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Abstract: A reconfigurable wideband monopole antenna is introduced in this paper for cognitive ra-
dio and wireless applications. The reconfigurability was achieved by four varactor diodes embedded
in the band pass filter (BPF) structure which was integrated with the suggested antenna through its
feed line. The simulated impedance characteristics coped with the measured ones after fabricating the
suggested model with/without the reconfigurable BPF. Furthermore, the model achieved the desired
radiation characteristics in terms of radiation pattern with acceptable gain values at the selected
frequencies within the achieved frequency range (1.3–3 GHz).
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1. Introduction

All modern wireless systems require an antenna as a prominent part for transmitting
and receiving electromagnetic waves efficiently which possesses wide impedance character-
istics with improved radiation characteristics [1]. The Microstrip antenna is considered one
of the favorable antennae utilized for various wireless communication systems due to its
inherent advantages over other types of antennae such as compact dimensions, lightweight,
less fabrication complexity and cost, and conformal structure on various objects [2,3]. Dif-
ferent wireless technologies are covered by the aforementioned wireless systems such as
GSM1800 (1710–1880 MHz), GSM1900 (1850–1990 MHz), UMTS (1920–2170 MHz), LTE2300
(2305–2400 MHz), LTE2500 (2500–2690 MHz), and IEEE 802.11 b/g (2.4–2.48 GHz) [4,5]. To
widen the operating bandwidth of microstrip antennae, many efforts have been exerted
by the publishers taking into consideration the size miniaturization, complexity minimiza-
tion, and cost reduction. Different techniques have been addressed to meet the desired
requirements and some of these techniques are partial ground plane [6–8], electromag-
netic band gap (EBG) ground structure [9], loaded rectangular and annular notches in the
ground plane [10–12], radiator ring slot and shorting vias [13], parasitic elements [14], and
electrostrictive effect [15].

The internet of things (IoT) is considered one of the most technological innovations that
pave the way for human-machine interconnectivity which aims to communication devices
within their environment through the internet with a high level of intelligence [16,17]. IoT
operates in the frequency range from lower frequencies up to 5.8 GHz and microstrip
antennae can be easily integrated into IoT devices, so the size miniaturization is considered
an important factor in selecting the appropriate antenna model for IoT applications [18,19].
Another innovative technology that has been utilized to make the best use of the frequency
spectrum is called cognitive radio (CR). In the CR system, the primary users are assigned
to specific frequency bands while the secondary users can access the unoccupied frequency
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band which will allow spectrum sharing when it is not in use and this is controlled by
a spectrum sensing process [20,21]. Consequently, a reconfigurable microstrip antenna
with a wide frequency band is required for continuous monitoring of the unused spectrum
in the CR system. Several studies have been conducted to reconfigure various frequency
bands. A combination of dual-band and UWB antennae is utilized as communicating and
sensing antennae for CR applications, respectively. The reconfiguration is accomplished
using two PIN diodes connected at the communicating antenna [22]. Two PIN diodes
are embedded in the UWB antenna to achieve band-notched behavior at the operating
frequencies of WiMAX, WLAN, and ITU [23]. In [21], a CPW monopole antenna was
used as a sensing antenna, and three narrow-band antennae covered seven sub-bands as
communicating antennae, and one of them was a reconfigurable planar monopole antenna.
A reconfigurable multiband monopole antenna was presented in [24] for triple/quadruple
operations. A wide/dual/single band PIN-based reconfigurable monopole antenna with a
band of operation (3.3–7.8 GHz) was introduced in [25]. A reconfigurable UWB monopole
antenna was introduced in [26] for cognitive radio applications using six switches to obtain
five narrow bands.

In this paper, a wide band antenna was integrated with reconfigurable BPF to achieve
a reconfigurable filtenna for cognitive and wireless applications. The antenna was com-
posed of a rectangular patch with a partial ground plane to cover the range from 1.3 to
3 GHz, and the BPF was integrated with four varactor diodes to pass a narrow band range
within the aforementioned frequency range. The simulation outcomes are carried out on
a computer simulation tool (CST) and the suggested model is fabricated to validate the
simulation outcomes.

2. Second Order BPF Design

The first part of designing filtenna is the BPF, so a realization of the second-order
BPF was investigated. Two configurations were presented to produce the desired band.
The first one (filter 1) was the second-order BPF with a 180◦ feed layout, while the second
one (filter 2) was the second-order BPF with 0◦ feed layout. The coupling between the
two resonators and the external quality factor was extracted by utilizing the optimization
technique. Therefore, the reduction of the objective function was considered the main part
to obtain the needed coupling matrix between resonators. Equation (1) shows the desired
objective function which needed to be minimized [27,28].
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The poles and zeros of (FN) are ωpi
′, ωzi

′, where the FN can be obtained from Equa-
tion (2) [26]. At this stage, the S11 and S21 can be extracted using Equations (3) and (4) [27].

