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Abstract: Additive manufacturing technologies enable the production of components with lightweight
cores, by means of infills with various patterns and densities. Together with reduced mass and
material consumption, infill geometries must ensure that strength and stiffness conditions are fulfilled.
For the proper correlation of the infill type with the loading case of the part, the mechanical behavior
of the infill along all three principal axes of inertia has to be known. In this paper, the behavior
in symmetric and asymmetric bending of three infill geometries, commonly used in 3D printing
processes (honeycomb, grid and triangles) is analyzed. The variations of deflections as a function of
force orientation are presented, showing that honeycomb and triangular structures exhibit similar
behaviors along the Y and Z principal axes of inertia. Furthermore, the displacements obtained for
the three types of structures are compared, in relation to the consumed volume of material. The
larger displacements of the grid structure compared to the honeycomb and triangular structures
are highlighted.

Keywords: additive manufacturing; fused filament fabrication (FFF); polylactic acid (PLA); honeycomb;
grid; triangular; symmetric bending; asymmetric bending

1. Introduction

Additive manufacturing technologies have developed intensively in recent decades.
Specific to these technologies is the building of parts layer by layer, allowing the core of
the parts to be generated with different infill geometries (alternative to full core parts). A
decrease in mass and material consumption is achieved using an infill pattern. Furthermore,
the infill patterns should be selected in relation to the loads applied to the part, aiming to
optimize the stress distribution and static/dynamic behavior [1–4].

Infill geometries are defined by two main parameters: the infill pattern and the infill
density [5]. The various slicer software used in FFF (fused filament fabrication) technology
have predefined various infill patterns, the number of which has been increasing in recent
years. Engineers can also build optimized infill geometries directly in computer-aided
design (CAD) software according to the stress and strain states of the parts. Several
categories of infill geometries can be defined:

- Infill geometries defined by a 2D model, identical for two successive layers (the result
is a 2.5D structure with prismatic cells oriented along the Z axis of the printer);

- Infill geometries defined by 3D models (the infill pattern is defined by several suc-
cessive layers with different configurations; this pattern is repeated after a specific
number of layers; the cells can be open or closed) [6,7];

- Lattice-type infill geometries [8];
- Infill geometries with variable infill, changed from layer to layer [9] or changed

between specified areas in the part [10–12];
- Infill geometries with variable structure resulting from topological optimization.

Figure 1 shows examples of infill geometries defined by 2D models. The four examples
(grid, triangles, concentric, cross) were generated with an infill density of 40%, for a
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prismatic volume 40 × 40 × 10 mm3, using the Ultimaker Cura 5.0.0 slicer software
(Ultimaker B.V., Utrecht, Netherlands). For a better display, the infill geometries were
generated without top/bottom layers and without peripheral contours (without shell).
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The density of the infill indicates the percentage of the inner volume that is occupied 
by material (100% infill density indicates a solid volume; 0% infill density indicates a hol-
low part). Figure 3 shows a 40×40×10 mm3 prismatic volume with grid infill at four differ-
ent densities: 20%, 40%, 60% and 80%. The infill was generated by the Ultimaker Cura 
5.0.0 slicer software, using three perimeter contours and without upper and lower layers. 
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Figure 3. The top views of a prismatic volume (40×40×10 mm3) with grid infill at various densities: 
(a) 20%, (b) 40%, (c) 60%, (d) 80%. 

The peripheral contours, the lower layers and the upper layers constitute a shell that 
closes the filling volume and gives the shape of the piece. The ratio of the shell material 
volume to the infill material volume increases under certain conditions: small parts; low 
infill densities; high number of top/bottom layers and peripheral contours. In such cases, 

Figure 1. The top views of a prismatic volume (40 × 40 × 10 mm3) with various infill patterns defined
by 2D models: (a) grid, (b) triangles, (c) concentric, (d) cross.

Figure 2 shows four examples of infill geometries defined by 3D models, generated
under the same conditions presented above.
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Figure 2. The perspective views of a prismatic volume (40 × 40 × 10 mm3) with various infill patterns
defined by 3D models: (a) cross 3D, (b) gyroid, (c) quarter cubic, (d) octet subdivision.

