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Abstract: Recurrent Neural Networks (RNN) are basically used for applications with time series and
sequential data and are currently being used in embedded devices. However, one of their drawbacks
is that RNNs have a high computational cost and require the use of a significant amount of memory
space. Therefore, computer equipment with a large processing capacity and memory is required.
In this article, we experiment with Nonlinear Autoregressive Neural Networks (NARNN), which
are a type of RNN, and we use the Discrete Mycorrhizal Optimization Algorithm (DMOA) in the
optimization of the NARNN architecture. We used the Mackey-Glass chaotic time series (MG) to
test the proposed approach, and very good results were obtained. In addition, some comparisons
were made with other methods that used the MG and other types of Neural Networks such as
Backpropagation and ANFIS, also obtaining good results. The proposed algorithm can be applied to
robots, microsystems, sensors, devices, MEMS, microfluidics, piezoelectricity, motors, biosensors, 3D
printing, etc.

Keywords: optimization; nonlinear autoregressive neural networks; Mackey–Glass

1. Introduction

Optimization is not limited to applied mathematics, engineering, medicine, economics,
computer science, operations research or any other science, but has become a fundamental
tool in all fields, where constantly developing new algorithms and theoretical methods have
allowed it to evolve in all directions, with a particular focus on artificial intelligence, such
as deep learning, machine learning, computer vision, fuzzy logic systems, and quantum
computing [1,2].

Optimization has grown steadily over the past 50 years. Modern society not only lives
in a highly competitive environment, but is also forced to plan for growth in a sustainable
manner and be concerned about resource conservation. Therefore, it is essential to optimally
plan, design, operate and manage resources and assets. The first approach is to optimize
each operation separately. However, the current trend is toward an integrated approach:
synthesis and design, design and control, production planning, scheduling and control [3].

Theoretically, optimization has evolved to provide general solutions to linear, non-
linear, unbounded and constrained network optimization problems. These optimization
problems are called mathematical programming problems and are divided into two differ-
ent categories: linear and nonlinear programming problems. Biologically derived genetic
algorithms and simulated annealing are two equally powerful methods that have emerged
in recent years. The development of computer technology has provided users with a variety
of optimization codes with varying degrees of rigor and complexity. It is also possible to
extend the capabilities of an existing method by integrating the features of two or more
optimization methods to achieve more efficient optimization methodologies [4]; current
optimization methods that can solve specific problems are still being developed, as we do
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not yet have a method that can solve them all, such as explained by the No Free Lunch
(NFL) Algorithm [5], although the research trend is moving in that direction.

RNNs are a special class of neural network characterized by their inherent self-
connectivity [6], and their variants are used in many contexts where temporal dependence
of data is an important latent feature in model design [7]. The most important applications
of RNNs include time series prediction [8], sequence transduction [9], language model-
ing [10–13], speech recognition [14], word embedding learning [15], sound modeling [16],
handwriting recognition [17,18], and image generation [19]. A common variant of RNN
called long short-term memory [20] is used in many of these studies.

One of the main advantages of this method with respect to others is that in general the
NARNN-DMOA method is much easier to implement with better results, and with lower
computation costs. Other methods use very robust Ensemble Neural Network architectures
of several layers and of more than 2000 neurons and different architectures of Interval
Type-2 Fuzzy Logic Systems (IT2FLSs), in addition to optimization algorithms such as PSO
Genetic Algorithms [21–23], which implies a high computational cost.

The algorithm can be applied, as we previously mentioned, to robots, microsystems,
sensors, devices, etc., in the optimization of the parameters of their models that are being
experimented upon. The proposed algorithm can be used in the optimization of the
architecture of a neural network or in the parameters of the membership functions of a
fuzzy logic system; as we have seen in other articles [24–27], this type of experimentation
with the DMOA is the subject of a future work that we plan to undertake in due course

The main contribution of this research is to use the DMOA algorithm to optimize the
architecture of the NARNN neural network using the MG chaotic time series, which has
not previously been done in the current literature.

The structure of this paper is as follows: (1) brief introduction of Optimization and
Recurrent Neural Networks (RNNs), (2) we include a brief description of Nonlinear
Autoregressive Neural Networks (NARNNN), (3) presentation of the Discrete Mycor-
rhiza Optimization Algorithm (DMOA) inspired by the symbiosis of plant roots and MN,
(4) proposed method using the NARNN, the new DMOA algorithm and Mackey Glass
chaotic time series, (5) results obtained from this research, such as statistical data, hy-
pothesis testing and comparison of the DMOA-NARNN method with other methods,
(6) in-depth discussion of the results and comparison of the error with other methods, and
(7) conclusions of the obtained results.

2. Nonlinear Autoregressive Neural Networks

An Artificial Neural Network (ANN) is a type of neural network represented by
a mathematical model inspired by the neural connections of the human brain. It is an
intelligent system capable of recognizing time series patterns and nonlinear features.

Therefore, it is widely used to model nonlinear dynamic time series [28]. ANN incor-
porates artificial neurons to process information. It consists of single neurons connected
to a network via weighted links. Each input is multiplied by a weight calculated by a
mathematical function that determines the activation of the neurons. Another activation
function calculates the output of the artificial neuron based on a certain threshold [29].

The output of a neuron can be written as Equation (1):

y = f

(
b + ∑

i
wixi

)
(1)

where b is the bias of the neuron, the bias input to the neuron algorithm is an offset value
that helps the signal exceed the threshold of the activation function, f is the activation
function, wi is the weight, xi is the input, and y is the output.

Several types of ANNs have been presented in the literature, including Multilayer Per-
ceptron (MLP), in which neurons are grouped into an input layer, one or more hidden layers,
and an output layer. These also include RNNs such as Layer Recurrent Networks [30],
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Time Delay Neural Networks (TDNN) [31], and NARNN [32]. In RNNs, the output of a
dynamic system depends not only on the current inputs, but also on the history of inputs
and states of the system. The NARNN is a recurrent dynamic network based on a linear
autoregressive model with feedback connections, and consists of several network layers.

Humans do not start their thinking from scratch every second. As we read, we
understand each word based on our understanding of the previous words. We never start
thinking from scratch every time we do; our thoughts have permanence. A traditional
ANN cannot do this, and it seems like a major shortcoming. For example, imagine that you
want to classify what kind of event is happening at each point in a movie. It is not clear
how a traditional ANN could use its reasoning about earlier events in the movie to inform
later events, and RNN address this problem. They are networks with loops in them which
allows information to persist.

An RNN is a type of artificial neural network that uses sequential or time series da-ta.
These deep learning algorithms are commonly used for ordinal or temporal problems, such
as language translation, natural language processing (NLP) [33,34], speech recognition, and
image captioning [35]. They are distinguished by their "memory" because they take infor-
mation from previous inputs to influence the current input and output. While traditional
deep neural networks assume that inputs and outputs are independent of each other, the
output of recurrent neural networks depends on previous elements within the sequence.

NARNNs are a type of RNN with memory and feedback capabilities. The output
of each point is based on the result of the dynamic synthesis of the system before the
current time. It has great advantages for modeling and simulating dynamic changes in time
series [36]. Typical NARNNs mainly consist of an input layer, a hidden layer, an output
layer and an input delay function, the basic structure of which is shown in Figure 1.
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In Figure 1, y(t) is the output of the NARNN, 1..19 represents the delay order, w is
the joint weight and b is the threshold of NARNNs. The model of NARNN networks can
be expressed as in Equation (2), where d is the delay order and f are a nonlinear function,
where the future values depend only on the previous values d of the output signal.

From the equation, it can be seen that the value of y(t) is determined by the values of
y(t − 1), . . . , y(t − d), which indicates that based on the continuity of data development,
the model uses past values to estimate the current value [37,38].

The prediction method of the NARNN model adopts the recursive prediction method.
The main purpose of this prediction method is to reproduce the predicted value one step
ahead.

The future values of the time series y(t) are predicted only from the past values of this
series. This type of prediction is called Nonlinear Autoregression (NAR) and can be written
as Equation (2):

y(t) = f (y(t − 1), . . . y(t − d)) (2)

This model can be used to predict financial instruments, but it does not use additional
sequences [39].
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Looking at Figure 2, NARNN represents the entire neural network. Figure 3 “Un-
rolled” represents the individual layers, or time steps, of the NARNN network. Each layer
corresponds to a single piece of data [40,41].
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Figure 3. Unrolled NARNN.

Predicting a sequence of values in a time series is also known as multi-pass fore-
casting. Closed-loop networks can perform multi-step forecasting. When external feedback
is missing, closed-loop networks can still make predictions using internal feedback. In
NARNN prediction, the future values of a time series are predicted only from the past
values of that series.

