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Abstract: Inorganic n-type Bi2Te3 flexible thin film, as a promising near-room temperature thermo-
electric material, has attracted extensive research interest and application potentials. In this work, to
further improve the thermoelectric performance of flexible Bi2Te3 thin films, a post-electric current
treatment is employed. It is found that increasing the electric current leads to increased carrier concen-
tration and electric conductivity from 1874 S cm−1 to 2240 S cm−1. Consequently, a high power factor
of ~10.70 µW cm−1 K−2 at room temperature can be achieved in the Bi2Te3 flexible thin films treated
by the electric current of 0.5 A, which is competitive among flexible n-type Bi2Te3 thin films. Besides,
the small change of relative resistance <10% before and after bending test demonstrates excellent
bending resistance of as-prepared flexible Bi2Te3 films. A flexible device composed of 4 n-type legs
generates an open circuit voltage of ~7.96 mV and an output power of 24.78 nW at a temperature
difference of ~35 K. Our study indicates that post-electric current treatment is an effective method in
boosting the electrical performance of flexible Bi2Te3 thin films.

Keywords: thermoelectric; Bi2Te3; flexible; thin film; electric current treatment

1. Introduction

Flexible thermoelectric (TE) devices, with the advantages of being self-powering,
sustainable, and of small volume, provide a reliable power supply solution for wearable
electronics, implantable electronics, and chip-sensors at near-room temperature [1–3]. The
main challenge for flexible TE devices lies in the TE material performance and device
integration technology. The performance of TE materials is evaluated by dimensionless
figure-of-merit ZT (ZT = S2σT/κ, where S, σ, S2σ, T, and κ represent Seebeck coefficient,
electrical conductivity, power factor, absolute temperature, and thermal conductivity, re-
spectively) [4,5]. Recently, the flexible thin film (f-TF) provides an avenue for flexible TE
devices due to the excellent flexibility, comparing with the bulk TE counterparts [6,7].
Organic f-TFs, including P3HT (S2σ < ~0.04 µW cm−1 K−2 at room temperature) [8],
PEDOT:PSS (S2σ < ~0.5 µW cm−1 K−2 at 300 K) [9], and PANI (S2σ < ~0.6 µW cm−1 K−2 at
300 K) [10], are typically highly flexible with relatively low TE performance compared with the
inorganic f-TFs. Inorganic f-TFs with excellent TE performance have received extensive atten-
tion, such as SnSe (S2σ = ~3.5 µW cm−1 K−2 at 300 K) [11], CuI (S2σ = ~3.75 µW cm−1 K−2 at
300 K) [12], Ca0.35CoO2 (S2σ = ~0.5µW cm−1 K−2 at 300 K) [13], Ag2Se (S2σ = ~9.874 µW cm−1

K−2 at 300 K) [14], and Bi2Te3-based f-TFs (S2σ = ~25 µW cm−1 K−2 at 300 K) [15].
Among many inorganic f-TFs, Bi2Te3 based ones are the most widely applied due

to the excellent TE performance at room temperature [16,17]. Wu et al. [18] reported that

Micromachines 2022, 13, 1544. https://doi.org/10.3390/mi13091544 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13091544
https://doi.org/10.3390/mi13091544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-8271-639X
https://doi.org/10.3390/mi13091544
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13091544?type=check_update&version=2


Micromachines 2022, 13, 1544 2 of 8

hybridizing Bi2Te3 f-TFs with graphene oxide by vacuum filtration and annealing, and an
S2σ of ~1.08 µW cm−1 K−2, is approached at ~297 K. Chen et al. [19] successful prepared
Bi2Te3 nanowire-based f-TFs with an S2σ o of 1.10 µW cm−1 K−2 at 400 K by solution
phase printing methods. Madan et al. [20] successfully fabricated Se-doped Bi2Te3 based
f-TFs with the S2σ of ~2.65 µW cm−1 K−2 at ~297 K by mechanically alloyed and dispense
printing method. Bi2Te3 f-TFs fabricated by in situ solution method has approached
~7.4 µW cm−1 K−2 at ~297 K [21]. Bi2Te3 f-TFs fabricated by thermal diffusion methods
can achieve the S2σ of ~14.65 µW cm−1 K−2 at room temperature [22]. Additionally, many
post-treatment techniques have been used to further improve the TE performance of n-type
Bi2Te3 based f-TFs, such as such as heat treatment [23], laser treatment [24,25], infrared
treatment [26], and electric current treatment [27].

