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Abstract: GaN JBS diodes exhibit excellent performance in power electronics. However, device
performance is affected by multiple parameters of the P+ region, and the traditional TCAD simulation
method is complex and time-consuming. In this study, we used a neural network machine learning
method to predict the performance of a GaN JBS diode. First, 3018 groups of sample data composed
of device structure and performance parameters were obtained using TCAD tools. The data were
then input into the established neural network for training, which could quickly predict the device
performance. The final prediction results show that the mean relative errors of the on-state resistance
and reverse breakdown voltage are 0.048 and 0.028, respectively. The predicted value has an excellent
fitting effect. This method can quickly design GaN JBS diodes with target performance and accelerate
research on GaN JBS diode performance prediction.
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1. Introduction

The vertical GaN Schottky diodes have been widely used in high-power electronic
circuits due to their low switching voltage and fast switching performance [1]. However,
the performance of the vertical GaN Schottky diode still has many shortcomings, such
as the reverse breakdown voltage is not ideal. The GaN junction barrier Schottky diode
(JBS) combines the advantages of both the Schottky diode and PIN diode. It has low
on-state resistance and high reverse breakdown voltage, which can significantly improve
the performance of power electronics systems [2].

However, the on-state resistance and breakdown voltage of the GaN JBS diode is
affected by multiple parameters in the P+ region [3]. The traditional device simulation
and experimental test methods have a long cycle and low efficiency, so design requires
a lot of human resources. The rapid development of neural network provides another
choice for rapidly predicting the structure or properties of devices and materials. There is
research on the performance prediction of neural networks on MOSFET and SiC devices
and GaN materials [4-6]. A GaN ]JBS diode device has more influence parameters and
a more complex mechanism, and a more complex neural network model is necessary
to describe the device accurately. Therefore, the neural network structure needs to be
fully optimized.

This paper proposes a method to predict and optimize the performance of GaN JBS
diodes using an optimized neural network. The network input determined by us includes
the doping concentration in the drift region (Epidop), the doping concentration in the
P+ region (Impdop), the ratio of the width of the P+ region to the spacing between adjacent
P+ regions (L), and the injection depth of the P+ region (Impthickness). The network output
includes the on-state resistance (Ron) and reversed breakdown voltage (BV). Then, TCAD
Sentaurus was used to accumulate the sample data. After training the data, accuracy and
mean relative error (MRE) were used to evaluate the prediction results.
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2. GaN ]JBS Diode TCAD Modeling and Simulation
2.1. Device Structure Simulation

This paper’s device simulation and sample data accumulation are based on TCAD
Sentaurus. Figure 1a shows the device model of GaN JBS diode. The anode is defined as
a Schottky contact, and the cathode is defined as an ohmic contact. The JBS structure is
formed on the device surface in four gauss-doped P-type regions. The drift region and
substrate are N-doped. When the reverse voltage is applied to the device, the PN junction
composed of P+ region and N-type drift region can withstand voltage. The large electric
field falls in the P+ region, thus increasing the breakdown voltage. The specific structural
parameters of the device are shown in Table 1 [7].
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Figure 1. Figure (a) shows the schematic diagram of GaN JBS device structure, and the forward and
reverse features of GaN JBS device under the structural parameters given in Table 1: (b) forward I-V
curve, (c) reverse I-V curve.

Among them, parameter L was set as half of the width of P+ region to present the
width of P+ region and the spacing between adjacent P+ regions.

TCAD Sentaurus analyzed the forward and reverse characteristics. Some critical
physical models were applied, including avalanche ionization, high field mobility, bandgap
narrowing, doping dependence, and Auger recombination. The electrode voltage signal
was set; the forward and reverse IV curves are shown in Figure 1b,c. We can see that on-
state resistance (Ron) is 0.938 mohm, and breakdown voltage (BV) is 549 V. The simulation
results show that the GaN JBS diode model based on TCAD Sentaurus accords with reality.
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Table 1. GaN JBS device structure parameters.