The density of the infill indicates the percentage of the inner volume that is occupied
by material (100% infill density indicates a solid volume; 0% infill density indicates a hollow
part). Figure 3 shows a 40 × 40 × 10 mm3 prismatic volume with grid infill at four different
densities: 20%, 40%, 60% and 80%. The infill was generated by the Ultimaker Cura 5.0.0
slicer software, using three perimeter contours and without upper and lower layers.
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Figure 3. The top views of a prismatic volume (40 × 40 × 10 mm3) with grid infill at various densities:
(a) 20%, (b) 40%, (c) 60%, (d) 80%.

The peripheral contours, the lower layers and the upper layers constitute a shell that
closes the filling volume and gives the shape of the piece. The ratio of the shell material
volume to the infill material volume increases under certain conditions: small parts; low
infill densities; high number of top/bottom layers and peripheral contours. In such cases,
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the contribution of the shell to the load bearing capacity of the piece increases as well [13].
An eloquent example in this regard is a tensile specimen with a small cross-section. For
instance, the area occupied by the infill of an ASTM D638-14 type IV tensile specimen [14]
with a 3.2 × 6 mm2 cross-section, printed in the ZX or ZY build orientation [15], with two
peripheral layers of 0.4 mm (Figure 4), represents only 37% of the cross-section. To conclude,
for an accurate analysis of the results obtained from mechanical tests on specimens with
small cross-sections, the following parameters should also be considered: the number and
the thickness of the lower and upper layers, the wall line number, and the wall thickness.
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In the fused filament fabrication (FFF) technology, polymeric materials (polylactic
acid—PLA, acrylonitrile butadiene styrene—ABS, polyethylene terephthalate—PET, etc.)
and composite materials are used. For the components made by FFF printing, the me-
chanical properties are influenced by several process parameters, but also by pre-process
conditions (filament state) and post-process conditions (storage conditions, post-process
treatments, working environment) [16,17]. The orientation of the part on the printer build
plate and the type of raster can determine the anisotropic behavior of the material (even if
the material is isotropic in conventional manufacturing). Differences are observed mainly
between the behavior on the two axes of the printer build plate (X and Y, according to
ISO/ASTM 52921:2013) and the Z axis on which successive layers are built [16]. The pattern
and the density of infill can increase the anisotropic behavior. Under these conditions, it is
necessary to carry out the characterization of the mechanical behavior of components with
different types of infill following each of the three principal axes of inertia.

Research carried out so far on polymeric materials printed with different infills has
mainly focused on the analysis of tensile, compressive or bending behavior. A synthesis of
the literature is presented below, including only papers in which specimens are printed
from polylactic acid using the FFF technology.

Dobos, et al. [18] analyze the tensile behavior for four types of infill (rectilinear, Hilbert
curve, concentric and honeycomb) with 40–80% densities. The force–elongation curves
show that at 80% density the highest breaking force is obtained for honeycomb infill, while
at 40% and 60% densities the highest breaking force is obtained for concentric infill.

Guan [19] compares the tensile behavior of honeycomb, triangular and rectilinear infill
specimens and shows that both UTS and Young’s modulus (E) are higher for honeycomb
and triangular infill.

Gonzalez-Rebanque et al. [20] analyze the tensile behavior of PLA specimens made
with rectilinear, triangle and honeycomb infill and show that at 80% infill density the
highest value of UTS (ultimate tensile strength) is obtained for rectilinear infill specimens,
and at 50% and 30% densities the highest UTS value is obtained for honeycomb infill.

In [21] the tensile behavior of six types of infill is analyzed: hexagonal, triangular,
square, diamond, diamond angle and square angle. These infill structures were disposed
only in the calibrated area of the ASTM D638 Type I specimen directly by CAD modeling.
No top layers were defined, but peripheral contours were used. The stress–strain curves
show that the highest tensile strengths were obtained for the square and triangle structures
and the lowest tensile strength was obtained for the diamond structure.

Comparative analysis of tensile behavior for the ASTM D638-type I specimens with
three peripheral contours [22] indicates that at 75% infill density, concentric-type structures
have higher UTS compared to grid and tri-hexagonal structures.
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The comparison of the tensile behavior of ISO 527-2 [23] specimens made with seven
infill patterns, 60% infill density and two peripheral contours shows close values of the
mechanical strength [24]. Analyzing the specimens, it can be concluded that the peripheral
contours determine the mechanical behavior while the infill influence is low.