The current literature provides a history of very extensive research on the use of
NARNNs in the following areas:

• The use of NARNN in medical devices such as continuous glucose monitors and drug
delivery pumps that are often combined with closed-loop systems to treat chronic
diseases, for error detection and correction due to their predictive capabilities [42].

• The use of NARNNs as Chinese e-commerce sales forecasting to develop purchasing
and inventory strategies for EC companies [43], to support management decisions [44],
the effects of air pollution on respiratory morbidity and mortality [45], the relationship
between time series in the economy [46], to model and forecast the prevalence of
COVID-19 in Egypt. [47], etc.

3. Discrete Mycorrhiza Optimization Algorithm

Most of the world’s plant species are associated with mycorrhizal fungi in nature;
this association involves the interaction of fungal hyphae on plant roots. Hyphae extend
from the roots into the soil, where they absorb nutrients and transport them through the
mycelium to the colonized roots [48]. Some hyphae connect host plants in what is known
as a Mycorrhizal Network (MN). The MN is subway and is difficult to understand. As a
result, plant and ecosystem ecologists have largely overlooked the role of MNs in plant
community and ecosystem dynamics [49].
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It is clear that most MN are present and provide nutrition to many plant species. This
has important implications for plant competition for soil nutrients, seedling formation,
plant succession and plant community and ecosystem dynamics [50].

Plant mycorrhizal associations have large-scale consequences throughout the eco-
system [51,52]. The origins of plant-fungal symbiosis are ancient and have been proposed
as a mechanism to facilitate soil colonization by plants 400 Mya [53,54]. Mycorrhizal
symbiosis is a many-to-many relationship: plants tend to form symbioses with a diverse set
of fungal species and, similarly, fungal species tend to be able to colonize plants of different
species [55].

In Figure 4 we can see that through the MN resources such as carbon (CO2) from
plants to fungi and water, phosphorus, nitrogen and other nutrients from fungi to plants
are exchanged, in addition to an exchange of information through chemical signals when
the habitat feels threatened by fire, floods, pests, or predators. It should be noted that this
exchange of resources can be between plants of the same species or of different species.
Figure 5 shows the symbiosis between plants and the fungal network and how the carbon
in the form of sugars flows from the plants to the MN and how the MN fixes the nutrients
in the roots of the plants.
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The Nobel optimization algorithm DMOA is inspired by the nature of the Mycorrhiza
Network (MN) and plant roots with this intimate interaction between these two organisms
(plant roots and the network of MN fungi), a symbiosis is generated and it has been
discovered that in this relationship [56–60]:

1. There is a communication between plants, which may or may not be of the same
species, through a network of fungi (MN).

2. There is an exchange of resources between plants through the fungal network (MN).
3. There is a defensive behavior against predators that can be insects or animals, for the

survival of the whole habitat (plants and fungi).
4. The colonization of a forest through a fungal network (MN) thrives much more than a

forest where there is no exchange of information and resources.
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The launch and publication of the DMOA algorithm has just been carried out in
2022 [61].

Figure 6 describes the flowchart of the DMOA algorithm: we initialize the parameters
such as dimensions, epochs, number of iterations, etc., and we also initialize the two
populations of plants and mycorrhizae; with these populations we find the best fitness
of plants and mycorrhizae, while with these results we use the biological operators. The
first operator is represented by the Lotka-Volterra System of Discrete Equations (LVSDE)
Cooperative Model [62], whose result has inference on the other two models represented by
LVSDE, Defense and Competitive [63,64], and in this frequency we evaluate the fitness to
determine if it is better than the previous one and we update the same as the populations,
if not we continue with the next iteration and continue the calculation with the biological
operators. If the stop condition is fulfilled we obtain the last solution before evaluation and
the algorithm ends.
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4. Proposed Method

The proposed method is to use the Discrete Mycorrhiza Optimization Algorithm
(DMOA) to optimize the architecture of the Nonlinear Autoregressive Neural Network
(NARNN), and as input data we use the Mackey-Glass chaotic time series. In Figure 7 and
Algorithm 1 we can find the DMOA-NARNN flowchart and DMOA-NARNN pseudocode,
respectively. The DMOA algorithm is explained in Figure 6 in the previous section, in this
flowchart we include the optimization of the NARNN, evaluating its results by means of
the RMSE, until we manage to find the minimum error of that architecture through the
iterations and the populations of the DMOA algorithm (Algorithm 1).
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Algorithm 1 DMOA-NARNN Pseudocode. Discrete Mycorrhiza Optimization Algorithm
(DMOA)

1. Objective min or max f(x), x = (x1, x2, . . . , xd)
2. Define parameters (a, b, c, d, e, f, x, y)
3. Initialize a population of n plants and mycorrhiza with random solutions
4. Find the best solution fit in the initial population
5. while (t < maxIter)
6. for i = 1:n (for n plants and Mycorrhiza population)
7. Xp = abs(FitA)
8. Xm = abs(FitB)
9. end for
10. a = minorXp
11. d = minorXm
12. Apply (LV-Cooperative Model)

13. xt+1
i = (axi−bxiyi)

(1−gxi)

14. yt+1
i = (dyi+exiyi)

(1+hyi)

15. if xi < yi
16. xt = xi
17. else
18. xt = yi
19. end if
20. rand ([1 2])
21. if (rand = 1)
22. Apply (LV-Predator-Prey Model)
23. xt+1

i = axi(1 − xi)− bxiyi

24. yt+1
i = dxiyi − gyi

25. else
26. Apply (LV- Competitive Model)

27. xt+1
i = (axi−bxiyi)

(1+gxi)

28. yt+1
i = (dyi−exiyi)

(1+hyi)

29. end if
30. Evaluate new solutions.
31. NARNN-Architecture
32. Evaluate Error
33. Error minor?
34. Update NARNN-Architecture.
35. Find the current best NARNN-Architecture solution.
36. end while

Difference equations often describe the evolution of a particular phenomenon over
time. For example, if a given population has discrete generations, the size of (n + 1) 1st
generation x(n + 1) is a function of the nth generation x(n). This relationship is expressed
by Equation (3):

x(n + 1) = f (x(n)) (3)

We can look at this issue from another perspective. You can generate a sequence from
the point x0, Equation (4):

x0, f (x0), f ( f (x0)), f ( f ( f (x0))), . . . (4)

f(x0) is called the first iterate of x0 under f.
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Discrete models driven by difference equations are more suitable than continuous
models when reproductive generations last only one breeding season (no overlapping
generations) [65,66].

An example would be a population that reproduces seasonally, that is, once a year.
If we wanted to determine how the population size changes over many years, we could
collect data to estimate the population size at the same time each year (say, shortly after the
breeding season ends). We know that between the times at which we estimate population
size, some individuals will die and that during the breeding season many new individuals
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will be born, but we ignore changes in population size from day to day, or week to week,
and look only at how population size changes from year to year. Thus, when we build a
mathematical model of this population, it is reasonable that the model only predicts the
population size for each year shortly after the breeding season. In this case, the underlying
variable, time, is represented in the mathematical model as increasing in discrete one-year
increments.

The LVSDE Equations (5)–(10), have many uses in applied science. These models were
first developed in mathematical biology, after which research spread to other fields [67–71].

Discrete Equations (5) and (6) Cooperative Model (Resource-Exchange), for both
species, where parameters a, b, d, e, g, and h are positive constants, xi and yi represent the
initial conditions of the population for both species and are positive real numbers [72].

The biological operators are represented by LVSDE, the mathematical description of
the Discrete Equations (7) and (8) Defense Model (Predator-Prey), where the parameters a,
b, d and g are positive constants, xi and yi represent the initial population conditions for
both species and are positive real numbers [73,74].

Discrete Equations (9) and (10) Competitive Model (Colonization), for two species,
where the parameters a, b, d, e, g, and h are positive constants, xi and yi are the populations
for each of the species respectively and are positive real numbers. Each of the parameters
of the above equations is described in Table 1, [74].

xt+1
i =

(axi − bxiyi)

(1 − gxi)
(5)

yt+1
i =

(dyi + exiyi)

(1 + hyi)
(6)

xt+1
i = axi(1 − xi)− bxiyi (7)

yt+1
i = dxiyi − gyi (8)

xt+1
i =

(axi − bxiyi)

(1 + gxi)
(9)

yt+1
i =

(dyi − exiyi)

(1 + hyi)
(10)

Table 1 contains the parameters used in all the experiments performed in this research,
both those of the DMOA algorithm and those of the NARNN neural network.