Paraments Values

Total Width 10 um

Drift Region Thickness 5 um
Substrate Thickness 10 um
P+ Region Thickness (Impthickness) 0.4 pm
P+ Region Width (2 L) 0.8 pm

P+ Gap Width (2—2 L) 1.2 um

Drift Region Doping (EpiDop)
Substrate Doping
P+ Region Doping (Impdop)

5 x 1015 cm ™3
1 x 10 cm—3
1 x 108 cm—3

2.2. Data Gathering

The P+ region and the drift region greatly influence the forward and reverse charac-

teristics of the GaN JBS diode. To better represent the device, the input parameters were
determined as doping concentration of drift region (Epidop), doping concentration of P+
region (Impdop), a ratio of the width of P+ region to the spacing between adjacent P+
region (L), and injection depth of P+ region (Impthickness). To obtain accurate prediction
results, it is necessary to set the input parameters reasonably. Figure 2 shows the influence
of input parameters on Ron and BV based on TCAD Sentaurus simulation. Through sim-
ulation results, the reasonable range of Epidop, Impdop, L, and Impthickness should be
3 x 101-1 x 10 em~3, 3 x 107-1 x 10'8 ecm—3, 0.2-0.6 pum, 0.15-0.4 pum [8]. Table 2 lists
the specific values of each input parameter.
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Figure 2. Ron and BV vary with different sensitive parameters, The corresponding sensitive pa-

rameters in Figure (a-d) are, respectively, doping concentration in drift region (Epidop), doping

concentration in P+ region (Impdop), a ratio of the width of P+ region to the spacing between adjacent
P+ region (defined by parameter L), and injection depth of P+ region (Impthickness).
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Table 2. The control group of each sensitive parameter in the sample data.

Paraments Values

3 x 1015, 4 x 105, 5 x 1015, 6 x 105,
7 x 1015, 8 x 1013, 9 x 103, 1 x 1016

3 x 1017, 4 x 10Y7, 5 x 1017, 6 x 10V,
7 x 1017,8 x 1017, 9 x 1017, 1 x 1018

Drift Region Doping (cm—3)

P+ Region Doping (cm~3)

The ratio of P+ region width to
adjacent P+ region spacing

P+ Region Thickness (pm) 0.15, 0.20, 0.25, 0.30, 0.35, 0.40

2:8,1:3,3:7,7:13,2:3,9:11, 1:1, 3:2

Then, the TCAD Sentaurus tool was used to conduct a simulation according to the
values of the above variables, and extract Ron and BV corresponding to each sample
from the results. After removing the samples that failed in the simulation, a data set with
a sample capacity of 3018 was finally formed (Supplemental Material). Datasets with
sufficient samples can effectively improve the generalization of the model. Then, 3018 sets
of datasets were divided into the training set, verification set, and test set at the proportion
of 8:1:1. The input and output data were standardized and normalized in the training set
and verification set [5]. To truly reflect the neural network’s generalization, the algorithm
should not know the information about any test set, so the variance and mean of the test
set came from the primary data of the training set.

3. Establishment of Neural Network Structure

To better extract data features, this paper uses a convolutional neural network [9].
Neural network architecture is composed of an input layer, hidden layer, and output
layer [10]. The forecasting object determines the input and output layers. Figure 3a shows
the basic network structure, and the key to design lies in the hidden layer. This paper’s
hidden layer includes all connection modules, convolution modules, and batch-normalized
layers. Each layer of the network structure is described below.

e Inputand output layer. According to the established data set, the doping concentration
of drift region (Epidop), the spacing of P+ region (L), the injection depth of P+ region
(Impthickness), and the injection concentration of P+ region (Impdop) were set as
inputs. On-state resistance (Ron) and breakdown voltage (BV) were set as outputs.
Therefore, the network architecture has four inputs and two outputs.

