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Abstract: The traditional acoustic attenuation coefficient is derived from an analogy of the attenuation
of an electromagnetic wave propagating inside a non-ideal medium, featuring only the attenuation
of wave propagation. Nonetheless, the particles inside viscous solids have mass, vibrating energy,
viscosity, and inertia of motion, and they go through transient and damping attenuation processes.
Based on the long-wavelength approximation, in this paper, we use the energy conservation law to
analyze the effect of the viscosity of the medium on acoustic attenuation. We derive the acoustic
attenuation coefficient by combinations of the dynamical equation of a solid in an acoustic field
with conventional longitudinal wave propagation under a spring oscillator model. Considering the
attenuation of propagating waves and the damping attenuation of particle vibration, we develop a
frequency dispersion relation of phase velocity for the longitudinal wave propagating inside viscous
solid media. We find that the acoustic impulse response and vibrational system function depends on
the physical properties of the viscous solid media and their internal structure. Combined with system
function, the impulse response can be an excellent tool to invert the physical properties of solids
and their internal structures. We select a well-known rock sample for analysis, calculate the impulse
response and vibrational system function, and reveal new physical insight into creating acoustic
attenuation and frequency dispersion of phase velocity. The results showed that the newly developed
acoustic attenuation coefficients enjoy a substantial improvement over the conventional acoustic
attenuation coefficients reported in the literature, which is essential for industrial applications; so are
the dispersion characteristics.

Keywords: damping attenuation; propagation attenuation; particle displacement; acoustic attenuation
characteristics; dispersion characteristics

1. Introduction

Acoustic attenuation created by acoustic waves propagating in a medium is one of
the most natural fundamental physical phenomena in acoustics. A vibrating particle in the
medium acts on its neighbor particle through internal stress and causes an adjacent particle
to move. This process is ongoing repeatedly, leading to the propagation of fluctuations
and acoustic waves inside the solid. In nature, all media, either fluids or solids, have a
certain degree of viscosity and thermal conductivity, which can cause acoustic attenuation.
On the other hand, medium compressibility means that the medium is composed of
many particles, and acoustic scattering from particles can also cause acoustic attenuation.
Researchers have conducted extensive theoretical, experimental, and applied research
to grasp the physical mechanism of creating acoustic attenuation from microscopic and
macroscopic perspectives.

Atkinson et al. studied the multiparticle interactions in dense suspensions, acoustic
wave speed, and attenuation in suspensions [1], also reported by Peter et al. [2]. Gibson and

Micromachines 2022, 13, 1526. https://doi.org/10.3390/mi13091526 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13091526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-2593-8962
https://orcid.org/0000-0001-6460-1786
https://doi.org/10.3390/mi13091526
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13091526?type=check_update&version=2


Micromachines 2022, 13, 1526 2 of 17

Toksöz proposed and analyzed a model for attenuation of acoustic waves in suspensions
that includes an energy loss due to viscous fluid flow around spherical particles [3]. Babick
and Richter analyzed the effect of visco-inertial coupling on sound attenuation [4], and
Verma et al. [5] reported the effect of thermal conductivity. Their results showed that
acoustic attenuation mainly came from the contribution of viscosity for smaller particles
compared to the wavelength. The size of pores in solid media (rocks or sediments) is
usually much smaller than the wavelength of either the general acoustic signal or seismic
exploration signal. Therefore, during the studies of acoustic attenuation of an acoustic
wave propagating in either rocks or sediments as an analog to suspensions, many scien-
tists neglected the effects of the thermal conductivity and scattering of the particles on
attenuation, considering only the contribution of viscosity to acoustic attenuation.