Research by Alafaghani et al. [25] indicates that the UTS obtained for ASTM D638 type
IV specimens made with hexagonal infill and diamond infill is slightly higher than the UTS
obtained for specimens with linear infill. The small differences obtained can be correlated
with the small dimensions of the specimen cross-section (6 × 3.5 mm2) and the influence of
the shell walls.

Tensile tests performed on ASTM D638 specimens [26] showed that the UTS is higher
for grid infill compared to triangle and gyroid. This conclusion was obtained for all
three infill densities analyzed (60%, 75%, 90%). The authors explain this behavior by the
alignment of the grid infill with the axis of the tensile specimen.

Pernet and co-authors [27] test 14 types of infill in compression and plot the ratios of
maximum compressive force to weight of specimens. The specimens used are cylindrical
with a diameter of 12.7 mm and a length of 25.4 mm, and have three peripheral contours.
The highest force/mass ratios are obtained for grid and cross infills.

In [28] the compression behavior of prismatic specimens (12.7 × 12.7 × 25.4 mm3)
with six types of infill (octagram spiral, Hilbert curve, rectilinear, line, Archimedean curve
and honeycomb) and four infill densities (ranging from 20% to 80%) are analyzed. It is
shown that the Hilbert curve pattern specimens have the highest compressive strength
(approximately double compared to the other infills).

Analyzing four types of infill (triangle, grid, quarter-cubic and tri-hexagon) in low-
velocity impact tests and a compression test, Aloyaydi et al. [29] show that the grid type
infill has the highest compressive strength and the triangle type infill has the highest
absorbed energy in impact tests.

Birosz et al. [30] compare the bending behavior for three types of infill: grid, honey-
comb and gyroid. The specimens with square cross-section of 10 × 10 mm2 were made with
shells of constant thickness—0.8 mm (the section occupied by the infill is 8.4 × 8.4 mm2).
The tests were performed with the force orientated along two axes, Y and Z. The results
obtained by the authors highlight the higher breaking force of specimens with hexagonal
and gyroid infill. It is noted that the breaking force and modulus of elasticity obtained
along the X-axis are close to the breaking force and modulus of elasticity obtained along
the Z-axis (this is evidenced for all three types of infill).

Honeycomb infill specimens (10×4 mm2 cross-section) show higher modulus of elas-
ticity compared to linear and rectilinear infill specimens in four-point bending tests [31].

In [32] the bending properties of grid and honeycomb infills made at three different
densities (10%, 25% and 50%) are analyzed. For the 50% density the honeycomb infill shows
flexural strength higher by approx. 13% compared to the grid infill. The ISO 178:2011 [33]
type specimens (10 × 4 mm2 section) are made with three peripheral contours. At low
infill densities, the influence of the shell on the bending behavior can be higher than the
influence of the infill.

In [34] the tensile and bending behavior of ASTM D638-14 [14] and ASTM D790-10 [35]
specimens with rectilinear, concentric, honeycomb and Hilbert-curve infill are analyzed.
No details are given on printing parameters, number of peripheral contours or number
of top layers. In both bending and tensile tests, the highest mechanical strengths were
obtained for the rectilinear and honeycomb infills.

The analysis of the impact behavior (Izod test) for 12 infill patterns at different infill
densities reveals that the linear, zig-zag and concentric infills exhibit the highest energy
absorbed on impact, at both 50% and 75% density [36].

Bonada et al. [37] analyze the type of infill correlated with the build orientation of
the specimens and the type of the raster. It should be noted that the build orientation
causes significant differences in infill orientation and specimen mass. Thus, at XY and YX
orientations the infill is built on the thickness of the specimen, at YZ and XZ orientations
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the infill is built on the width of the specimen, and at ZY and ZX orientations the infill is
built on the length of the specimen.

Most of the research reviewed was conducted on standardized specimens. The reduced
thickness of these specimens leads to a low ratio of the infill material volume to the shell
material volume. Under these conditions, the relevance of analyses of the mechanical
behavior of different infill patterns is low. Furthermore, the analysis of the variation of the
mechanical properties of the cellular structures in relation to the orientation of the force to
the main axes of inertia is less studied in the literature.