e  Fully connected module. Since the dimension of the ground input vector of the
dataset is small, a fully connected module [11] was added after the input layer for
dimension expansion to facilitate subsequent convolution operations. In addition,
a batch normalization layer [12] was added after each complete connection layer to
prevent overfitting.

e  Convolution module. The convolution layer of neural network architecture estab-
lished in this paper includes a transposed convolution module, a double-branch
convolution module, and a convolution module. Unlike the convolution module, the
transposed convolution module [13] can expand the data dimension. Therefore, the
transposed convolution module was added to expand the input dimension further.
The dual-branch convolution module can extract data features and prevent gradient
disappearance or explosion. The structure of the double-branch convolution module
is shown in Figure 3b. The output features of the two channels were then spliced, and
the spliced features were used as the output of the dual-branch convolution module.
In addition, a batch normalization layer was added between each convolutional layer
to prevent overfitting.
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Figure 3. Neural network structure. (a) The basic neural network structure comprises input, hidden,
and output layers. (b) Structural diagram of double-branch convolution module, one branch contains
three successively cascaded convolution kernels of 3 x 1 one-dimensional convolution layer, and the
other includes a convolution kernel of 5 x 1 one-dimensional convolution layer.

The above three parts constitute the network structure established in this paper.
Meanwhile, the number of layers of each module in the hidden layer significantly impacts
prediction results, so further optimization is needed. Figure 4 shows the process for
determining the number of layers. Using the exhaustive method, multiple neural network
structures with different layers were defined, and the data were input for training. The
errors between the predicted and actual values were compared; the one with the slightest
error was selected as the optimal neural network structure. The final determined network
structure is shown in Figure 5. It consists of three input layers, two transposed convolutional
modules, four double-branch convolutional modules, three convolutional modules, and
three output layers. The number of neurons in each layer is also marked below the structure
of each layer.

[ Start }Q Entering M Processing M Defining
xperimental dat xperimental dat hidden layer

omparison of experimentMTraining etting different number o
and predicted data network hidden layer neurons

Choose best }b( Predict data }{ Finish }
network

Figure 4. The flow chart for determining the optimal network Structure.
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Figure 5. The neural network structure diagram finally determined in this paper includes, from left
to right, four input layers, three fully connected modules, two transpose convolutional modules, four
double-branch convolutional modules, three convolutional modules, three fully connected modules,
and two output layers. At the bottom of each layer, the number of neurons is marked.

4. Predicted Results

In this paper, the Pytorch deep learning framework is rewritten in Python based
on torch to implement acceleration specifically for GPU [14]. The framework is easy to
use and supports dynamic computing graphs and efficient memory use. In addition,
simulation prediction is carried out on the calculator platform based on RTX3060 and
R7-5800H. Firstly, each training batch’s loss function, ReLu, was calculated [15]. Then,
the ADAM [16] optimizer was used to backpropagate the network parameters until the
convolutional neural network converges. At this point, we obtained the trained model. The
prediction model uses the early stop [17] method to control whether the training is over.
When the prediction error of the model on the verification set is not reduced or reaches
a certain number of iterations, the training breaks, and the parameters in the previous
iteration results are used as the final parameters of the model. The last saved network
weight parameters are taken as the final model parameters. After training, mean relative
error (MRE) was used to characterize the prediction effect. It is defined as

1N\ Jyi = fil
MRE = — Yy~ Wi Jil 1
N EO m 1)

where y; and f; represent the predicted value and the true value, respectively.

Using a determined neural network model to train sample data, the predicted results
(Supplemental Material) show that the mean relative errors of Ron and BV are 0.028 and
0.048, respectively. Figure 6 shows the Ron and BV comparison of the predicted and real
values. For a clearer view of the predicted results, test group data were arranged from
smallest to largest, and the corresponding predicted value changed accordingly.