Electric current treatment, as an effective and fast method, has attracted research
interest [28]. Tan et al. [29] strengthened the anisotropy of electron mobility of Bi2Te3 based
thin films by introducing electric current during the deposition process, and achieved a high
S2σ of 45 µW cm−1 K−2. Zhu et al. [27] also used post-electric current treatment (P-ECT)
methods to optimize phase transformations and crystal orientation of Bi0.5Sb1.5Te3 thin
film, resulting in an increase in σ. It is typically understood that P-ECT can enhance the
recrystallization kinetics, promote dislocation movement, and facilitate the formation of
oriented microstructures in a short time [30,31]. It was worth mentioning that the thermal
annealing effect is Joule thermal effect, and the athermal effect was mainly attributed to the
electronic wind on atom diffusion [31]. Further research will analyze the effect of thermal
effect and athermal effect on the doped Bi2Te3 f-TFs, respectively.

In this study, the magnetron sputtering is combined with P-ECT to prepare n-type
Bi2Te3 f-TF on polyimide (PI) substrate (Figure 1a,b). Figure 1c shows an optical image of a
typical n-type Bi2Te3 f-TF. Through optimizing the P-ECT current, the increase of carrier
concentration (ne) is achieved, leading to a high σ of ~2065 S cm−1. The corresponding
S2σ is ~10.70 µW cm−1 K−2, which is comparable with the reported n-type Bi2Te3 f-TF
(Figure 1d). Applications of as-prepared n-type Bi2Te3 f-TFs were investigated via an
assembled TE device, which is composed of 4 n-type Bi2Te3 legs. The device can generate
the maximum open circuit voltage of ~7.96 mV and the maximum output power of 24.78 nW
at the temperature difference (∆T) of ~35 K.Micromachines 2022, 13, 1544 3 of 9 

 

 

 
Figure 1. Schematic diagram of: (a) magnetron sputtering, (b) electric current treatment, (c) Bi2Te3 
f-TF, (d) mechanically alloyed and dispenser printing (2012) [20]; screen print (2014) [32]; disperser 
printing (2017) [21]; vacuum filtration and annealing (2019) [18]; in situ solution (2019) [33]; mag-
netron sputtering (2020) [34]. 

2. Experimental Section 
The n-type Bi2Te3 f-TFs were deposited on a flexible PI substrate using a magnetron 

sputtering method. The deposition parameters of the thin film are presented as follows: 
the working pressure of 1 Pa, radio frequency sputtering power of 50 W, the sputtering 
temperature of 573 K, the background vacuum of 7.0 × 10−4 Pa, and argon flow of 40 Sccm. 
The KPS-3005D generator with the maximum output of 5.000 A was used to provide an 
electric pulse current. Bi2Te3 f-TFs were post-treated by electric current with duration of 1 
s and interval of 1 s. The electric current was set as 0.3 A, 0.5 A, and 0.6 A, respectively, 
and the electric current time was 10 min. The thickness range of the Bi2Te3 f-TFs was ~580 
nm. Finally, the flexible thermoelectric device was assembled with 4 n-type single-legs. 

X-ray diffraction (XRD, D/max 2500 Rigaku Corporation, Tokyo, Japan, CuKα radi-
ation) was employed to investigate the crystal structures of as-prepared Bi2Te3 f-TFs. SEM 
(Zeiss supra 55) was used to characterize the surface morphology. EDS (Bruker Quantax 
200) was used to analyze the compositions of Bi2Te3 f-TFs. Hall measurement system 
(HL5500PC, Nano metrics) was employed to record ne and mobility (μ) values. A pro-
filometer (Dektak XT, BRUKER, Germany) was employed to measure the thickness of 
flexible n-type Bi2Te3 thin films. And σ and S were simultaneously measured by the 
SBA458 (Nezsch, Germany). 