Geophysicists have reported studies on acoustic attenuation in various porous me-
dia. With respect to the field of onshore and marine geology, Yang et al. measured
the acoustic attenuation coefficient of sediments in the frequency range of 2–8 kHz [6];
Hefner et al. studied the effect of porosity on acoustic attenuation in sandstone sediments
at high frequency [7]; Zheng et al. studied the acoustic attenuation of gaseous deposits [8];
so are Wang et al. who conducted an experimental study on acoustic velocity and at-
tenuation of gaseous sediments [9]; Tang et al. performed experiment in studying the
relationship between formation fracture width and acoustic attenuation coefficient [10];
Meyer et al. studied the acoustic attenuation within the glacier with a frequency range
from 2 to 35 kHz [11]; Cooper studied the energy loss and attenuation of seismic waves
propagating in viscous solids [12]; Long performed an experimental study on acoustic
attenuation of seafloor sediments [13]; Jiang et al. measured and studied low-frequency
acoustic attenuation in marine sediments [14]; Zou et al. proposed a method for calculating
the attenuation of the first wave of acoustic signals propagating in seabed sediments [15];
Zimmer et al. experimentally measured the relationships of both acoustic velocity and
acoustic attenuation coefficient of seabed sand-gravel versus the frequency within the fre-
quency range of 1 kHz to 400 kHz [16]; Wan et al. measured the attenuation of long-distance
wideband acoustic signals in the undersea situation [17]. However, as reported by Atkinson
et al., acoustic wave propagation in porous and suspension media, while similar, has the
following significant differences: porous media exhibit elastic resistance to shear stresses,
but suspension media typically do not, while both can sustain isotropic stresses [1].

Similar to an electromagnetic wave propagating inside a non-ideal medium, an acous-
tic wave propagates inside a viscous medium. These two propagations have some similari-
ties but also some differences. As is known, an electromagnetic wave has only energy but
does not have mass, and we use the Maxwell equation to solve the problems in an electro-
magnetic field. An electromagnetic wave propagating in a non-ideal (non-zero electrical
conductivity) medium has propagation attenuation only, without damping attenuation,
i.e., its attenuation is only about the propagation distance and is independent of time. The
vibrational particle corresponding to the acoustic wave inside a solid medium is a substance
with energy and mass, containing the damping attenuation of particle vibration and propa-
gation attenuation of fluctuation and solving the problems of Newton’s law. In other words,
at any position in space, the generation or disappearance of a harmonic electromagnetic
field does not experience a transient process of electromagnetic wave (electromagnetic
field intensity) changing with time. At the same time, the harmonic-sinusoidal vibration
of particles follows Newton’s inertia theorem. There is a transient process as follows: the
particle transits from a static state to a steady harmonic-sinusoidal vibrational state and
vice versa.

Scientists have reported studies of damped oscillations of particles. For example,
Maity et al. found that damped oscillation can enhance the system time interval of acoustic
imaging sensors [18]. Fa and Zhao et al. studied the damping attenuation properties of
several types of piezoelectric transducers [19–21] but have not yet combined damping
attenuation of particle vibration with propagation attenuation of fluctuation for studies of
acoustic attenuation.
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Most of the published work in the literature used a simple analogy of the attenuation
generated by an electromagnetic wave propagating in non-ideal media to study the attenu-
ation of the acoustic wave without enough understanding of the difference in attenuation
caused by the different characteristics of the acoustic wave and electromagnetic wave [22].

This paper reports the newly derived acoustic attenuation coefficient by combining
the dynamical equation of solids in an acoustic field with conventional longitudinal wave
propagation under a spring oscillator model and a frequency dispersion relation of phase
velocity for the longitudinal wave propagating inside viscous solid media. We selected
a well-known rock sample for analysis. We calculated the system impulse response and
vibrational function, revealing new physical insight for creating propagation attenuation
and frequency dispersion of phase velocity. We found that the acoustic impulse response
and the system function of vibration particles depended on the physical properties of the
viscous solid media and their internal structure. The calculated results showed a significant
improvement over the conventional acoustic attenuation coefficient reported in the litera-
ture [22], which is essential for industrial applications; so are the dispersion characteristics.

2. Physics Model

A perfectly elastic solid is just a hypothetical ideal case. There is no naturally existing
perfect medium with zero conductivity, and there is no ideal solid medium with zero
viscosity, i.e., all solid media have some degree of stickiness. An electromagnetic wave has
energy but does not have mass. When an electromagnetic wave propagates inside a vacuum,
there is no internal energy loss. Such a wave propagates with equal amplitude without
frequency dispersion. When a harmonic electromagnetic wave propagates in the medium,
there is no damping attenuation. Still, the thermal loss caused by the non-zero conductivity
of the medium will cause the electromagnetic wave to create propagation attenuation.