Figure 6 shows the training loss in the training process; (a) and (b) are the training loss
of Ron and BV, respectively. The loss in the training process gradually decreases and finally
becomes stable. In Figure 7, the black symbol represents the true value, and the nearest
red symbol represents the corresponding predicted value. The closer the red and black
marks are, the better the predicted result is. There is an excellent fitting result between
the predicted and real values. In addition, the fitting degree of Ron is higher than that
of BV. In Figure 7d, there is a slight deviation between the predicted values and the real
values of BV in the 220-300 V range. This phenomenon can be analyzed. Breakdown
voltage (BV) is the voltage applied to the device when the reverse leakage current reaches
1 x 107% A/cm®. However, the leakage current may not reach this standard for different
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device structure parameters when the device is broken down. In this case, the breakdown
voltage (BV) is determined by the maximum electric field. The kind of data also truly
reflects the performance change of GaN ]BS diode (Supplemental Material); these are not
invalid data. Because of the two methods of collecting BV, the error of prediction result is
relatively large.
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Figure 6. Training loss in the training process. (a,b) are training loss of Ron and BV, respectively.
With the increase in the number of iterations, the loss in the training process gradually decreases and
finally becomes stable.
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Figure 7. The prediction results of Ron and BV. (a) The disordered prediction results of Ron. (b) The
prediction results of Ron under forward ranking. (c) The disordered prediction results of BV. (d) The
prediction results of BV under forward order.

To explain the predicted result more intuitively, a bar chart of relative errors is shown
in Figure 8. The number of predicted values with minor mean relative errors is much
more significant than that with large mean relative errors. Figure 8a shows that 90% of
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Ron’s prediction errors are in the range of 0 to 0.06, and the errors are all less than 0.08. In
Figure 8b, 90% of BV’s prediction errors are in the range of 0 to 0.09, and the errors are all
less than 0.11. All these prove that the prediction results are relatively ideal.

.00 0.02 0.04 0.06 0.08 (BOO 0.02 0.04 0.06 0.08 0.10
The relative error of Ron's prediction The relative error of BV's prediction
(a) (b)

Figure 8. The error distribution histogram of the predicted results; (a,b) are the error distribution
histograms of Ron and BV, respectively.

In addition, decision tree [18], K-nearest neighbor (KNN) [19], and support vector
machine (SVM) [20] were used to train and predict text data samples and compare them
with the predicted results of the convolutional neural network. Figure 9 shows the MRE
of the predicted effects of three traditional machine learning methods and convolutional
neural networks. In Figure 9a, the MREs of the decision tree, KNN, SVM, and DNN
prediction results for Ron are 0.36211, 0.05868, 0.45824, and 0.028, in order. The MREs of the
decision tree, KNN, SVM, DNN prediction results for BV are 0.25708, 0.13592, 0.53633, 0.048
in order. The neural network structure established in this paper has obvious advantages in
predicting the performance of GaN JBS diodes.

0.5 0.6

0.5
0.410 36211
0.4
§ 0.3 =
0.3
= 0.2 = 7-°[0.25708
) 0.2
0.1 0.13592
. 0.05868 0.028 0.1 0.048
0.0 [ 0.0
Tree KNN SVM DNN Tree KNN SVM DNN
Ron BY
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Figure 9. The mean relative errors of the predicted results of the neural network established in this
paper are compared with those of traditional machine learning methods; (a,b) are the comparison of
Ron and BV, respectively.

5. Conclusions

This paper applies the neural network to the performance prediction of GaN JBS
diode devices. The input parameters are adjusted according to the prediction results to
optimize the device characteristics. A total of 3018 groups of sample data, including device
structure and performance parameters, were obtained by TCAD tool simulation, and the
neural network was used for training. The results show a superb fitting result between
the predicted and real values. The mean relative error of on-state resistance and reverse
breakdown voltage is only 0.028 and 0.048, respectively. It can quickly and conveniently
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establish the association between GaN ]BS diode device structure and performance index,
accelerating the research of GaN JBS diode performance prediction.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/mi14010188/s1.
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