The theory of Differential Equations, as well as that of Equations by Differences, can
be found in Youssef N. Raffoul. Qualitative Theory of Volterra Difference Equations [75], Sigrun
Bodine et al., Asymptotic Integration of Differential and Difference Equations [76], Takashi
Honda et al., Operator Theoretic Phenomena of the Markov Operators which are Induced by
Stochastic Difference Equations [77], Ronald E. Mickens, Difference Equations Theory, Appli-
cations and Advanced Topics [78], and Konrad Kitzing, et al., A Hilbert Space Approach to
Difference Equations [79].
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The metric for measuring error is RMSE (Root Mean Square Error) or root mean square
deviation, which is one of the most commonly used measures for evaluating the quality of
predictions. It shows how far predictions fall from measured true values using Euclidean
distance Equation (11), where n is the number of data points, yi is the ith measurement and
ŷi is the expected prediction [80,81].

RMSE =

√
n

∑
i=1

(ŷi − yi)
2 (11)

Table 1. DMOA-NARNN Parameters.

Parameter Description Value

DMOA—Parameters:
xt+1

i Population x at time t
yt+1

i Population y at time t
xi Grow rates of populations x at time t
yi Grow rates of populations y at time t
t time
a Population growth rate x 0.01
b Influence of population x on itself 0.02
g Influence of population y on population x 0.06
d Population growth rate y 0
e Influence of population x on population y 1.7
h Influence of population y on itself 0.09
x Initial population in x 0.0002
y Initial population in y 0.0006

In the absence of population x = 0, In the absence of population y = 0
a, b, c, d, e and f —are positive constants

Population Population size 20
Populations Number of populations 2
Dimensions Dimensions size 30, 50, 100

Epochs Number of epochs 30
Iterations Iteration’s size 30, 50, 100, 500

NARNN—Parameters:
h Hidden Layers 2, 3
n Neurons 2–10

Vector time delay 01:06:19

Mackey-Glass

Chaotic and random time series are both disordered and unpredictable. In extreme
cases, the data are so mixed up that those consecutive values seem unrelated to each other.
Such disorder would normally eliminate the ability to predict future values from past data.

The Mackey-Glass chaotic time series Equation (12) is a nonlinear differential equation
of time delay, and this equation is widely used in the modeling of natural phenomena to
make comparisons between different forecasting techniques and regression models [82–84],
where a = 0.1, b = 0.2, and τ = 17 are real numbers, t is the time, and with this setting
the series produces chaotic behavior, and we can compare the forecasting performance of
DMOA-NARNN with other models in the literature.

.
y(t) = −by(t) +

cy(t − τ)

1 + y10(t − τ)
(12)
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5. Results

This section shows the results of the experiments performed in the research involving
the Non-Optimized and Optimized results of the method.

Table 2 presents 10 different non-optimized NARNN architectures using only the Mackey-
Glass chaotic time series; in the table the columns are represented by: N—Experiment Num-
ber, Experiment Name, S—Sample size, T—Training, V—Validation, P—Prediction, HL—
Hidden Layers of the NARNN, E—Number of experiment and RMSE (Root Mean Square
Error), while the best architecture of the non-optimized NARNN is found in experiment
number 4, with the RMSE of 0.1670.

Table 2. Results of non-optimized experiments.

N Name S T V P HL E RMSE

1 NARNN401 700 300 400 400 [1 1] 3000 0.2777
2 NARNN402 700 400 300 300 [1 1] 3000 0.1683
3 NARNN403 1000 400 600 600 [3 1] 3000 0.2307
4 NARNN404 1000 500 500 500 [9 2] 3000 0.1670
5 NARNN405 1000 600 400 400 [2 2] 3000 0.2488
6 NARNN406 1500 600 900 900 [4 1 9] 3000 0.2550
7 NARNN407 1500 700 800 800 [8 5 2] 3000 0.2158
8 NARNN408 1500 800 700 700 [1 2 1] 3000 0.4001
9 NARNN409 1500 900 600 600 [2 3 2] 3000 0.2810

10 NARNN410 1500 1000 500 500 [6 6 8] 3000 0.1712

In Figures 8–13, the y axes represent the input values (Validation-Training) and output
values of the samples (Prediction-Error), the x axis represents the number of samples in
time, Name is the name of the experiment, Samples is the total number of samples in the
experiment, Training is the number of samples for training, Error is the minimum error
obtained in the experiment, and HL represents the number of neurons in the hidden layers.

Figure 8 shows the behavior of the data for 1000 samples of the NARNN403, obtaining
an RMSE of 0.2307, with the reference data at the top of the figure.

Figures 9 and 10 show the data behavior for 1000 samples of the NARNN404 and
NARNN405, obtaining an RMSE of 0.167 and 0.2488, respectively, with the reference data
at the top of each figure.

Table 3 shows the results of 39 NARNN architectures optimized with the DMOA
algorithm using the Mackey-Glass chaotic time series, in the table the columns are rep-
resented by: N - Experiment Number, Experiment Name, S—Sample size, T—Training,
V—Validation, P—Prediction, HL—Hidden Layers of the NARNN, I—Number of itera-
tions, Tt—total time of the experiments in seconds, T—time in which the best result was
found and RMSE (Root Mean Square Error). The best architecture of the non-optimized
NARNN is found in experiment number 31, with the RMSE of 0.0023.
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Table 3. Results of optimized experiments.

N Name S T V P HL I Tt T RMSE

1 NARNN041 700 300 400 400 [5 6] 900 0.0114
2 NARNN042 700 300 400 400 [5 6] 1000 0.0054
3 NARNN043 700 300 400 400 [5 6] 1000 0.1012
4 NARNN053 700 300 400 400 [6 6] 500 405 0.0044
5 NARNN055 700 300 400 400 [6 1] 100 4 0.0202
6 NARNN056 700 300 400 400 [6 6] 500 486 0.0067
7 NARNN057 700 300 400 400 [4 3] 1000 807 0.0075
8 NARNN058 700 300 400 400 [8 7] 2500 154 0.0131
9 NARNN058r 700 300 400 400 [6 5] 2500 75 0.0202

10 NARNN059 700 300 400 400 [5 4] 1000 445 0.0061
11 NARNN060 700 300 400 400 [6 2] 1000 259 0.0081
12 NARNN061 700 300 400 400 [5 6] 1000 496 0.0044
13 NARNN062 700 400 300 300 [5 6] 5000 688 0.0024
14 NARNN201 700 400 300 300 [9 4] 5000 2948 1476 0.0024
15 NARNN202 1000 600 400 400 [7 5] 5000 1905 0.0035
16 NARNN203 1000 500 500 500 [4 7] 1000 681 0.0084
17 NARNN204 1000 400 600 600 [8 3] 1000 917 0.0144
18 NARNN205 1000 400 600 600 [7 8] 5000 2849 2741 0.0076
19 NARNN206 1000 500 500 500 [8 5] 5000 3262 2517 0.0059
20 NARNN207 1000 600 400 400 [6 2] 5000 3659 1822 0.0047
21 NARNN208 1500 600 900 900 [7 9] 5000 3666 1686 0.0187
22 NARNN209 1500 700 800 800 [7 7] 5000 4039 2665 0.0104
23 NARNN210p 1500 800 700 700 [7 3] 6000 5750 5226 0.0122
24 NARNN211 1500 900 600 600 [7 3] 3000 5439 1658 0.0136
25 NARNN212 1500 900 600 600 [5 6] 3000 6479 606 0.0055
26 NARNN213 1500 800 700 700 [5 6] 3000 12685 470 0.0080
27 NARNN214p 1500 700 800 800 [5 6] 5000 6183 4739 0.0157
28 NARNN215 1500 600 900 900 [5 6] 3000 2848 1910 0.0230
29 NARNN311 1500 1000 500 500 [6 1] 3000 6919 1917 0.0047
30 NARNN301 700 300 400 400 [7 8 3] 2000 1371 1313 0.0052
31 NARNN302 700 400 300 300 [6 7 5] 3000 5353 1235 0.0023
32 NARNN303 1000 600 400 400 [9 2 8] 3000 2348 2003 0.0033
33 NARNN304 1000 500 500 500 [4 5 4] 3000 5072 1334 0.0040
34 NARNN305 1000 400 600 600 [8 7 1] 3000 4435 2414 0.0070
35 NARNN306 1500 600 900 900 [5 5 1] 3000 5610 2309 0.0851
36 NARNN307 1500 700 800 800 [8 4 1] 3000 3151 1664 0.0245
37 NARNN308 1500 800 700 700 [8 1 1] 3000 3161 76 0.0127
38 NARNN309 1500 900 600 600 [8 2 7] 3000 3175 1502 0.0098
39 NARNN310 1500 1000 500 500 [8 3 8] 3000 3333 1050 0.0074

Figures 11–13 show the data behavior for 700, 700 and 1000 samples of the NARNN053,
NARNN302 and NARNN303, obtaining an RMSE of 0.0044, 0.0023 and 0.0033, respectively,
with the reference data at the top of each figure.