  

Figure 1. Schematic diagram of: (a) magnetron sputtering, (b) electric current treatment, (c) Bi2Te3

f-TF, (d) mechanically alloyed and dispenser printing (2012) [20]; screen print (2014) [32]; disperser
printing (2017) [21]; vacuum filtration and annealing (2019) [18]; in situ solution (2019) [33]; magnetron
sputtering (2020) [34].
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2. Experimental Section

The n-type Bi2Te3 f-TFs were deposited on a flexible PI substrate using a magnetron
sputtering method. The deposition parameters of the thin film are presented as follows:
the working pressure of 1 Pa, radio frequency sputtering power of 50 W, the sputtering
temperature of 573 K, the background vacuum of 7.0 × 10−4 Pa, and argon flow of 40 Sccm.
The KPS-3005D generator with the maximum output of 5.000 A was used to provide an
electric pulse current. Bi2Te3 f-TFs were post-treated by electric current with duration of
1 s and interval of 1 s. The electric current was set as 0.3 A, 0.5 A, and 0.6 A, respectively, and
the electric current time was 10 min. The thickness range of the Bi2Te3 f-TFs was ~580 nm.
Finally, the flexible thermoelectric device was assembled with 4 n-type single-legs.

X-ray diffraction (XRD, D/max 2500 Rigaku Corporation, Tokyo, Japan, CuKα ra-
diation) was employed to investigate the crystal structures of as-prepared Bi2Te3 f-TFs.
SEM (Zeiss supra 55) was used to characterize the surface morphology. EDS (Bruker
Quantax 200) was used to analyze the compositions of Bi2Te3 f-TFs. Hall measurement
system (HL5500PC, Nano metrics) was employed to record ne and mobility (µ) values. A
profilometer (Dektak XT, BRUKER, Germany) was employed to measure the thickness
of flexible n-type Bi2Te3 thin films. And σ and S were simultaneously measured by the
SBA458 (Nezsch, Germany).

3. Results and Discussion

XRD patterns were employed to analyze the crystal structure of as-prepared Bi2Te3 f-TFs
as shown in Figure 2a. As can be seen, all the diffraction peaks can be indexed as the Bi2Te3
(PDF#15-0874), and no impurity peaks were observed. The right inset of Figure 2a shows
the enlarged (006) peaks. The strongest peaks of all XRD patterns can be indexed as (006),
indicating (00l) preferred orientation of all as-prepared Bi2Te3 f-TFs. Figure S1 shows that
no obvious crystallinity changes have been observed due to similar peak intensity and Full-
Width Half-Maximum. Figure 2b shows a typical SEM-EDS pattern of Bi2Te3 f-TFs treated
under the electric current of 0.5 A. The chemical compositions of as-prepared Bi2Te3 f-TFs
are shown in Figure 2c and Table 1. Before P-ECT, the as-deposited Bi2Te3 f-TF presents
the standard chemical stoichiometric ratio of ~2:3. With the increase of electric current,
the Te content decreases due to the release of the unstable Te. With increasing the electric
current from 0 to 0.6 A, the Bi content increases from 39.29 to 42.52 at. %, and Te content
decreases from 60.71 to 57.48 at. %, indicating the increasing content of Te vacancies.
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Table 1. SEM-EDS results of Bi2Te3 f-TF.

Electric Current Thickness Bi (at. %) Te (at. %)

0 A ~580 nm ± 5 nm 39.29 60.71
0.3 A ~581 nm ± 5 nm 41.01 58.99
0.5 A ~583 nm ± 5 nm 41.43 58.57
0.6 A ~584 nm ± 5 nm 42.52 57.48

To characterize the morphology of Bi2Te3 grains, the SEM images of as-prepared
Bi2Te3 f-TFs treated under the electric current 0, 0.5, and 0.6 A are shown in Figure 3a–c,
respectively. As can be seen, the as-prepared BT f-TFs are composed of hexagonal flakes
stacking parallel to substrate. As the electric current increases from 0 A to 0.6 A, larger
Bi2Te3 grains can be observed. Figure 3d shows the average grain size of as-prepared Bi2Te3
f-TF as a function of electric current. With the increasing of the electric current from 0 to
0.6 A, the average grain size increased from ~168 to ~381 nm. Figure S2 compares the
morphologies of as-prepared 0.6 A-Bi2Te3 thin film before and after cycling measurement
of TE performance, where no obvious difference has been observed, indicating excellent
stability. The grain growth with increasing electric current can be attributed to the additional
energy supply from post-electric treatment [28,30].
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Room temperature TE performance of as-prepared Bi2Te3 f-TFs is shown in Figure 4.
Figure 4a shows the room temperature σ, S, and S2σ for Bi2Te3 f-TF as a function of electric
current. The σ increases from 1874 to 2240 S cm−1 with increasing the electric current from
0 to 0.6 A, and the |S| decreases from 74 to 61 µV K−1. To better understand the change of
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S and σ, the ne was measured as shown in Figure 4b. The ne increases from 2.03 × 1020 to
3.84 × 1020 cm−3 with the increase of electric current. A simple relationship between ne and
S can be exhibited by Mott formula [35]:

S =
8π2k2

BT
3eh2 m∗

DOS

(
π

3ne

)2/3
(1)

where KB, e, h, and m*
DOS present Boltzmann constant, electron, Planck Constant, and,

the density of state’s effective mass, respectively. The reduced |S| is attributed to the
increase of ne according to their inverse relationship between S and ne as expressed in
Equation (1). Furthermore, according to the relationship between σ and ne as expressed
in formula σ = µene, the increase of σ is mainly attributed to the increase of ne. It is worth
mentioning that the |S| of Bi2Te3 f-TFs is still lower than that of bulk materials due to the
high ne > 1 × 1020 (detailed discussion in Supplementary Materials). And the increased
ne should be mainly attributed to the increased amount of Te vacancies with increasing the
electrical current. The room temperature S2σ of Bi2Te3 f-TF as a function of electric current
is shown in Figure 4a. The maximum S2σ of ~10.70 µW cm−1 K−2 can be achieved mainly
due to the high σ of ~2065 S cm−1 and moderate S of −72 µV K−1. The TE performance
tests of the 0.5 A-Bi2Te3 f-TF were repeated 3 times to verify the stability of as-prepared
Bi2Te3 f-TFs as shown in Figure S3. Nearly unchanged TE performance during successive
measurement cycles indicates high stability of our Bi2Te3 f-TFs. Element-doped Bi2Te3
based thin films usually have higher S2σ [36–38], and further research will analyze the
effect of the electric current treatment on the doped Bi2Te3 f-TFs.
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The bending tests were employed to investigate the bending resistance of as-prepared
n-type Bi2Te3 f-TFs. Figure 5a,b shows the change of relative resistance (∆R/R0) as a
function of bending cycles and bending radius, respectively. With the increase of cycles
from 200 to 1000 under the bending radius of 9 mm, the ∆R/R0 increases from 3.39% to
8.34% as shown in Figure 5a. In addition, with the increase of bending radius from 7 mm to
13 mm, the ∆R/R0 decreases from 9.98% to 2.41% as shown in Figure 5b. The ∆R/R0 < 10%
suggests that the Bi2Te3 f-TFs possess excellent bending resistance [22,39]. Figure S4 shows
the repetitive test result of the bending resistance before and after cycling TE performance
measurement, where high mechanical stability has been demonstrated. To demonstrate
the practical applicability of Bi2Te3 f-TFs, a flexible TE device assembled of 4 Bi2Te3 legs
(treated under the electric current of 0.5 A) was fabricated as schematically shown in the
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inset of Figure 5c. And Figure 5c shows the open circuit voltage and output power as a
function of electric current at the temperature difference (∆T) ranging from 10 to 35 K.
And a high temperature difference can be easily maintained between hot and cold side of
thin films devices due to the polymide substrate (κ < 1 W m−1 K−1) [40]. As can be seen,
the maximum open circuit voltage of ~7.96 mV can be achieved with the corresponding
output power of 24.78 nW at ∆T of 35 K. The performance of the flexible TE device can
be evaluated by power density Pdensity (Pdensity = Pmax/w·h, where w and h represent the
width and height, respectively) [40,41]. Figure 5d shows that the Pdensity of the flexible TE
device is 0.04 mW cm−2, 0.17 mW cm−2 and 0.36 mW cm−2, corresponding to the ∆T of
10, 20 and 30 K, respectively.

Micromachines 2022, 13, 1544 7 of 9 
 

 

 
Figure 5. (a) The ∆R/R0 as a function of bending cycles at bending radius of 9 mm. (b) The ∆R/R0 as 
a function of bending radius at bending cycle of 800. (c) Open circuit voltage and output power as a 
function of electric current at different ∆T. (d) The power density as a function of ∆T. 

