Communication Unit, the
RISC-V extension of the RisCanFd CPU.

The evaluation criterion is the time necessary for capturing a CAN-FD frame and
performing CPU operations with its content. The results are compared with similar ones
from MCUs using integrated memory-mapped CAN-FD controllers or MCUs with an
external CAN-FD controller connected to them.
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4.6.1. Test Conditions and Methodology

The measurements refer to the time amount needed for three devices (RiscDiag CanFd,
Teensy 4.1 NXP MIMXRT 1062 with an internal CAN-FD controller and ESP32 with an
external CAN-FD controller) in performing the following task: capturing a CAN-FD frame,
comparing its ID and first four payload bytes with a known pattern and triggering a digital
transition from ‘0’ to ‘1’ for a data pattern complete match and a transition from ‘1’ to ‘0’
otherwise. The reaction time is measured as the delay between the ACK bit of the frame
and the triggered output transition performed after each device finishes analyzing its data.

The test is performed using the Nominal-Data Bit Rates 1–4 Mbps with a CAN-FD
length of eight bytes.

4.6.2. Test Results Discussion

Analyzing the results listed in Table 7 and plotted in the chart from Figure 10 leads to
the following conclusions:

• The slowest device is the MCU connected to an external CAN-FD controller because
of the communication overhead of the SPI bus used for sending the captured CAN-FD
frame to the MCU.

• The almost three-times-better performance achieved by the RiscDiag CanFd even
while running at a six-times-lower frequency compared to NXP MIMXRT 1062 proves
the superiority of application-specific CPU extensions over classical communication
peripherals of microcontrollers.

Table 7. Reaction time measurement results.

Device Used Reaction Time for Received Data
Matching the Pattern (µs)

Reaction Time for Received Data Not
Matching the Pattern (µs)

ESP32 (240 MHz) with an external CAN-FD controller 42.106 43.519
NXP MIMXRT 1062 (600 MHz) with an internal

CAN-FD controller 21.876 23.423

RiscDiag CanFd loaded on Xilinx Artix 7 (100 MHz) 8.284 8.312
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5. Conclusions

The contribution provided by this paper is introducing an SoC based on an RISC-V
extended core capable of tracing and diagnosing CAN-FD buses. The CAN-FD extension is
a communication unit working independently but controlled by an extended instruction
set. The extension works in parallel with ALU for optimizing the reaction time and for
capturing CAN-FD frames and bus error information. The proposed SoC is capable of UDP
communication via Ethernet for being accessed by the PC of the end user. The software
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application of the solution displays and saves into files all the information captured from
the CAN-FD bus. The performance of the solution includes deterministic behavior, with
a jitter of the acquisition cycle under 10 ns, a 0% frame loss rate and a timestamp error
under 0.001%; all tests were performed for the highest bit rates and a 100% busload of the
CAN-FD communication.

The results and explanations show that the target of designing a CAN-FD bus diagnosis
tool with real-time behavior was achieved, and the solution can be used for developing
and testing the Distributed Embedded Systems which use the CAN-FD communication
bus as the data exchange channel. The design sources for using this project are available
with an open-source license on GitHub in a repository called “RiscDiagCanFd”.

Another important aspect emphasized by the tests and measurements presented is
that an RISC-V CPU with an application-specific extension can be more efficient for time-
critical applications than classical microcontrollers with memory-mapped peripherals. The
application-specific hardware and application-specific parallelization represent a solution
for the physical and technological limitations that hardware designers have confronted
in the last two decades, and such architectures targeting specific applications such as IoT,
Neural Networks or Ultra-High-Speed Communication may be an alternative to classical
general-purpose designs.
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