The objective of the current research was to analyze the symmetric and asymmetric
bending behavior for three types of infill structures widely used in additive manufacturing:
honeycomb, grid and triangular. In particular, it aimed to determine the variation of the
deflections as a function of the orientation of the force to the principal axes of inertia Y and
Z. Furthermore, considering the volume of each type of structure, a comparative analysis of
the behavior of the three structures was also carried out. The characterization of asymmetric
bending behavior of infill structures is of major importance for mechanical components
subjected to loads with variable direction (e.g., turbine blades, propellers).

2. Materials and Methods

The geometries of the three types of structures analyzed in this paper (honeycomb,
grid and triangles) were modelled in the SolidWorks 2020-2021 software (Dassault Systèmes,
Vélizy-Villacoublay, France). The structures were fitted into a prismatic volume of 120 mm
length and 20 × 20 mm2 cross-section (Figure 5). A square cross-section was chosen so that
a comparative analysis of Z- and Y-axis behavior could be performed. The cross-section
dimensions of the specimen for the three-point bending tests were increased relative to
standard dimensions in order to increase the number of cell rows arranged across the width
of the specimen. The length of the specimen was correlated with the cross-section.
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Figure 5. The specimens’ overall dimensions—illustration for the hexagonal structure.

No peripheral contours or upper/lower layers were generated, as their dimensions
introduce additional variables into the analysis. In the reference system attached to the
three types of structures, the X-axis defines the length, and the Y- and Z-axes define the
cross-section.

The structures defined by 2D patterns with regular polygonal cells (hexagon, square,
triangle) are characterized by the specific dimensions of the polygons and the distances
between two neighboring polygons (wall thickness) [38]. In this research the cell wall
thicknesses were identical in all three structures, and the characteristic dimensions of the
polygonal cells were chosen assuming that the specimen volumes were of the same scale
order. A specific dimension of 3 mm was used to define the inner of the cells and the
wall thickness was kept constant at 1 mm (Figure 6). The layout of the hexagonal/ grid/
triangular cells was made so that the structures were symmetrical relative to the median
planes. Therefore, the X, Y and Z axes were the main axes of inertia.
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Figure 6. The detailed views of structures’ cells: (a) hexagonal, (b) grid, (c) triangles.

To compare the mechanical behavior of the three structures, the differences in actual
volume (reflecting material consumption) were calculated, based on the 3D models from
SolidWorks (Table 1). The volume of the grid structure is 1.82% smaller compared to the
hexagonal structure, while the volume of the triangular structure is 23.96% higher.

Table 1. The comparative analysis of volume for the three specimens.

Sample Volume
[mm3]

Volume Variation rel.
to Hexagonal

[%]

Hexagonal 21,353.07 0.00

Grid 20,964.76 −1.82

Triangular 26,468.87 23.96

The 3D printing was done by fused filament fabrication (FFF), using an Ultimaker
2+ Connect printer (Ultimaker B.V., Utrecht, Netherlands). The geometries generated in
SolidWorks were imported as stl file into the Ultimaker Cura 5.0.0 slicer software. The
material used was Ultimaker Silver PLA (Ultimaker B.V., Utrecht, Netherlands) with a
diameter of 2.85 mm. The main properties of the material (according to the manufac-
turer’s specifications) were: density—1.24 g/cm3, melting point—145–160 ◦C, thermal
decomposition—250 ◦C, tensile modulus of elasticity—2890 MPa up to 3393 MPa, tensile
stress at break—30.3 MPa up to 57.5 MPa, flexural modulus of elasticity—2693 MPa up to
3106 MPa and flexural strength—52 MPa up to 101.3 MPa. No pre-process treatments were
applied to the filament. The print parameters (Table 2) were maintained constant for all
three structures.

Table 2. The 3D printing parameters.

Parameters Values

Process fused filament fabrication (FFF)
Layer thickness, t 0.1 mm
Printing head temperature, TH 210 ◦C
Build plate temperature, TB 60 ◦C
Printing speed, sp 50 mm/s
Nozzle diameter, dn 0.40 mm
Filament diameter, df 2.85 mm
Build orientation (acc. to [15]) XY
Material Ultimaker PLA Silver

The selection of the printing parameters was done in accordance with the manufac-
turer’s recommendations and previous research [16,39]. The specimens were placed in the
center of the build plate, following the XY orientation. No support material was used. Each
specimen was printed individually.
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Figure 7 shows the aspect of the three types of test specimens. No post-processing
treatments were applied after 3D printing.
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Two testing phases were completed to investigate the symmetric and asymmetric
bending behavior of the structures:

(a) The analysis of the three-point bending behavior (symmetric bending);
(b) The analysis of the asymmetric bending behavior for cantilever beam loaded by a

force disposed inclined to the main axes of inertia Y and Z.