The “vibration particle” in acoustics is a tangible substance with mass and energy.
Unlike electromagnetic waves, acoustic waves cannot propagate in a vacuum but only
in a medium. Every solid medium has a specific viscosity, which leads to frictional force
and heat dissipation whenever the particle inside a viscous medium starts to vibrate.
Frictional force always causes particle vibration amplitude to decrease with time and the
wave amplitude to decrease with the increase in propagation distance. Therefore, there is a
certain degree of internal energy loss in the particle vibration process near its equilibrium
position and fluctuation propagation.

The propagation attenuation and particle vibrational damping attenuation inside
viscous solids significantly influence acoustic wave propagation. A stationary particle
begins to vibrate under the action of an external harmonic force. Due to the particle’s
inertia and the friction force’s action, there is a transient process in the transition from a
stationary particle to a steady harmonic vibration. The frequency spectrum corresponding
to this process is the intrinsic noise produced by vibration particles inside viscous solids.
Therefore, the particle vibration inside dense media contains the frequency component of
the external harmonic force and the frequency component generated by the corresponding
particle vibration transient process.

Damping attenuation is a measure that describes the vibration amplitude attenuation
of the particle near its equilibrium position in the time domain. In contrast, propaga-
tion attenuation is a measure that describes the amplitude attenuation of a fluctuation
propagating in space with increasing propagation distance.

Based on the elastic constitutive relation of viscous solid [22], we established the
theoretical relationship between the propagation attenuation of fluctuation and the damp-
ing attenuation of particle vibration, studied the influence of viscosity on the damping
attenuation of particle vibration and the propagation attenuation, and gave a new ana-
lytic expression of the acoustic attenuation coefficient and a theoretical explanation of the
physical mechanism of creating acoustic attenuation.
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2.1. Damping Attenuation of Particle Vibration in Viscous Isotropic Solid Media

Let us investigate acoustic attenuation by first studying particle vibration’s
damping attenuation.

When a body moves in a viscous fluid, it is subject to frictional force. The magnitude of
this frictional resistance is related to the viscosity of the medium and the body’s shape, size,
and movement speed. For example, the frictional resistance force of a small ball moving at
a constant speed in a viscous liquid is as follows [23]:

f = 6πrηv = R0v (1)

There are several important parameters: r is the radius and v is the moving speed of the
small ball; η is the viscosity coefficient of the liquid; R0 = 6πrη is the frictional resistance.

Particles in a viscous solid usually satisfy the condition of “long-wavelength approx-
imation,” simplifying the physical analysis of the vibrational particles regardless of the
shape of the acoustic elements [24]. Analog to a small moving ball in a viscous fluid, we
assume that the vibration particles in viscous media act very similar to a tiny ball. The
frictional force experienced by a vibrating particle is proportional to its vibration velocity
and the viscous coefficient of the solid medium. The direction of the frictional force is
opposite to the moving direction of the particle.

The elastic damping of particle vibration causes stress to be transmitted very complexly
within the viscous solid medium. The physical strain, induced by vibrating particles inside
viscous media, acts on neighboring particles, causing them to vibrate. Again, this process
repeats, leading to the propagation of fluctuation, that is, the propagation of acoustic waves.

Below, we shall discuss only the propagation of a longitudinal wave, which corre-
sponds to the compressive strain of a solid medium. When a particle vibrates, the size
and density of the tiny volume element corresponding to the particle will change. From
the damped spring oscillator model (see Figure 1a), we can obtain the motion equation of
particle vibration as follows:

m
d2u
dt2 + Rm

du
dt

+ kcu = fa (2)Micromachines 2022, 13, x FOR PEER REVIEW 5 of 18 
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Figure 1. Mechanical analogy (spring oscillator) model of particle damping vibration correspond-
ing to a longitudinal wave. (a) Longitudinal wave spring oscillator model; (b) Electromechanical
analogical equivalent network.

The mass of the particle (m) analogies as an inductance in electricity. kc is the stubborn-
ness coefficient of the spring oscillator; Cm(= 1/kc) corresponds to capacitance; Rm is the
frictional resistance, corresponding to resistance; fa(t) is the force acting on the particle,
corresponding to a voltage source; u is particle displacement, which corresponds to charge;
v(= du/dt) corresponds to current.
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By adopting a similar approach reported in references [19–21] and using the residue
theorem to solve the motion equation of the particle in a viscous solid, we can obtain the
acoustic impulse response and system function of the particle vibration system as follows:

h(t) = Ae−βt cos(ωdt + θ)ε(t) (3)

H(ω) = H(s)|s=iω =
iωCm

−mCmω2 + iRmCmω + 1
(4)

In these equations, ω is angular frequency; ε(t) is a unit step function; β = Rm/2m, which

is the damping attenuation coefficient of particle vibration; ωd =
√

4mCm − (RmCm)
2/2mCm,

which is the frequency of the damping vibration and real (not complex); A = 2Cm

√
β2 + (ωd)

2;
θ = tan−1(−ωd/β).