S21 = −2j
√

R1R2[A−1]N1, [A] = [ω′U − jR + M] (3)

S11 = 1 + 2jR1[A−1]11 (4)

where R1, R2, M, and U are I/O resistances, coupling matrix, and identity matrix, respectively.
To design the desired filter with 4.6 GHz central frequency, 400 MHz bandwidth,

and −13 dB reflection coefficients, the previously investigated technique was utilized.
The optimization technique with the quasi-Newton algorithm was used to minimize the
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objective function using Matlab (software 2015). The process needed nine iterations to
extract the coupling matrix and external quality factor. The normalized coupling matrix
which achieved the desired filter requirement was as in Equation (5).

M =

[
0 1.1691

1.1691 0

]
(5)

As well, the I/O external quality factors were 0.931. The actual coupling matrix is
calculated as (6).

m = M× FBW =

[
0 0.1017

0.1017 0

]
(6)

The actual external quality factor was an external quality factor/FBW = 10.706. At this
point, the BPF physical configuration from the filter syntheses can be realized based on the
extracted coupling matrix and the external quality using CST Studio software. A Roger
RO 4003 substrate with 3.38, and 0.813 mm dielectric constant, and thickness was utilized
in the filter design. Figure 1a shows the second order with the 180◦ feed structure. The
filter had two λ/2 capacitive coupling resonators. The coupling matrix can be validated by
controlling the separation (S) between the resonators while moving the feed line around the
X-axis was utilized to prove the external quality factor. The separation S was optimized to
0.6 mm and there was no distance between the feed line and the resonators in the simulation
to achieve the desired coupling matrix and external quality factor.
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Figure 2 illustrates the S-parameters outcomes from the optimization technique 
(theory) and CST simulation of the BPF (Filter 1). The filter operated at 4.6 GHz central 
frequency, 0.41 GHz bandwidth, and −12 dB reflection coefficients. In addition, the sim-
ulated and the theoretical outcomes had the same trend. 

 

Figure 1. 2-D layout of the second order BPF with Y1 = 30, Y2 = 8.2, Y3 = 6.5, X1 = 30, X2 = 4.5,
X3 = 4.6, S = 0.6, and wf = 1.9 mm. (a) Filter 1 with 180◦ feed; (b) filter 2 with 0◦ feed.

Figure 2 illustrates the S-parameters outcomes from the optimization technique (the-
ory) and CST simulation of the BPF (Filter 1). The filter operated at 4.6 GHz central fre-
quency, 0.41 GHz bandwidth, and −12 dB reflection coefficients. In addition, the simulated
and the theoretical outcomes had the same trend.
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Figure 2. S-parameters outcomes of filter 1.

As illustrated in Figure 2, it is seen that the filter selectivity was low. Thus, to increase
the filter selectivity, the number of resonators should be increased which in turn would
increase the overall size of the filter, or the 0◦ feed structure can be employed as illustrated
in Figure 1b. Figure 3 displays the S-parameters outcome of the 0◦ feed configuration
(Filter 2). It is noticed that the filter had the same center frequency and bandwidth, while
the two transmission zeros were obtained to enhance the filter selectivity at 3.9 and 5.9 GHz.

The electric field outcomes of filter 2 at 3.5 and 4.6 GHz are illustrated in Figure 4. As
illustrated in Figure 3, the filter had a band stop operation at 3.5 GHz and passed the band
operation at 4.5 GHz. Thus, the electric field was not transferred from port 1 to port 2 at
3.5 GHz; however, it was transferred at 4.5 GHz as illustrated in Figure 4. In addition, the
electric field had a maximum level around the resonator’s gap at 4.5 GHz. Thus, by inserting
four varactor diodes vertically near the gaps of the resonators as illustrated in Figure 5, the
filter center frequency could be changed and controlled. Figure 6 shows the S-parameter
outcomes at different values of the capacitance. The filter center frequency was moved from
4.6 GHz without capacitance to 4.1 GHz with 0.1 pF and to 3.5 GHz with 0.3 pF, respectively.
The energy stored in the resonators was increased when inserting varactor diodes because
they enhanced the resonator quality factor, and then the achieved bandwidth was reduced
as shown in Figure 6. Therefore, the varactor diode’s capacitance could decrease the filter
center frequency, but at the expense of its bandwidth and optimization should be done to
extract the desired operation.
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3. Antenna with Wide Band Operation