As for the complexity of the DMOA algorithm, it is a linear order algorithm that uses
the discrete equations of Lotka-Volterra Equations (5)–(10), and in the search to find the
global minimum it performs iterations and in each cycle it compares the best previous local
minimum with the lowest current minimum and updates the value in the case that this
is the case. As for the times, Table 3 shows the times Tt which represents the total time
(seconds) of the experiment and T (seconds) the time in which the DMOA algorithm found
the lowest local minimum; in terms of its efficiency the algorithm took 1235 s, about 21 min,
to find the lowest minimum 0.0023, which seems to us a short time compared to the times
used by the method [22] of up to 3 h and a half, the method [21], its experiments took up to
81 h to find the lowest minimum and as for the method [23] it does not provide the times
of its experiments.
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5.1. Statistical Data

Table 4 shows 30 experiments with eight non-optimized NARNNN architectures. Each
column represents the total number of samples and the number of training samples used
for each architecture (700 × 300), and at the end of the table we can find the results of the
total sum, mean and standard deviation for each column.

Table 4. 30 Experiments with non-optimized NARNN.

No

Non Optimized

2 Hidden Layers 3 Hidden Layers

700 × 300 700 × 400 1000 × 400 1000 × 500 1000 × 600 1500 × 600 1500 × 700 1500 × 800

1 3.58 × 10−1 3.17 × 10−1 2.84 × 10−1 2.45 × 10−1 3.01 × 10−1 9.88 × 10−1 2.78 × 10−1 7.27 × 10−1

2 2.97 × 10−1 2.39 × 10−1 2.81 × 10−1 2.32 × 10−1 2.96 × 10−1 3.41 × 10−1 2.72 × 10−1 5.39 × 10−1

3 2.84 × 10−1 2.35 × 10−1 2.77 × 10−1 2.26 × 10−1 2.90 × 10−1 3.39 × 10−1 2.44 × 10−1 4.67 × 10−1

4 2.81 × 10−1 2.23 × 10−1 2.66 × 10−1 2.25 × 10−1 2.55 × 10−1 3.38 × 10−1 2.36 × 10−1 4.35 × 10−1

5 2.68 × 10−1 2.22 × 10−1 2.60 × 10−1 2.22 × 10−1 2.49 × 10−1 3.27 × 10−1 2.34 × 10−1 4.27 × 10−1

6 2.66 × 10−1 2.22 × 10−1 2.47 × 10−1 2.06 × 10−1 2.47 × 10−1 3.19 × 10−1 2.33 × 10−1 4.23 × 10−1

7 2.65 × 10−1 2.21 × 10−1 2.39 × 10−1 2.03 × 10−1 2.44 × 10−1 3.16 × 10−1 2.31 × 10−1 4.18 × 10−1

8 2.62 × 10−1 2.19 × 10−1 2.39 × 10−1 1.83 × 10−1 2.44 × 10−1 3.07 × 10−1 2.30 × 10−1 4.18 × 10−1

9 2.62 × 10−1 2.16 × 10−1 2.34 × 10−1 1.75 × 10−1 2.43 × 10−1 3.00 × 10−1 2.30 × 10−1 4.08 × 10−1

10 2.52 × 10−1 2.13 × 10−1 2.33 × 10−1 1.74 × 10−1 2.40 × 10−1 2.92 × 10−1 2.27 × 10−1 4.02 × 10−1

11 2.51 × 10−1 2.12 × 10−1 2.32 × 10−1 1.73 × 10−1 2.36 × 10−1 2.73 × 10−1 2.27 × 10−1 3.98 × 10−1

12 2.50 × 10−1 2.11 × 10−1 2.31 × 10−1 1.72 × 10−1 2.34 × 10−1 2.73 × 10−1 2.21 × 10−1 3.94 × 10−1

13 2.50 × 10−1 2.10 × 10−1 2.31 × 10−1 1.71 × 10−1 2.33 × 10−1 2.69 × 10−1 2.19 × 10−1 3.91 × 10−1

14 2.49 × 10−1 2.09 × 10−1 2.29 × 10−1 1.69 × 10−1 2.31 × 10−1 2.63 × 10−1 2.16 × 10−1 3.89 × 10−1

15 2.49 × 10−1 2.08 × 10−1 2.29 × 10−1 1.69 × 10−1 2.15 × 10−1 2.60 × 10−1 2.14 × 10−1 2.53 × 10−1

16 2.43 × 10−1 2.07 × 10−1 2.29 × 10−1 1.68 × 10−1 2.11 × 10−1 2.47 × 10−1 2.04 × 10−1 2.51 × 10−1

17 2.43 × 10−1 2.00 × 10−1 2.28 × 10−1 1.67 × 10−1 2.10 × 10−1 2.33 × 10−1 1.97 × 10−1 2.42 × 10−1

18 2.43 × 10−1 1.95 × 10−1 2.27 × 10−1 1.66 × 10−1 2.08 × 10−1 2.29 × 10−1 1.95 × 10−1 2.38 × 10−1

19 2.36 × 10−1 1.93 × 10−1 2.23 × 10−1 1.66 × 10−1 2.07 × 10−1 2.29 × 10−1 1.87 × 10−1 2.33 × 10−1

20 2.36 × 10−1 1.89 × 10−1 2.17 × 10−1 1.66 × 10−1 2.05 × 10−1 2.27 × 10−1 1.86 × 10−1 2.27 × 10−1

21 2.36 × 10−1 1.89 × 10−1 2.13 × 10−1 1.54 × 10−1 2.02 × 10−1 2.12 × 10−1 1.86 × 10−1 2.25 × 10−1

22 2.33 × 10−1 1.89 × 10−1 2.01 × 10−1 1.52 × 10−1 2.02 × 10−1 2.06 × 10−1 1.82 × 10−1 2.25 × 10−1

23 2.33 × 10−1 1.88 × 10−1 1.95 × 10−1 1.35 × 10−1 2.02 × 10−1 2.04 × 10−1 1.75 × 10−1 2.24 × 10−1

24 2.28 × 10−1 1.82 × 10−1 1.90 × 10−1 1.30 × 10−1 2.01 × 10−1 2.03 × 10−1 1.72 × 10−1 2.23 × 10−1

25 2.26 × 10−1 1.78 × 10−1 1.85 × 10−1 1.19 × 10−1 2.00 × 10−1 1.98 × 10−1 1.69 × 10−1 2.22 × 10−1

26 2.25 × 10−1 1.78 × 10−1 1.85 × 10−1 1.19 × 10−1 1.97 × 10−1 1.96 × 10−1 1.67 × 10−1 2.19 × 10−1

27 2.24 × 10−1 1.77 × 10−1 1.74 × 10−1 1.14 × 10−1 1.74 × 10−1 1.96 × 10−1 1.59 × 10−1 2.16 × 10−1

28 2.23 × 10−1 1.70 × 10−1 1.60 × 10−1 1.09 × 10−1 1.62 × 10−1 1.95 × 10−1 1.58 × 10−1 2.15 × 10−1

29 2.10 × 10−1 1.70 × 10−1 1.45 × 10−1 1.01 × 10−1 1.32 × 10−1 1.92 × 10−1 1.57 × 10−1 2.14 × 10−1

30 1.96 × 10−1 1.65 × 10−1 5.20 × 10−2 6.12 × 10−2 7.29 × 10−2 1.61 × 10−1 1.50 × 10−1 1.94 × 10−1

Sum: 7.48 × 10+0 6.15 × 10+0 6.53 × 10+0 4.97 × 10+0 6.54 × 10+0 8.34 × 10+0 6.16 × 10+0 9.86 × 10+0

Mean: 2.49 × 10−1 2.05 × 10−1 2.18 × 10−1 1.66 × 10−1 2.18 × 10−1 2.78 × 10−1 2.05 × 10−1 3.29 × 10−1

SD: 3.00 × 10−2 2.91 × 10−2 4.59 × 10−2 4.25 × 10−2 4.58 × 10−2 1.44 × 10−1 3.40 × 10−2 1.27 × 10−1

Table 5 shows 30 experiments with eight optimized NARNNN architectures; each
column represents the total number of samples and the number of training samples used
by each architecture (700 × 300), and at the end of the table we can find the results of the
total sum, mean and standard deviation for each column.
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Table 5. 30 Experiments with optimized NARNN.