The parameter β describes the damping attenuation state of particle vibration. Equa-
tions (3) and (4) show that the impulse response and vibrational system function depend
on the physical parameters of the viscous solids. Therefore, from Equations (3) and (4),
we can use the measured acoustic signal to invert the inherent physical characteristics of
viscous solid media and judge the formation’s internal structure.

2.2. Damped Elastic Constitutive Relation of Viscous Solid

We use strain and stiffness coefficients of a solid medium to simulate the particle
displacement and apply the spring’s stubborn coefficient in the above “physical model of
spring oscillators.” We also use the time derivative of the strain and viscosity coefficient
matrix to analogy the moving speed of the tiny volume element and the friction resistance,
so the stress on the particle inside viscous media can be written by the following [22]:

T = c : S + η :
∂S
∂t

(5)

In Equation (5), the double point “:” is the double-dot product operator, indicating the sum
of total angular indices; the boldface symbols T and S are stress tensor and strain tensor,
respectively; c and η are the stiffness coefficient matrix and viscosity coefficient matrix of
the solid, respectively. It is worth noting that Formula (5) considers both the elastic force in
the “spring oscillator” model and the frictional force of the vibrating particle caused by the
viscosity of the solid.

2.3. Propagation Attenuation of Acoustic Waves in Viscous Isotropic Solids

When an acoustic wave propagates in a viscous solid, propagation attenuation of
fluctuation and damping attenuation of particle vibration should be considered. Based
on Auld’s derivation method for acoustic attenuation coefficient [22], we derived a new
expression of the longitudinal wave attenuation coefficient by introducing the factor of
particle vibration-damping attenuation in the following.

For an isotropic solid medium, we have its stiffness matrix written as follows:

c =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 (6)

where c11 = c12 + 2c44, for c11, c12, and c44, there are only two independent elements.
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Analogous to the stiffness matrix of a solid medium, there is also a viscosity coefficient
matrix corresponding to the stiffness coefficient matrix, which describes the viscosity of an
isotropic solid as follows:

η =



η11 η12 η12 0 0 0
η12 η11 η12 0 0 0
η12 η12 η11 0 0 0
0 0 0 η44 0 0
0 0 0 0 η44 0
0 0 0 0 0 η44

 (7)

A similar relationship exists between viscosity elements (η11 = η12+2η44), and only
two independent variables exist for an isotropic solid’s viscosity coefficient matrix elements.
Expanding Formula (5) yields the following equation



T1

T2

T3

T4

T5

T6


=



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44





S1

S2

S3

S4

S5

S6


+



η11 η12 η12 0 0 0

η12 η11 η12 0 0 0

η12 η12 η11 0 0 0

0 0 0 η44 0 0

0 0 0 0 η44 0

0 0 0 0 0 η44


∂

∂t



S1

S2

S3

S4

S5

S6


(8)

The abbreviations of strain and stress components subscripts are {1, 2, 3, 4, 5, 6}, and
the corresponding full written subscripts are {xx, yy, zz, yz, xz, xy}.

Suppose the longitudinal wave propagates along the x-axis direction in the x-z plane.
The particle vibration corresponding to the longitudinal wave also occurs in the x-z plane.
Its polarization direction is parallel to the x-axis.