The experimental three-point bending tests were carried out for two loading cases:
force applied along the Y principal axis of inertia and force applied along the Z principal
axis of inertia (Figures 8–10). The tests were performed on a Mecmesin MultiTest 2.5 dV
(PPT Group UK Ltd., Slinfold, UK) mechanical testing machine. The span between the 3-
point bending device supporting pins was 100 mm and the force was applied in the middle
section (Figure 8c). Displacements were measured for seven force values: 10 N, 20 N, 30 N,
40 N, 50 N, 60 N and 70 N. For the Z-direction force analysis, the specimens were positioned
rotated (with the axis of the prismatic cells placed horizontally—Figures 8b, 9b and 10b).
Three experimental tests were performed for each type of structure. The results are pre-
sented as force-deflection variations. Assuming that the force-deflection variations are
linear (as the deflections are obtained in the elastic region of the material), the tangents of
these variations were calculated.
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specimen, (b) force along the Z-axis of the specimen, (c) device layout.
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Finite element analysis of the 3-point bending deflections was performed for loading
layouts similar to the experimental tests (Figures 11 and 12—example for the hexagonal
structure; similarly loading layouts were used for the grid and the triangle structures).
The force was varied from 10 N to 70 N, determining the force-deflection variations and
the tangents of these variations. The set-up of the mesh was based on the convergence of
the Y-axis maximum displacements. Subsequently, the mesh parameters were maintained
identical for both bending cases of the same structure. Furthermore, the overall size of
the finite elements was set to the same value (2 mm) for the three structures, resulting in:
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52,444 finite elements with 95,468 nodes for the hexagonal structure, 50,663 finite elements
with 95,739 nodes for the grid structure and 52,115 finite elements with 98,174 nodes for
the triangle structure.
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view on fixing conditions (identically for both fixing areas).

The deviations between the tangents of the force-deflection variations obtained experi-
mentally and those obtained by finite element analysis were analyzed. After the validation
of the FEM simulations for 3-point bending, the analysis models for asymmetric bending
were settled. Asymmetric bending assumes that the resultant force acts along an axis
inclined to the principal axes of inertia Y and Z.

In three-point bending the variation of the force direction implies the change of the
fixing surfaces, which leads to additional variables introduced into the analysis. Therefore,
the cantilever beam setup was used for the analysis of the displacement variation in
asymmetric bending. The fixing conditions were applied on the left cross-section and the
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force was applied on the right cross-section of the beam for all loading cases (Figure 13—
illustration for the hexagonal structure). An angle α was used to define the direction of
the force in the (YZ) plane, relative to the Y-axis (Figure 13b). For α = 0◦ the force is
applied along the Y-axis (Figure 13a) and for α = 90◦ the force is applied along the Z-axis
(Figure 13c). The value of the applied force was kept constant at F = 5 N and the direction
of the force was varied by 5◦ in the range 0◦–90◦ (19 directions analyzed for each structure).
In SolidWorks, the inclined force was applied as force projections (Figure 13b). For each
type of structure, the variation of the displacement (Ures) versus angle α was plotted.
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3. Results and Discussion

This chapter presents the results obtained in the two stages of the analysis: three-point
bending along the Y- and Z-axes and asymmetric bending of a cantilever beam.

3.1. Three-Point Bending

The three-point bending layout corresponds to a simply supported beam with force
applied in the middle section. In this case, the maximum deflection U3PB max of a beam
with constant cross-section can be calculated with Equation (1):

U3PB max =
F · l3

E · I
(1)

where l is the beam length (the length between the two supporting pins of the three-point
bending device), E is Young’s modulus and I is the axial moment of inertia (Iz at Y-axis
loading, respectively Iy at Z-axis loading).

For a square cross-section the moments of inertia along the Y and Z axes are equal
Iz/Iy = 1, resulting in equal deflections on bending along the two axes Uy = Uz. For the
structures with a cellular infill, the axial moments of inertia vary with the position of the
cross-section along the X-axis. In addition, the axial moments of inertia Iz and Iy in any
cross-section are not equal to each other and the ratio Iz/Iy depends on the position of
the cross-section. The ratio of maximum deflection Uy/Uz will thus be dependent on the
variation of the Iz/Iy ratios.