No

Optimized

2 Hidden Layers 3 Hidden Layers

700 × 300 700 × 400 1000 × 400 1000 × 500 1000 × 600 1500 × 600 1500 × 700 1500 × 800

1 1.72 × 10−1 4.62 × 10−2 2.63 × 10−1 1.97 × 10−1 2.71 × 10−1 3.88 × 10−1 2.85 × 10−1 2.93 × 10−1

2 1.52 × 10−1 4.44 × 10−2 2.34 × 10−1 1.97 × 10−1 1.92 × 10−1 3.07 × 10−1 2.67 × 10−1 2.67 × 10−1

3 1.35 × 10−1 4.21 × 10−2 2.32 × 10−1 1.92 × 10−1 1.92 × 10−1 3.06 × 10−1 2.53 × 10−1 2.66 × 10−1

4 1.34 × 10−1 4.07 × 10−2 2.31 × 10−1 1.91 × 10−1 1.91 × 10−1 2.97 × 10−1 2.43 × 10−1 2.36 × 10−1

5 1.18 × 10−1 3.98 × 10−2 2.30 × 10−1 1.87 × 10−1 1.91 × 10−1 2.94 × 10−1 2.39 × 10−1 2.29 × 10−1

6 1.09 × 10−1 3.73 × 10−2 2.28 × 10−1 1.86 × 10−1 1.89 × 10−1 2.90 × 10−1 2.36 × 10−1 2.28 × 10−1

7 1.07 × 10−1 3.59 × 10−2 2.27 × 10−1 1.86 × 10−1 1.89 × 10−1 2.86 × 10−1 2.25 × 10−1 2.27 × 10−1

8 9.68 × 10−2 3.40 × 10−2 2.26 × 10−1 1.83 × 10−1 1.89 × 10−1 2.74 × 10−1 2.22 × 10−1 2.24 × 10−1

9 9.67 × 10−2 3.26 × 10−2 2.22 × 10−1 1.80 × 10−1 1.86 × 10−1 2.74 × 10−1 2.21 × 10−1 2.23 × 10−1

10 9.61 × 10−2 3.08 × 10−2 2.20 × 10−1 1.75 × 10−1 1.83 × 10−1 2.72 × 10−1 2.19 × 10−1 2.17 × 10−1

11 9.54 × 10−2 3.06 × 10−2 2.18 × 10−1 1.74 × 10−1 1.74 × 10−1 2.70 × 10−1 2.17 × 10−1 2.13 × 10−1

12 9.23 × 10−2 2.19 × 10−2 2.18 × 10−1 1.73 × 10−1 1.69 × 10−1 2.66 × 10−1 2.16 × 10−1 2.09 × 10−1

13 9.01 × 10−2 2.18 × 10−2 2.16 × 10−1 1.72 × 10−1 1.69 × 10−1 2.62 × 10−1 2.14 × 10−1 2.08 × 10−1

14 8.57 × 10−2 2.14 × 10−2 2.12 × 10−1 1.72 × 10−1 1.57 × 10−1 2.53 × 10−1 2.04 × 10−1 2.07 × 10−1

15 8.11 × 10−2 1.91 × 10−2 2.09 × 10−1 1.72 × 10−1 1.50 × 10−1 2.53 × 10−1 1.78 × 10−1 2.05 × 10−1

16 7.47 × 10−2 1.91 × 10−2 2.08 × 10−1 1.71 × 10−1 1.40 × 10−1 2.51 × 10−1 1.74 × 10−1 2.02 × 10−1

17 7.13 × 10−2 1.79 × 10−2 1.89 × 10−1 1.69 × 10−1 1.35 × 10−1 2.44 × 10−1 1.73 × 10−1 1.99 × 10−1

18 6.11 × 10−2 1.77 × 10−2 1.89 × 10−1 1.69 × 10−1 1.33 × 10−1 2.37 × 10−1 1.71 × 10−1 1.98 × 10−1

19 5.99 × 10−2 1.31 × 10−2 1.85 × 10−1 1.67 × 10−1 1.32 × 10−1 2.33 × 10−1 1.58 × 10−1 1.98 × 10−1

20 5.76 × 10−2 1.25 × 10−2 1.78 × 10−1 1.66 × 10−1 1.32 × 10−1 2.28 × 10−1 1.53 × 10−1 1.90 × 10−1

21 5.43 × 10−2 1.12 × 10−2 1.78 × 10−1 1.66 × 10−1 1.29 × 10−1 2.27 × 10−1 1.53 × 10−1 1.78 × 10−1

22 5.35 × 10−2 1.02 × 10−2 1.77 × 10−1 1.64 × 10−1 1.29 × 10−1 2.24 × 10−1 1.52 × 10−1 1.66 × 10−1

23 3.96 × 10−2 9.31 × 10−3 1.76 × 10−1 1.45 × 10−1 1.28 × 10−1 2.21 × 10−1 1.50 × 10−1 1.65 × 10−1

24 3.58 × 10−2 9.11 × 10−3 1.74 × 10−1 1.42 × 10−1 1.28 × 10−1 2.12 × 10−1 1.45 × 10−1 1.61 × 10−1

25 2.82 × 10−2 6.99 × 10−3 1.71 × 10−1 1.37 × 10−1 1.27 × 10−1 1.98 × 10−1 1.44 × 10−1 1.58 × 10−1

26 2.27 × 10−2 5.98 × 10−3 1.71 × 10−1 1.30 × 10−1 1.26 × 10−1 1.98 × 10−1 1.42 × 10−1 1.58 × 10−1

27 2.13 × 10−2 5.63 × 10−3 1.54 × 10−1 1.16 × 10−1 1.26 × 10−1 1.92 × 10−1 1.41 × 10−1 9.36 × 10−2

28 1.89 × 10−2 4.96 × 10−3 1.19 × 10−1 1.15 × 10−1 1.24 × 10−1 1.91 × 10−1 1.38 × 10−1 6.64 × 10−2

29 1.84 × 10−2 4.21 × 10−3 1.03 × 10−1 8.25 × 10−2 1.23 × 10−1 1.88 × 10−1 1.37 × 10−1 5.36 × 10−2

30 1.14 × 10−2 3.52 × 10−3 5.66 × 10−2 1.51 × 10−2 1.11 × 10−1 1.75 × 10−1 1.35 × 10−1 4.84 × 10−2

Sum: 2.29 × 10+0 6.50 × 10−1 5.81 × 10+0 4.79 × 10+0 4.71 × 10+0 7.51 × 10+0 5.70 × 10+0 5.69 × 10+0

Mean: 7.63 × 10−2 2.17 × 10−2 1.94 × 10−1 1.60 × 10−1 1.57 × 10−1 2.50 × 10−1 1.90 × 10−1 1.90 × 10−1

SD: 4.21 × 10−2 1.38 × 10−2 4.35 × 10−2 3.81 × 10−2 3.52 × 10−2 4.60 × 10−2 4.47 × 10−2 5.91 × 10−2

5.2. Hypothesis Test

Equation (13) represents Hypothesis Testing, Null Hypothesis Equation (14) and
Alternative Hypothesis Equation (15), with which comparisons were made between the
non-optimized and optimized experiments of the method proposed here.

z =
(x1 − x2)− D0√

σ2
1

n1
+

σ2
2

n2

(13)

H0 : µ1 ≥ µ2 (14)

Ha : µ1 < µ2 claim (15)

where x1 is the Mean of sample 1, x2 Mean of sample 2, σ1 Standard Deviation of sample
1, σ2 Standard Deviation of sample 2, n1 Number of sample data 1, n2 Number of sample
data 2, µ1 − µ2 = D0 and µ1 − µ2 = D0.

Significance Level α = 0.05, Confidence Level = 95%, Confidence Level = 1 − α;
1−0.05 = 0.95 o 95%, Since the p-value is less than 0.01, the null hypothesis is rejected.
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Tables 6 and 7 show the results of the hypothesis testing done on the non-optimized
and optimized methods shown above; of the eight different architectures, the test results
show that in only six were the optimized NARNNs better, and the non-optimized NARNNs
were better in two.

Table 6. Data for the eight non-optimized and optimized architectures.

NARNN—Non-OPTIMIZED NARNN—OPTIMIZED

N Name Error
HL and N

Name Error
HL and N

1 2 3 1 2 3

1 NARNN401 0.2777 1 1 NARNN053 0.0052 6 6
2 NARNN402 0.1683 1 1 NARNN062 0.0023 5 6
3 NARNN403 0.2307 3 1 NARNN205 0.0070 7 8
4 NARNN404 0.1670 9 2 NARNN206 0.0040 8 5
5 NARNN405 0.2488 2 2 NARNN207 0.0033 6 2
6 NARNN406 0.2550 4 1 9 NARNN306 0.0851 5 5 1
7 NARNN407 0.2158 8 5 2 NARNN307 0.0245 8 4 1
8 NARNN408 0.4001 1 2 1 NARNN308 0.0127 8 1 1

Table 7. Hypothesis test results of the eight non-optimized and optimized NARNNs.