An acoustic wave propagating in viscous solids is similar to but different from that of
an electromagnetic wave inside a medium with non-zero conductivity. The heat dissipation
generated by electromagnetic waves propagating in a solid with non-zero conductivity
only comes from propagation attenuation. In contrast, the thermal dissipation, developed
in both the particle vibration and the fluctuation propagation processes, comes from
the contributions of the damping attenuation of particle vibration and the propagation
attenuation of fluctuation. We can assume that the longitudinal wave propagates from the
coordinate origin to a space point x on the x-axis at time t, and then its particle displacement
is as follows:

u = exux(x, t) = ex Ae−β(t−x/vp)e−αp xei(ωt−kp x+ϕp)H
(
t− x/vp

)
=

{
ex Ae−βtei(ωt+ϕp)) x = 0

ex Ae−β(t−x/vp)e−αp xei(ωt−kp x+ϕp) = ex Ae(iω−β)te(β/vp−αp−ikp)xeiϕp x 6= 0, t > x/vp

(9)

where, αp, kp and vp are the acoustic attenuation coefficient, phase coefficient, and phase
velocity of a longitudinal wave propagating in a solid medium; A is the initial amplitude of
particle displacement at x = 0 and t = 0.

The relationship between strain and particle displacement is [22].

S = ∇su (10)

It yields only one non-zero component of compressive stresses (S1 6= 0). All others are zero,
including the compressive strains S2 = S3 = 0 and shear strains S4 = S5 = S6 = 0, and we
have the following:

S1= Sxx =
∂ux

∂x
=
(

β/vp − αp − ikp
)
ux(x, t) t > x/vp (11)

We only need to consider the stress component T1 = Txx in the x-direction on the
x-plane (the plane perpendicular to the x-axis). From Formula (8), the lossy elastic con-
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stitutive relation between stress component T1 and strain component S1 can be obtained
as follows:

T1 = c11S1 + η11
∂S1
∂t = [(c11 − η11β) + iη11ω ]S1

=− [(c11 − η11β) + iη11ω ]
(
αp − β/vp + ikp

)
ux(x, t)

(12)

Because the particle in the viscous solid medium is acted on only by the internal
stress, which includes both the elastic force of the vibrating particle and the friction force
generated by the viscosity of the solid medium, therefore, the dynamical equation can be
simplified (from ∇ · T = ρ∂2u/∂t2) as follows:

∂T1

∂x
= ρ

∂2ux

∂t2 (13)

The combination of Equation (9) with Equation (11) leads to the following:

∂T1

∂x
=

(
β

vp
− αp − ikp

)2

[(c11 − η11β) + iη11]ux (14)

ρ
∂2ux

∂t2 = ρ(iω− β)2ux (15)

Therefore, we have the following:(
β

vp
− αp − ikp

)2

[(c11 − η11β) + iη11] = ρ(iω− β)2 (16)

Let

M =

(
αp −

β

vp

)2
− kp

2 (17)

N = 2
(

αp −
β

vp

)
kp (18)

And the real and imaginary parts are equal at both ends of the Equation (15). We can obtain
two equations as follows:

(c11 − η11β)M− η11ωN = ρ
(

β2 −ω2
)

(19)

η11ωM + (c11 − η11β)N = −2ρβω (20)

Solving Equations (19) and (20) results in the following:

αp =

√√
M2 + N2 + M

2
+

β

vp
(21)

kp =
N

2
√√

M2+N2+M
2

(22)

vp =
ω

kp
(23)

where,

Q =

∣∣∣∣c11 − η11β −η11ω
η11ω c11 − η11β

∣∣∣∣ = (c11 − η11β)2 + (η11ω)2 (24)

M =

∣∣∣∣ρ(β2 −ω2) −η11ω
−2ρβω c11 − η11β

∣∣∣∣
Q

=
ρ
(

β2 −ω2)(c11 − η11β)− 2ρβη11ω2

(c11 − η11β)2 + (η11ω)2 (25)
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N =

∣∣∣∣c11 − η11β ρ
(

β2 −ω2)
η11ω −2ρβω

∣∣∣∣
Q

= −
ρη11ω

(
β2 −ω2)+ 2ρβω(c11 − η11β)

(c11 − η11β)2 + (η11ω)2 (26)

The above equations show that the acoustic attenuation coefficient (αp) and phase
velocity (vp) of longitudinal waves are related to their frequency and the damping coefficient
of particle vibration. The damping coefficient depends on the solid’s physical properties,
e.g., viscosity, the mass of the vibrational particles, etc.

2.4. Propagation of Longitudinal Wave in a Viscous Isotropic Solid

Considering the shape and size of the particle and the mechanical network corre-
sponding to the spring oscillator model of particle vibration, the mass of the particle and
the friction force subjected to it are proportional to the density and viscosity of the solid,
respectively. The compliance coefficient of the viscous solid is inversely proportional to
the stubborn coefficient of the spring vibrator, as shown in Figure 1b. Also, Rm = a1η11,
m = a2ρ, m = a2ρ, kc = 1/Cm = a3c11, respectively, and a1, a2, and a3 are some defined
proportionality factors.