The second part of the filtenna was the antenna, so a conventional monopole antenna
with wide-band operation was utilized as illustrated in Figure 7. A rectangular patch with
a partial ground plane was considered the main part of the monopole antenna. To enhance
the antenna operation, the partial ground plane length should be optimized. To select the
optimized dimensions of the monopole antenna shown in Figure 7, parametric investigation
on the antenna lengths were carried out as illustrated in Figure 8. The parametric study
was carried out when other lengths are fixed as illustrated in the caption of Figure 7. It is
seen that the antenna achieved the proposed response when the antenna lengths equaled
Y7 = 27, X5 = 38, Y5 = 30, and Y6 = 45 mm, respectively. The antenna electric field and
the surface current distributions at 1.6 and 2.2 GHz are shown in Figure 9 which shows
that the current was concentrated around the radiating patch. The antenna was operated
with S11 ≤ −10 dB from 1.3 to 3 GHz, and this frequency band was chosen to be utilized
in our CR system to sense and transmit the signals in the unoccupied channel easily. The
previous substrate was utilized in the antenna design. The antenna was fabricated and
tested using the Rohde & Schwarz (R&S ZVA 67) vector network analyzer (VNA) operated
up to 67 GHz. Figure 10 displays the S11 simulated and tested outcomes. It was seen that
the antenna had tested outcomes with S11 ≤ −10 dB from 1.3 to 3 GHz with a good trend
with the simulated one.
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4. The Suggested Filtenna

At this stage, the BPF with four varactor diodes was embedded with the monopole
antenna to compose the suggested filtenna. Figure 11 illustrates the 2-D layout and the
fabricated photo of the filtenna. Four varactor diodes (MGV125-23) with a tuning range
from 2.2 to 0.22 pF were utilized when external DC voltage was tuned from 0 to 20 V. The
R&S ZVA 67 VNA was used in the testing.

Micromachines 2023, 14, 160 9 of 13 
 

 

 
Figure 11. The configuration of the suggested filtenna. 

Figure 12 illustrates the filtenna simulated and measured outcomes at different 
voltages. When V = 9 volts, the capacitance equaled 0.5 pF, and the S11 was operated at 3 
GHz with bandwidth with S11 ≤ −10 dB extended from 2.97 to 3.14 GHz for the simulated 
outcome, while the tested outcomes showed that the antenna was operated at 3 GHz with 
a bandwidth from 2.9 to 3.19 GHz. In addition, when V = 5 volts the varactor diode ca-
pacitance equaled 1 pF, and the S11 was operated at 2.78 GHz with bandwidth with S11 ≤ 
−10 dB extended from 2.74 to 2.83 GHz for the simulated outcome, while the tested out-
comes showed that the antenna was operated at 2.8 GHz with a bandwidth from 2.74 to 
2.78 GHz. When V = 3 volts the capacitance equaled 1.5 pF, and the S11 was operated at 
2.13 GHz with a bandwidth with S11 ≤ −10 dB extended from 2.11 to 2.15 GHz for the 
simulated outcome, while the tested outcomes show that the antenna was operated at 
2.16 GHz with a bandwidth from 2.1 to 2.2 GHz. Finally, when V = 0 volts the capacitance 
equaled 2.2 pF, and the S11 was operated at 1.74 GHz with a bandwidth with S11 ≤ −10 dB 
extended from 1.69 to 1.81 GHz for the simulated outcome, while the tested outcomes 
show that the antenna was operated at 1.75 GHz with a bandwidth from 1.64 to 1.83 GHz. 
Thus, the antenna operation was changed from wide band operation to narrowband op-
eration at 3 GHz, 2.8, 2.1, and 1.74 GHz when the V was changed from 9 to 5, 3, and 0 V, 
respectively. In addition, the simulated and tested outcomes had good matching. The 
suggested filtenna was tested to extract the radiation patterns outcomes inside the ane-
choic chamber as shown in Figure 13. The normalized radiation patterns at 2.1 (3 V), 2.8 
(5 V), and 3 GHz (9 V) were extracted in both φ = 0° and φ = 90 ° as illustrated in Figure 
14. It is seen that the filtenna presented bidirectional patterns in both planes with a small 
shift between the two outcomes because of the measurement and fabrication process. The 
gain of the filtenna at the three frequency bands was extracted and achieved a simulated 
gain of 4.79 dBi and a tested gain of 4.65 dBi at 2.1 GHz. Additionally, it shows a simu-
lated gain of 4.85 dBi and a tested gain of 4.54 dBi at 2.8 GHz. In addition, it had a simu-
lated gain of 5.2 dBi and a tested gain of 5.05 dBi at 3 GHz. The filtenna was compared 
with the other design as tabulated in Table 1. It can be observed from the introduced 
antennae in Table 1 that the suggested single port filtenna used varactor diodes for the 
tuning range from 1.64 to 3 GHz, while other antennae with a different number of ports 
used PIN diodes and MEMS switched for a fixed number narrow band frequencies. 

Figure 11. The configuration of the suggested filtenna.