Samples
Results

Non-Optimized Optimized

Total T V P p-Value

700 300 400 400 8.25 × 10−26

700 400 300 300 6.00 × 10−38

1000 400 600 600 4.23 × 10−2

1000 500 500 500 5.59 × 10−1

1000 600 400 400 3.13 × 10−7

1500 600 900 900 3.25 × 10−1

1500 700 800 800 1.46 × 10−1

1500 800 700 700 1.14 × 10−6

In Table 6, N and Name represent the number and name of the experiment, respectively.
Error is the minimum error found, HL are the Hidden Layers of neural network (1, 2, 3),
and N is the number of neurons in each HL. In Table 7, the samples are represented by Total
number of samples, T is the training samples, V is the validation samples, P represents the
prediction, and p-value represents the results of the hypothesis test.

5.3. Comparisone with Other Methods

Table 8 shows the comparison with other methods that performed experimentation
with the chaotic Mackey-Glass time series, and it can be seen from the table that the lowest
error belongs to the optimized NARNN-302.

Table 8. Error comparison with three different methods and the non-optimized and optimized
NARNN.

N Experiment Description Error Serie Ref

1 Genetic Algorithm—Ensemble ANFIS—T1FLS—IT2FLS 0.0219 MG [21]
2 Ensemble Neural Network Architecture 0.008945 MSE [22]

2 Modules, 2 Hidden Layers, 2116 and 2128 Neurons respectively, PSO Optimized
3 SNR(dB) ANFIS IT2FNN-0 IT2FNN-1 IT2FNN-2 IT2FNN-3 0.0028 MG [23]

30 0.0225 0.0106 0.0079 0.0045 0.0028
4 NARNN-DMOA (No-Optimized) 0.167 MG
5 NARNN-DMOA (Optimized) 0.0023 MG
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In Table 8, case number 1, the method is the Optimization of the Fuzzy Integrators
in Ensembles of ANFIS Model for Time Series Prediction [21], where the authors use the
Mackey-Glass chaotic time series, with genetic optimization of Type-1 Fuzzy Logic System
(T1FLS) and Interval Type-2 Fuzzy Logic System (IT2FLS) integrators in Ensemble of
ANFIS models and evaluate the results through Root Mean Square Error (RMSE). ANFIS is
a hybrid model of a neural network implementation of a TSK (Takagi-Sugeno-Kang) fuzzy
inference system. ANFIS applies a hybrid algorithm which integrates BP (Backpropagation)
and LSE (least square estimation) algorithms, and thus it has a fast learning speed.

Case number 2 refers to the method using Particle Swarm Optimization of ensemble
neural networks with fuzzy aggregation for time series prediction of the Mexican Stock
Exchange [22]. In this case, the authors propose an ensemble neural network model
with type-2 fuzzy logic for the integration of responses; in addition, the particle swarm
optimization method determines the number of modules of the ensemble neural network,
the number of layers and number of neurons per layer, and thus the best architecture of
the ensemble neural network is obtained. Once this architecture is obtained, the results of
the modules with type-1 and type-2 fuzzy logic systems are added, the inputs to the fuzzy
system are the responses according to the number of modules of the network, and this is
the number of inputs of the fuzzy system.

Case number 3 refers to the Application of Interval Type-2 Fuzzy Neural Networks
(IT2FNN) in non-linear identification and time series prediction (MG) [23]. The authors
propose IT2FNN models that combine the uncertainty management advantage of type-2
fuzzy sets with the learning capabilities of neural networks. One of the main ideas of this
approach is that the proposed IT2FNN architectures can obtain similar or better outputs
than type-2 interval fuzzy systems using the Karnik and Mendel (KM) algorithm, but with
lower computational cost, which is one of the main disadvantages of KM mentioned in
many papers in the literature. Cases 4 and 5 have already been explained earlier in this
article.

By making a brief description of the techniques of the different methods above, we
can observe the complexity of their designs using optimization algorithms such as PSO and
GAs as optimizers, robust Ensemble Neural Networks, T1FLS and IT2FLS, in comparison
with our method that uses the optimization algorithm DMOA and NARNNN, which are
neural networks with short memory, and according to the results are made precisely for
the prediction of time series. In a future work we plan to perform experiments with the
RNN LSTM networks, which have short- and long-term memories.

6. Discussion of Results

The use of metaheuristics in the optimization of methods is a constant in all research
work in artificial intelligence, and in this work the DMOA algorithm was used to optimize
the architecture of the NARNN neural network using the MG chaotic series as input
data. We also performed experiments without optimizing the NARNN network, while
with the optimization we performed experiments with 39 different architectures, and
without optimization we performed experiments with 10 different architectures. When
we performed the optimization we found an extremely fast algorithm that found the right
architecture with very satisfactory results. Of the 39 different optimized architectures,
the one that gave us the best results was number 31 (narAll303) Table 3, a NARNN
network with three hidden layers of 6, 7, and 5 neurons, respectively. With this architecture
we performed 3000 experiments with a total time of 5353 s and in the second 1235 we
obtained the best result of 0.0023 (error). Of the 10 experiments without optimization, with
architecture number 4 (narAll404) Table 2, a NARNN network with two hidden layers of
9 and 2 neurons, respectively, we also performed 3000 experiments with this architecture
and obtained the best result of 0.1670 (error). We performed eight hypothesis tests under
equal conditions with these results and found that in five tests the NARNN architectures
optimized with the DMOA algorithm were better and in three tests the non-optimized



Micromachines 2023, 14, 149 21 of 24

architectures were better, as shown in Table 6. We also performed error comparisons with
three other different methods of which the DMOA-NARNN was better, as shown in Table 8.

7. Conclusions

A total of 49 different architectures were designed, of which 10 non-optimized and
39 were optimized by the DMOA algorithm, 30,000 experiments were performed with
the non-optimized architectures, and approximately 110,000 experiments were performed
with the optimized architectures. A total of 700, 1000 and 1500 samples were generated
with the MG chaotic time series, of which between 300 and 1000 were used for training,
between 300 and 900 were used for validation in different combinations, and between 300
and 900 points were generated as prediction points, as can be seen in Tables 2 and 3. The
design of the NARNN architectures were two and three hidden layers, with neurons in the
range of 2–9, and the graphs of the most representative results of the non-optimized and
optimized NARNNs are presented in Figures 8–13.

The optimization of the NARNN network with the DMOA algorithm obtained good
results, better than without optimizing the network, and better than the other methods
with which it was compared, although not all of the optimized architectures were better
in the hypothesis test (only five of them were), the results of the error were much better,
as can be seen in Table 7. In the comparison with other methods, the results were also
better, as demonstrated in Table 8. We were also able to verify that the DMOA optimization
algorithm is fast and efficient, which was really the reason for this research. We wish to
continue investigating the efficiency of the algorithm in the optimization of architectures
with other types of neural networks, also in Fuzzy Logic Systems Type-1 and Type-2, and
also to do the same with the optimization algorithm CMOA (Continuous Mycorrhiza
Optimization Algorithm). In addition, the proposed algorithm can be applied to robots,
microsystems, sensors, devices, MEMS, microfluidics, piezoelectricity, motors, biosensors,
3D printing, etc.

We also intend to conduct further research and experimentation with the DMOA
method and other time series. We will also consider the DMOA and the LSTM (Long Short-
Term Memory) Neural Regression Network for Mackey-Glass time series, weather and
financial forecasting, and we are interested in hybridizing the method with Interval Type-2
Fuzzy Logic System (IT2FLS), and Generalized Type-2 Fuzzy Logic System (GT2FLS).
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Czechia, 2012.
13. Sutskever, I.; Martens, J.; Hinton, G. Generating Text with Recurrent Neural Networks. In Proceedings of the 28th International

Conference on Machine Learning. ICML 2011, Bellevue, WA, USA, 28 June–2 July 2011.
14. Graves, A. Practical variational inference for neural networks. In Advances in Neural Information Processing Systems; Curran

Associates Inc.: Red Hook, NY, USA, 2011; pp. 2348–2356.
15. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their com-

positionality. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2013; pp.
3111–3119.

16. Oord, A.; Dieleman, S.; Zen, H.; Vinyals, K.S.O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. A generative model for
raw audio. arXiv 2016, arXiv:1609.03499.