Equations (3) and (4) reveal that the acoustic-impulse response and system function
provide insightful information on the inherent physical properties of viscous solid media.
These functions can help analyze the physical phenomena generated by acoustic waves
propagating inside dense solids, e.g., the generation of intrinsic noise, acoustic attenuation,
and dispersion.

As shown in Figure 2, we can use the mechanic network corresponding to the spring
oscillator model shown in Figure 1b to describe the vibration state of a particle at any space
position in viscous solid media and the propagation of the fluctuation. A vibrating particle
located at a particular space point goes through internal stress, acting on the next particle
near it and making it vibrate. This process is repeated, in turn, to achieve the propagation
of acoustic waves inside a viscous solid medium. According to the mechanical network
shown in Figure 1b, from Equations (21) and (23), we can obtain the vibration state of a
particle at any space position inside viscous solid media by solving Equation (2).
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Figure 2. Propagation of an acoustic wave inside a viscous solid medium. Tj−1(xj−1, t− xj−1/vp)

is the stress of the incoming vibrating particle acting on current particles; hj(xj, t − xj/vp) is the
impulse response corresponding to the particles inside a viscous solid medium; uj(xj, t− xj/vp) is
the particle displacement of the vibrating particle.

The internal stress is now replacing the force (f a) in Equation (2) inside viscous solids,
and the time variable is now t-x/vp. The internal stress induced by the vibration of the
jth particle acts on the following particle (the (j + 1) th particle) to cause it to vibrate. The
repetition of this process is the propagation of an acoustic wave.

3. Calculation and Analysis

In the following, according to the energy conservation law, we will compare, analyze,
and discuss electromagnetic and acoustic waves in a few selected cases to understand the
difference between electromagnetic and acoustic waves and the nature of the media.

Case 1: In ideal media
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An ideal medium has zero electrical conductivity for the propagation of electromag-
netic waves, and a perfect elastic medium has zero viscous coefficients for acoustic waves.

In an ideal medium, an electromagnetic wave source emits a continuous sinusoidal
electromagnetic wave outward without propagation attenuation and damping attenua-
tion.” The emitted electromagnetic signal enters space and propagates forward, i.e., the
electromagnetic wave source provides electromagnetic energy propagating forward into
space (following the energy conservation law).

In an ideal elastic medium, an acoustic source emits acoustic energy into the space,
propagating forward without propagation attenuation and damping attenuation (following
the energy conservation law).

Case 2: The power source emits a continuous sinusoidal wave in either non-ideal
media (electrical conductivity is not zero) or non-ideal elastic media (viscosity coefficient is
not zero).

For a non-ideal medium, the power source of the electromagnetic wave emits a
continuous sinusoidal electromagnetic wave outward with propagation attenuation but no
damping attenuation because an electromagnetic wave does not have mass. For a non-ideal
elastic medium, the acoustic source emits successive sinusoidal acoustic waves outward,
and there is only propagation attenuation without damping attenuation. The energy
from an acoustic source includes the following three parts: (i) the energy lost from heat
emission due to friction resistance during particle vibration, (ii) heat loss caused by wave
propagation attenuation, i.e., heat loss by the viscosity of the propagation medium when
the particle acts on the next particle through internal stress to make it vibrate, and (iii) the
energy emitted to and contained in space, i.e., providing acoustic energy to propagate
forward in space. Therefore, there is no damping attenuation of particle vibration in the
time domain, only propagation attenuation of waves in the space domain, following the
energy conservation law.

Case 3. The power source emits a signal wavelet in either non-ideal media (electrical
conductivity is not zero) or non-ideal elastic media (viscosity coefficient is not zero).

The electromagnetic wave source emits an electromagnetic wave signal wavelet out-
ward and propagates forward in the non-ideal medium with only propagation attenuation.
The electromagnetic wave signal wavelet contains frequency components with different
amplitudes, frequencies, and initial phases. Because the non-ideal medium is dispersive,
the attenuation of an electromagnetic wave is a function of frequency in the propagation
process. After some time, when the electromagnetic wavelet propagates to the next spatial
position, propagation attenuation, reduced amplitude, and waveform distortion will occur.
The energy of the transmitted electromagnetic wave signal wavelet has two parts; one part
makes the electromagnetic wave signal wavelet continue to propagate in the non-ideal
medium, and the other part produces heat loss, resulting in propagation attenuation.