Figure 12 illustrates the filtenna simulated and measured outcomes at different volt-
ages. When V = 9 volts, the capacitance equaled 0.5 pF, and the S11 was operated at 3 GHz
with bandwidth with S11 ≤ −10 dB extended from 2.97 to 3.14 GHz for the simulated
outcome, while the tested outcomes showed that the antenna was operated at 3 GHz
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with a bandwidth from 2.9 to 3.19 GHz. In addition, when V = 5 volts the varactor diode
capacitance equaled 1 pF, and the S11 was operated at 2.78 GHz with bandwidth with
S11 ≤ −10 dB extended from 2.74 to 2.83 GHz for the simulated outcome, while the tested
outcomes showed that the antenna was operated at 2.8 GHz with a bandwidth from 2.74
to 2.78 GHz. When V = 3 volts the capacitance equaled 1.5 pF, and the S11 was operated
at 2.13 GHz with a bandwidth with S11 ≤ −10 dB extended from 2.11 to 2.15 GHz for the
simulated outcome, while the tested outcomes show that the antenna was operated at
2.16 GHz with a bandwidth from 2.1 to 2.2 GHz. Finally, when V = 0 volts the capacitance
equaled 2.2 pF, and the S11 was operated at 1.74 GHz with a bandwidth with S11 ≤ −10 dB
extended from 1.69 to 1.81 GHz for the simulated outcome, while the tested outcomes show
that the antenna was operated at 1.75 GHz with a bandwidth from 1.64 to 1.83 GHz. Thus,
the antenna operation was changed from wide band operation to narrowband operation at
3 GHz, 2.8, 2.1, and 1.74 GHz when the V was changed from 9 to 5, 3, and 0 V, respectively.
In addition, the simulated and tested outcomes had good matching. The suggested filtenna
was tested to extract the radiation patterns outcomes inside the anechoic chamber as shown
in Figure 13. The normalized radiation patterns at 2.1 (3 V), 2.8 (5 V), and 3 GHz (9 V)
were extracted in both ϕ = 0◦ and ϕ = 90 ◦ as illustrated in Figure 14. It is seen that the
filtenna presented bidirectional patterns in both planes with a small shift between the two
outcomes because of the measurement and fabrication process. The gain of the filtenna at
the three frequency bands was extracted and achieved a simulated gain of 4.79 dBi and
a tested gain of 4.65 dBi at 2.1 GHz. Additionally, it shows a simulated gain of 4.85 dBi
and a tested gain of 4.54 dBi at 2.8 GHz. In addition, it had a simulated gain of 5.2 dBi
and a tested gain of 5.05 dBi at 3 GHz. The filtenna was compared with the other design
as tabulated in Table 1. It can be observed from the introduced antennae in Table 1 that
the suggested single port filtenna used varactor diodes for the tuning range from 1.64 to
3 GHz, while other antennae with a different number of ports used PIN diodes and MEMS
switched for a fixed number narrow band frequencies.
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Table 1. Comparison between the suggested model with recently reported antennae.

Ref. Size (mm2) Reconfiguration Substrate Number
of Ports Bands (GHz)

[21] 80 × 40 3 PIN diodes FR4
(εr = 4.4) 4 3.863, 4.664, 5.2, 5.834,

6.13, 7.355, 8.786

[22] 50 × 70 2 PIN diodes FR4
(εr = 4.4) 2 2, 2.2, 3.25, 3.8, 4.3, 5.6

[23] 20 × 20 2 PIN diodes FR4
(εr = 4.4) 1 3.6, 5.5, 8.1

[24] 30 × 30 - FR4
(εr = 4.4) 1 2.37, 4.1, 7, 9.76, 3.5,

7.2, 11.2

[25] 25 × 15 2 PIN diodes FR4
(εr = 4.4) 1 3.5, 3.8, 6.1, 4–7.8

[26] 40 × 40 6 MEMS FR4
(εr = 4.4) 1 5.8, 4, 5.6, 7.2, 7.8

proposed 80 × 80 4 Varactor diodes RO4003
(εr = 3.38) 1 3, 2.8, 2.16,1.75

5. Conclusions

This work presented a reconfigurable filtenna for cognitive radio and wireless appli-
cations using four varactor diodes. The suggested antenna achieved a frequency range
from 1.3 to 3 GHz then a reconfigurable BPF was integrated with the antenna to achieve
the desired tunable frequencies of operation at 1.75, 2.1, 2.8, and 3 GHz when applying 0,
3, 5, and 9 voltages on the varactor diodes, respectively. Good consistency between the
simulated and measured outcomes was observed after fabricating the proposed model and
measuring it in an anechoic chamber. The suggested antenna succeeded to achieve the
desired performance which makes it suitable for cognitive radio applications.
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