17. Graves, A.; Schmidhuber, J. Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in
Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2009; pp. 545–552.

18. Graves, A.; Fernández, S.; Liwicki, M.; Bunke, H.; Schmidhuber, J. Unconstrained On-line Handwriting Recognition with
Recurrent Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada,
3–6 December 2007; pp. 577–584.

19. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; Wierstra, D. DRAW: A recurrent neural network for image generation. In
Proceedings of the 32nd International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015.

20. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
21. Soto, J.; Melin, P. Optimization of the Fuzzy Integrators in Ensembles of ANFIS Model for Time Series Prediction: The case of

Mackey-Glass. In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society
for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Gijón, Spain, 30 June 2015; pp. 994–999.

22. Pulido, M.; Melin, P.; Castillo, O. Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time
series prediction of the Mexican Stock Exchange. Inf. Sci. 2014, 280, 188–204. [CrossRef]

23. Castillo, O.; Castro, J.R.; Melin, P.; Rodríguez-Díaz, A. Application of interval type-2 fuzzy neural networks in non-linear
identification and time series prediction. Soft Comput. 2013, 18, 1213–1224. [CrossRef]

24. Amador-Angulo, L.; Castillo, O. Amador-Angulo, L.; Castillo, O. A Fuzzy Bee Colony Optimization Algorithm Using an Interval
Type-2 Fuzzy Logic System for Trajectory Control of a Mobile Robot. In Mexican International Conference on Artificial Intelligence;
Springer: Cham, Switzerland, 2015.

25. Zangeneh, M.; Aghajari, E.; Forouzanfar, M. A Review on Optimization of Fuzzy Controller Parameters in Robotic Applications.
IETE J. Res. 2020, 1–10. [CrossRef]

26. Peraza, C.; Ochoa, P.; Castillo, O.; Geem, Z.W. Interval-Type 3 Fuzzy Differential Evolution for Designing an Interval-Type 3
Fuzzy Controller of a Unicycle Mobile Robot. Mathematics 2022, 10, 3533. [CrossRef]

27. Jiang, Y.; Yin, S.; Dong, J.; Kaynak, O. A Review on Soft Sensors for Monitoring, Control and Optimization of Industrial Processes.
IEEE Sens. J. 2020, 21, 12868–12881. [CrossRef]

28. Bradley, E.; Kantz, H. Nonlinear time-series analysis revisited. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 097610. [CrossRef]
29. Benmouiza, K.; Cheknane, A. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive

neural network models. Energy Convers. Manag. 2013, 75, 561–569. [CrossRef]
30. Long, D.; Zhang, R.; Mao, Y. Recurrent Neural Networks With Finite Memory Length. IEEE Access. 2019, 7, 12511–12520.

[CrossRef]
31. Ji, W.; Chan, C. Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. Solar Energy 2011, 85,

808–817. [CrossRef]
32. Taherdangkoo, R.; Tatomir, A.; Taherdangkoo, M.; Qiu, P.; Sauter, M. Nonlinear Autoregressive Neural Networks to Predict

Hydraulic Fracturing Fluid Leakage into Shallow Groundwater. Water 2020, 12, 841. [CrossRef]

http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1016/j.ins.2014.05.006
http://doi.org/10.1007/s00500-013-1139-y
http://doi.org/10.1080/03772063.2020.1787878
http://doi.org/10.3390/math10193533
http://doi.org/10.1109/JSEN.2020.3033153
http://doi.org/10.1063/1.4917289
http://doi.org/10.1016/j.enconman.2013.07.003
http://doi.org/10.1109/ACCESS.2018.2890297
http://doi.org/10.1016/j.solener.2011.01.013
http://doi.org/10.3390/w12030841


Micromachines 2023, 14, 149 23 of 24

33. Kumar, A.; Irsoy, O.; Su, J.; Bradbury, J.; English, R.; Pierce, B.; Ondruska, P.; Gulrajani, I.; Socher, R. Ask Me Anything: Dynamic
Memory Networks for Natural Language Processing. In Proceedings of the International conference on machine learning, Palo
Alto, CA, USA, 6 July–11 July 2015; p. 97.

34. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. IEEE Comput.
Intell. Mag. 2018, 13, 55–75. [CrossRef]

35. Kalimuthu, M.; Mogadala, A.; Mosbach, M.; Klakow, D. Fusion Models for Improved Image Captioning. In ICPR International
Workshops and Challenges, ICPR 2021, Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12666.

36. Yassin, I.M.; Zabidi, A.; Salleh, M.K.M.; Khalid, N.E.A. Malaysian tourism interest forecasting using nonlinear auto regressive
(NAR) model. In Proceedings of the 3rd International Conference on System Engineering and Technology, New York, NY, USA,
19–20 August 2013; pp. 32–36.

37. Raturi, R.; Sargsyan, H. A Nonlinear Autoregressive Scheme for Time Series Prediction via Artificial Neural Networks. J. Comput.
Commun. 2018, 6, 14–23. [CrossRef]

38. Ahmed, A.; Khalid, M. A Nonlinear Autoregressive Neural Network Model for Short-Term Wind Forecasting. In Proceedings of
the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017.

39. MATLAB 2022b. Deep Learning Toolbox Reference; The MathWorks, Inc.: Natick, MA, USA, 2022; pp. 2200–2203.
40. Padilla, C.; Hashemi, R.; Mahmood, N.; Latva-aho, M. A Nonlinear Autoregressive Neural Network for Interference Prediction and

Resource Allocation in URLLC Scenarios. In Proceedings of the 2021 International Conference on Information and Communication
Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021.

41. Adedeji, P.A.; Akinlabi, S.A.; Ajayi, O.O.; Madushele, N. Non-Linear Autoregressive Neural Network (NARNET) with SSA
filtering for a university Campus Energy Consumption Forecast. Procedia Manuf. 2019, 33, 176–183. [CrossRef]

42. Olney, B.; Mahmud, S.; Karam, R. Efficient Nonlinear Autoregressive Neural Network Architecture for Real-Time Biomedical
Applications. In Proceedings of the 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems
(AICAS), Incheon, Republic of Korea, 13–15 June 2022; pp. 411–414.

43. Li, M.; Ji, S.; Liu, G. Forecasting of Chinese E-Commerce Sales: An Empirical Comparison of ARIMA, Nonlinear Autoregressive
Neural Network, and a Combined ARIMA-NARNN Model. Math. Probl. Eng. Vol. 2018, 2018, 1–12. [CrossRef]

44. Kummong, R.; Supratid, S. Long-term forecasting system using wavelet – nonlinear autoregressive neural network conjunction
model. J. Model. Manag. 2019, 14, 948–971. [CrossRef]

45. Davood, N.K.; Goudarzi, G.R.; Taghizadeh, R.; Asumadu-Sakyi, A.B.; Fehresti-Sani, M. Long-term effects of outdoor air pollution
on mortality and morbidity–prediction using nonlinear autoregressive and artificial neural networks models. Atmos. Pollut. Res.
2021, 12, 46–56.

46. Domaschenko, D.; Nikulin, E. Forecasting time series of the market indicators based on a nonlinear autoregressive neural network.
Stat. Econ. Vol. 2017, 2017, 4–9. [CrossRef]

47. Saba, A.I.; Elsheikh, A.H. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial
neural networks. Process. Saf. Environ. Prot. 2020, 141, 1–8. [CrossRef] [PubMed]

48. Newman, E.I. Mycorrhizal links between plants: Their functioning and ecological significance. Adv. Ecol. Res. 1988, 18, 243–270.
49. Bahram, M.; Põlme, S.; Kõljalg, U.; Tedersoo, L. A single European aspen (Populus tremula) tree individual may potentially

harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol.
Ecol. 2010, 75, 313–320. [CrossRef]

50. Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [CrossRef]
51. Averill, C.; Turner, B.L.; Finzi, A.C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

Nature 2014, 505, 543–545. [CrossRef] [PubMed]
52. Dickie, I.A.; Koele, N.; Blum, J.D.; Gleason, J.D.; McGlone, M.S. Mycorrhizas in changing ecosystems,. Botany 2014, 92, 149–160.