The experimental tests carried out at three-point bending aimed to determine the ratios
of the maximum deflections Uy/Uz and to calculate the tangents of the force-deflection
variations (these tangents reveal the elastic behavior of the structures).

The deflections obtained in the three tests carried out for each type of structure were
represented graphically, plotting the average force-deflection variation. The tests were
carried out in the elastic domain; thus, the variations were linear. Figures 14–16 show
the deflection variations Uy = f (Fy) (force applied on the Y-axis of the specimen) and
Uz = f (Fz) (force applied on the Z-direction) resulting from the experimental tests for
the three types of structures. For the hexagonal structure the variations Uy = f (Fy) and
Uz = f (Fz) have similar slopes. The same type of behavior is observed for the triangle
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structure. In the grid structure the tangent of the variation Uz = f (Fz) is substantially
higher than the tangent of the variation Uy = f (Fy).
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Figure 14. The variations of deflections Uy = f (Fy) and Uz = f (Fz) for the hexagonal structure, in
experimental three-point bending.
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Figure 15. The variations of deflections Uy = f (Fy) and Uz = f (Fz) for the grid structure, in experimental
three-point bending.
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Figure 16. The variations of deflections Uy = f (Fy) and Uz = f (Fz) for the triangle structure, in
experimental three-point bending.
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Figure 17 shows a comparison of the variations Uz = f (Fz) for the three types of
structure. It can be seen that the triangular structure has the smallest deflections, followed
by the hexagonal structure. The differences between the deflections of these two types of
structure and the deflections of the hexagonal structure are large.
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Figure 17. The comparative analysis of the variation of deflection Uz = f (Fz) for the hexagonal,
triangle and grid structures, in experimental three-point bending.

The comparative analysis must also include the volume of each structure. As shown in
Table 1, hexagonal cell structures and grid cell structures have similar volumes Vgrid/Vhex = 0.98.
The ratio of the tangents of the deflection functions θz = tan(Uz = f (Fz)) is θzgrid/θzhex = 3.94.
Thereby, at the same material consumption, the hexagonal structure has smaller deflections
compared to the grid structure.

For the comparative analysis between the hexagonal structure and the triangle struc-
ture the volume ratio is Vtri/Vhex = 1.23, while the ratio of the tangents of the deflection
functions is θztri/θzhex = 0.70. It follows that a 23% higher material consumption in the
triangle structure leads to a 30% decrease of deflection compared to the hexagonal structure.

Figure 18 shows a comparison of the variations Uy = f (Fy) for the three types
of structures. The tangent ratios of the deflection variations θy = tan(Uy = f (Fy))
are: θygrid/θyhex = 3.18 and θytri/θyhex = 0.69. The tendencies are similar with the
Uz = f (Fz) variations.
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Figure 18. The comparative analysis of the variation of deflection Uy = f (Fy) for the hexagonal,
triangle and grid structures, in experimental three-point bending.
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FEM analyses of three-point bending were performed for seven force values, ranging
from 10 N to 70 N, determining the functions Uy = f (Fy) and Uz = f (Fz) and the tangents
of these functions. Figures 19–21 show the charts of displacements for F = 70 N.
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Table 3 summarizes the values of the tangents θz and θy obtained experimentally
and by numerical simulation of three-point bending. The values of the coefficient of
determination R2 are also presented. It is observed that for the variations determined by
experimental measurements, the values of this coefficient are situated between 0.975 and
0.997, indicating small values of the deviations.

Table 3. The comparative analysis the tangents of the Uy = f (Fy) and Uz = f (Fz) functions obtained
by experiment and the FEM simulation of three-point bending.

Geometry

Uy = f (Fy) Uz = f (Fz)

Experimental FEM Experimental FEM

θy R2 θy R2 θz R2 θz R2

Hexagonal 0.0095 0.982 0.0095 1 0.0114 0.989 0.0113 1

Grid 0.0303 0.997 0.0183 1 0.0450 0.997 0.0478 1

Triangular 0.0066 0.975 0.0058 1 0.0080 0.987 0.0088 1

The conclusions of this analysis of the three-point bending displacements should be
correlated with the orientation of the structures’ cells. The effect of changing the orientation
of hexagonal/triangular/grid cells through rotation in the (XZ) plane was not included
in this analysis. The cell orientation influences the consumption of the material [40] and
the mechanical behavior of the structures [41]. Furthermore, changing the position of the
force relative to the center of the polygonal cells determines the changes in the mechanical
behavior of the structure [42].