4. Conclusions 
In conclusion, we have successfully improved n-type Bi2Te3 f-TFs by P-ECT. It is 

found that, with the increase of electric current, the ne increases and σ increases from 1874 
to 2240 S cm−1. Consequently, the high S2σ of the Bi2Te3 f-TFs treated by 0.5 A achieves 
~10.70 μW cm−1 K−2 at room temperature, which is competitive among the reported 
n-type Bi2Te3 f-TFs. Besides, a small ∆R/R0 < 10% is achieved after bending test, suggest-
ing high bending resistance of our prepared Bi2Te3 f-TFs. Subsequently, a flexible TE de-
vice composed of 4 n-type single legs generates an open circuit voltage of ~7.96 mV and 
an output power is 24.78 nW at ΔT of ~35 K. Our work demonstrates that P-ECT method 
can effectively further improve the electrical performance of Bi2Te3 f-TFs. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/mi13091544/s1, Fgiure S1: Calculated crystallinity of 0.5 A-Bi2Te3 
f-TF; Fgiure S2: (a) The SEM; Figure S3: The repetitive test of TE performance of the 0.5 A-Bi2Te3 
thin film; Fgiure S4: (a,b) The repetitive test result of the bending resistance of 0.5 A-Bi2Te3 thin 
film at bending radius of 9 mm and bending cycle of 800, respectively. References [42,43] are cited 
in the supplementary materials. 

Author Contributions: D.A.: Investigation, Conceptualization, Methodology, Formal analysis, 
writing—original draft. W.-D.L.: Conceptualization, Project administration, Formal analysis, writ-
ing—original draft. F.M.: Investigation, Data curation, Validation. W.B.: writing—review & editing. 
Y.C.: writing—review & editing. All authors have read and agreed to the published version of the 
manuscript. 

Funding: The authors would like to acknowledge the financial support from Doctoral Research 
Start-up Foundation of Weifang University (2023BS01). 

Data Availability Statement: The processed data required to reproduce these findings cannot be 
shared at this time as the data also forms part of an ongoing study. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Zhou, Q.; Zhu, K.; Li, J.; Li, Q.; Deng, B.; Zhang, P.; Wang, Q.; Guo, C.; Wang, W.; Liu, W. Leaf Inspired Flexible Thermoelectric 

Generators with High Temperature Difference Utilization Ratio and Output Power in Ambient Air. Adv. Sci. 2021, 8, 2004947. 
2. Lu, Y.; Qiu, Y.; Cai, K.; Li, X.; Gao, M.; Jiang, C.; He, J. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for 

wearable thermoelectric power generators. Mater. Today Phys. 2020, 14, 100223. 
3. Kobayashi, A.; Konagaya, R.; Tanaka, S.; Takashiri, M. Optimized structure of tubular thermoelectric generators using n-type 

Bi2Te3 and p-type Sb2Te3 thin films on flexible substrate for energy harvesting. Sens. Actuators A 2020, 313, 112199. 
4. Liu, W.D.; Wang, D.Z.; Liu, Q.F.; Zhou, W.; Shao, Z.P.; Chen, Z.G. High-Performance GeTe-Based Thermoelectrics: From Ma-

terials to Devices. Adv. Energy Mater. 2020, 10, 2000367. 
5. Liu, W.D.; Shi, X.L.; Moshwan, R.; Yang, L.; Chen, Z.G.; Zou, J. Solvothermal synthesis of high-purity porous Cu1.7Se ap-

proaching low lattice thermal conductivity. Chem. Eng. J. 2019, 375, 121996. 

Figure 5. (a) The ∆R/R0 as a function of bending cycles at bending radius of 9 mm. (b) The ∆R/R0

as a function of bending radius at bending cycle of 800. (c) Open circuit voltage and output power as
a function of electric current at different ∆T. (d) The power density as a function of ∆T.

4. Conclusions

In conclusion, we have successfully improved n-type Bi2Te3 f-TFs by P-ECT. It is found
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output power is 24.78 nW at ∆T of ~35 K. Our work demonstrates that P-ECT method can
effectively further improve the electrical performance of Bi2Te3 f-TFs.
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