[CrossRef]
53. Redecker, D.; Kodner, R.; Graham, L.E. Glomalean Fungi from the Ordovician. Science 2000, 289, 1920–1921. [CrossRef]
54. Humphreys, C.P.; Franks, P.J.; Rees, M.; Bidartondo, M.I.; Leake, J.R.; Beerling, D.J. Mutualistic mycorrhiza-like symbiosis in the

most ancient group of land plants. Nat. Commun. 2010, 1, 103. [CrossRef]
55. Lang, C.; Seven, J.; Polle, A. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species

richness in a mixed Central European forest. Mycorrhiza 2010, 21, 297–308. [CrossRef]
56. Simard, S.W. Mycorrhizal Networks Facilitate Tree Communication, Learning, and Memory. In Memory and Learning in Plants;

Signaling and Communication in Plants; Baluska, F., Gagliano, M., Witzany, G., Eds.; Springer: Cham, Switzerland, 2018.
57. Castro-Delgado, A.L.; Elizondo-Mesén, S.; Valladares-Cruz, Y.; Rivera-Méndez, W. Wood Wide Web: Communication through the

mycorrhizal network. Tecnol. Marcha J. 2020, 33, 114–125.
58. Beiler, K.J.; Simard, S.W.; Durall, D.M. Topology of tree-mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir

forests. J. Ecol. 2015, 103, 616–628. [CrossRef]
59. Simard, S.W.; Asay, A.; Beiler, K.; Bingham, M.; Deslippe, J.; He, X.; Philip, L.; Song, Y.; Teste, F. Resource Transfer Between Plants

Through Ectomycorrhizal Fungal Networks. In Mycorrhizal Networks. Ecological Studies; Horton, T., Ed.; Springer: Dordrecht, The
Netherlands, 2015; Volume 224.

60. Gorzelak, M.A.; Asay, A.K.; Pickles, B.J.; Simard, S.W. Inter-plant communication through mycorrhizal networks mediates
complex adaptive behaviour in plant communities. AoB Plants 2015, 7, plv050. [CrossRef] [PubMed]

http://doi.org/10.1109/MCI.2018.2840738
http://doi.org/10.4236/jcc.2018.69002
http://doi.org/10.1016/j.promfg.2019.04.022
http://doi.org/10.1155/2018/6924960
http://doi.org/10.1108/JM2-11-2018-0184
http://doi.org/10.21686/2500-3925-2017-3-4-9
http://doi.org/10.1016/j.psep.2020.05.029
http://www.ncbi.nlm.nih.gov/pubmed/32501368
http://doi.org/10.1111/j.1574-6941.2010.01000.x
http://doi.org/10.1890/03-8002
http://doi.org/10.1038/nature12901
http://www.ncbi.nlm.nih.gov/pubmed/24402225
http://doi.org/10.1139/cjb-2013-0091
http://doi.org/10.1126/science.289.5486.1920
http://doi.org/10.1038/ncomms1105
http://doi.org/10.1007/s00572-010-0338-y
http://doi.org/10.1111/1365-2745.12387
http://doi.org/10.1093/aobpla/plv050
http://www.ncbi.nlm.nih.gov/pubmed/25979966


Micromachines 2023, 14, 149 24 of 24

61. Carreon, H.; Valdez, F.; Castillo, O. A New Discrete Mycorrhiza Optimization Nature-Inspired Algorithm. Axioms 2022, 11, 391.
[CrossRef]

62. Liu, P.; Elaydi, S.N. Discrete Competitive and Cooperative Models of Lotka–Volterra Type. J. Comput. Anal. Appl. 2001, 3, 53–73.
63. Muhammadhaji, A.; Halik, A.; Li, H. Dynamics in a ratio-dependent Lotka–Volterra competitive-competitive-cooperative system

with feedback controls and delays. Adv. Differ. Equ. 2021, 230, 1–14. [CrossRef]
64. Din, Q. Dynamics of a discrete Lotka-Volterra model. Adv. Differ. Equ. 2013, 2013, 95. [CrossRef]
65. Liu, X. A note on the existence of periodic solutions in discrete predator–prey models. Appl. Math. Model. 2010, 34, 2477–2483.

[CrossRef]
66. Zhou, Z.; Zou, X. Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 2003, 16, 165–171. [CrossRef]
67. Krabs, W. A General Predator-Prey Model. Math. Comput. Model. Dyn. Syst. 2003, 9, 387–401. [CrossRef]
68. Allen, L.J.S. An Introduction to Mathematical Biology; Pearson Prentice Hall: New York, NY, USA, 2007; pp. 89–140.
69. Brauer, F.; Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology, 2nd ed.; Springer: New York, NY, USA;

Dordrecht, The Netherlands; Heidelberg, Germany, 2012; pp. 123–134.
70. Müller, J.; Kuttler, C. Methods and Models in Mathematical Biology, Deterministic and Stochastic Approaches. In Lecture Notes on

Mathematical Modelling in the Life Sciences; Springer-Verlag: Berlin/Heidelberg, Germany, 2015.
71. Voroshilova, A.; Wafubwa, J. Discrete Competitive Lotka–Volterra Model with Controllable Phase Volume. Systems 2020, 8, 17.

[CrossRef]
72. Saha, P.; Bairagi, N.; Biswas, M. On the Dynamics of a Discrete Predator-Prey Model. In Trends in Biomathematics: Modeling, 337

Optimization and Computational Problems; Mondaini, R., Ed.; Springer: Berlin, Germany, 2018; pp. 219–232.
73. Zhao, M.; Xuan, Z.; Li, C. Dynamics of a discrete-time predator-prey system. In Advances in Difference Equations 2016; Springer

Open: Berlin/Heidelberg, Germany, 2016.
74. Chou, C.S.; Friedman, A. Introduction to Mathematical Biology, Modeling, Analysis, and Simulations. In Springer Undergraduate

Texts in Mathematics and Technology; Springer International Publishing: Cham, Switzerland, 2016.
75. Raffoul, Y.N. Qualitative Theory of Volterra Difference Equations; Springer Nature Switzerland AG: Cham, Switzerland, 2018; pp.

55–89.
76. Bodine, S.; Lutz, D.A. Asymptotic Integration of Differential and Difference Equations; Springer International Publishing: Cham,

Switzerland, 2015; pp. 237–282.
77. Honda, T.; Iwata, Y. Operator Theoretic Phenomena of the Markov Operators which are Induced by Stochastic Difference

Equations. In Advances in Difference Equations and Discrete Dynamical Systems. ICDEA 2016; Springer Proceedings in Mathematics
& Statistics; Elaydi, S., Hamaya, Y., Matsunaga, H., Pötzsche, C., Eds.; Springer: Singapore, 2017; Volume 212.

78. Mickens, R.E. Difference Equations Theory, Applications and Advanced Topics; CRC Press: Boca Raton, FL, USA, 2015; pp. 83–115.
79. Kitzing, K.; Picard, R.; Siegmund, S.; Trostorff, S.; Waurick, M. A Hilbert Space Approach to Difference Equations. In Difference

Equations, Discrete Dynamical Systems and Applications, ICDEA 2017; Springer Proceedings in Mathematics & Statistics; Elaydi, S.,
Pötzsche, C., Sasu, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 287, pp. 285–307.

80. Castro, J.R.; Castillo, O.; Melin, P.; Rodríguez-Díaz, A. Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic
Toolbox. In Transactions on Computational Science I; Springer: Berlin/Heidelberg, Germany, 2008.

81. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?– Arguments against avoiding RMSE in the
literature. Geoscientific Model Development. 2014, 7, 1247–1250. [CrossRef]

82. Saeed, W.; Ghazali, R. Chaotic Time Series Forecasting Using Higher Order Neural Networks. Int. J. Adv. Sci. Eng. Inf. Technol.
2016, 6, 624–629.

83. Martínez-García, J.A.; González-Zapata, A.M.; Rechy-Ramírez, E.J.; Tlelo-Cuautle, E. On the prediction of chaotic time series
using neural networks. Chaos Theory Appl. 2022, 4, 94–103.

84. López-Caraballo, C.H.; Salfate, I.; A Lazzús, J.; Rojas, P.; Rivera, M.; Palma-Chilla, L. Mackey-Glass noisy chaotic time series
prediction by a swarm-optimized neural network. J. Physics: Conf. Ser. 2016, 720, 012002. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/axioms11080391
http://doi.org/10.1186/s13662-021-03364-2
http://doi.org/10.1186/1687-1847-2013-95
http://doi.org/10.1016/j.apm.2009.11.012
http://doi.org/10.1016/S0893-9659(03)80027-7
http://doi.org/10.1076/mcmd.9.4.387.27896
http://doi.org/10.3390/systems8020017
http://doi.org/10.5194/gmd-7-1247-2014
http://doi.org/10.1088/1742-6596/720/1/012002

	Introduction 
	Nonlinear Autoregressive Neural Networks 
	Discrete Mycorrhiza Optimization Algorithm 
	Proposed Method 
	Results 
	Statistical Data 
	Hypothesis Test 
	Comparisone with Other Methods 

	Discussion of Results 
	Conclusions 
	References