3.2. The Variation of Resultant Displacement in Unsymmetrical Bending

For a cantilever beam loaded with asymmetric force F, oriented at angle α to the y-axis,
the maximum resultant displacement can be calculated by the equation:

Ures =

((
F · cos α · l3

E · Iz

)2

+

(
F · sin α · l3

E · Iy

)2)1/2

(2)

where: l is the length of the bar; E is Young’s modulus; and Iy and Iz are the axial moments
of inertia. From Equation (2) it is observed that if Iz = Iy (e.g., square cross-section), then
U_res is constant for any value of angle α.

For the three geometries considered here the cross-section is fitted into a 20 × 20 mm2

square, the Y and Z axes are the principal axes of inertia, but the axial moments of inertia
Iy and Iz are not equal and are variable, depending on the position of the cross-section on
the X axis.

To establish the variation of the displacements as a function of the orientation of
the force (angle α), the value of the resultant force was kept constant and the angle
α was varied by 5◦, in the range 0◦–90◦. Figures 22–24 show the distribution of dis-
placements for the three structures at angles α = 0◦ and α = 90◦. The similar values of
the maximum displacements for the hexagonal structure are observed, with the ratio
Uhex(α=0)/Uhex(α=90) = 1.02. For the triangular cell structure, the displacement ratio is
Utri(α=0)/Utri(α=90) = 0.95. The grid cell structure shows a significant variation in the
resulting displacement Ugrid(α=0)/Ugrid(α=90) = 0.64 and larger displacements relative to
the hexagonal and triangular structures.
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Figure 24. Cantilever beam. The displacement charts for the triangle structure: (a) α = 0◦, (b) α = 90◦.

Figure 25 shows the variation of the resultant displacements as a function of the angle
α of inclination of the force. It can be seen that the extreme values are obtained for α = 0◦

and α = 90◦. For the grid structure the largest displacement is obtained for the orientation
of the force along the Z-axis (α = 90◦), a conclusion also drawn from the experimental
analysis at three-point bending.
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Figure 25. The influence of force orientation on the resultant displacement at asymmetric bending,
Ures = f (α).

The low variation of the resultant displacement in hexagonal and triangular geometries
shows that these structures can be used in beam-like mechanical components loaded with
force of variable orientation.

The conclusions resulting from the analysis of the displacements under asymmetric
bending should be correlated with the cell orientations used for the three types of structure.
Changing the orientation of the cells by rotation in the (XZ) plane can cause the change of
the position of the principal axes of inertia.

4. Conclusions

The use of cellular structures for the core of mechanical components leads to a reduc-
tion in mass and material consumption and may conduce, at the same time, to an optimized
stress distribution and an improved elastic behavior. To achieve these advantages, the me-
chanical behavior of these structures, as well as the variation of the mechanical properties
in relation to the main axes of inertia, has to be known.

The number and thickness of top/bottom layers and the number of peripheral contours
constitute variables that influence the analysis of infill types, especially when using low
infill densities or test specimens with a small cross-section area. An alternative is the testing
of structures without shells, as presented in this paper.

The analysis of symmetric and asymmetric bending displacements for the three struc-
tures considered in this paper (hexagonal structure, grid structure and triangular structure)
led to the following conclusions:

- The grid cell structure has significantly larger displacements than the hexagonal cell
structure at the same material consumption.

- At the same material consumption, the triangular cell structure has slightly smaller
displacements than the hexagonal cell structure.

- For hexagonal/triangular cell structures the displacements do not vary significantly
with the orientation of the force relative to the principal axes of inertia. These types of
structure are suitable for mechanical components where the force changes direction in
the YZ plane.

- For the grid structure the variation of displacements with the orientation of the force
relative to the principal axes of inertia is large; displacements are higher when the
force acts perpendicular to the axis of the prismatic cells of the grid geometry.

The analyzed structures show symmetry with respect to the median planes. The
rotation of the cells in the XZ plane can cause the change of the principal axes of inertia and
the modification of the bending behavior. These issues will be analyzed in future research.
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