For a non-ideal elastic medium, the acoustic source emits an acoustic signal wavelet
outward with propagation attenuation and damping attenuation. When the acoustic
wavelet signal propagates to a specific spatial location, it causes particle vibration at that
location. Due to the viscosity of the medium and friction resistance, the particle vibration
has damping attenuation in the time domain. The particle at a specific point in the space
domain causes neighboring particle vibration through internal stress, yielding heat loss
and propagation attenuation due to the viscosity of the medium.

The acoustic source emits a multifrequency acoustic signal wavelet. Due to the differ-
ent propagation velocities and attenuation of various frequency components, the waves
synthesized at other locations in space will have some degree of waveform distortion.
Therefore, the propagation of the acoustic signal wavelet transmitted by the acoustic source
in the dense medium has the damping attenuation of particle vibration and the propagation
attenuation of the wave, which obeys the energy conservation law.

In summary, when an acoustic source emits a continuous sinusoidal acoustic wave
outward, its waveform has only propagation attenuation. The constant emission of acoustic
energy from the acoustic source makes up for the energy lost due to heat loss caused
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by medium viscosity in the process of particle vibration. In most practical systems, the
emitted acoustic signal is a signal wavelet, i.e., the acoustic source radiates acoustic energy
outward in a specific time interval. At the same time, it does not provide external power to
supplement the energy loss caused by the particle vibrational damping decay (heat loss)
in other time ranges. So, in the propagation process of an acoustic signal wavelet in a
non-ideal medium, wave propagation attenuation and vibrational damping decay occur.

A gated-sinusoidal electromagnetic wave signal wavelet is shown in Figure 3a, propa-
gating inside a non-ideal medium with only propagation attenuation for this electromag-
netic wave signal wavelet. Figure 3b suggests that the gated-sinusoidal acoustic signal
wavelet emitted by an acoustical source experiences the damping attenuation of particle
vibration in the time domain and the propagation attenuation in the space domain inside a
viscous solid. We cannot simply deduce the attenuation coefficient of an acoustic signal
wavelet propagating in a viscous solid by the same method of driving the attenuation
coefficient of an electromagnetic wave propagating in a non-ideal medium. For acoustic
signal wavelets, we cannot simply neglect the effect of medium viscosity on the acoustic
attenuation coefficient.
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Figure 3. Schematic diagrams of an electromagnetic wave signal wavelet and acoustic signal wavelet
propagating in the medium. x is the propagation distance of either electromagnetic wave signal
wavelet or acoustic wavelet in the medium, and t is the propagation time. (a) An electromagnetic
wave signal wavelet is inside a non-ideal medium. The vertical axis is the normalized amplitude
of either electric field intensity or magnetic field intensity; (b) an acoustic wavelet propagating in
viscous solids. The vertical axis is the normalized magnitude of the particle displacement.

In the following, we selected Mesaverade sandstone (M-sandstone) as the solid sample
to perform the calculation, comparison, analysis, and discussion. The density (ρ), related
stiffness coefficient (c11), and viscosity coefficient (η11) of M-sandstone are 2.710 kg/m3,
5.82× 1010 N/m, and 8× 104 N · s/m2, respectively. The phase velocity of the longitudinal
wave’s phase velocity (vp) in a perfectly elastic rock is 4463 m/s, i.e., the case without
considering the viscosity of M-sandstone.

3.1. Acoustic Impulse Response and Corresponding Amplitude Spectrum of Vibrating Particle

Based on Equations (3) and (4), using the physical parameters of M-sandstone and pro-
portionality coefficients described above, the acoustic impulse response and corresponding
amplitude spectrum of vibrating particles are calculated as shown in Figure 4, where the
center frequency of the vibration particle in M-sandstone is 2.332 MHz.
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Figure 4. Acoustic impulse response and amplitude spectrum of vibration particle in M-sandstone.
(a) The acoustic impulse response; (b) the amplitude spectrum.

Our calculated results also show that (i) the center frequency of a particle vibration
system is only related to the stiffness coefficient of viscous solid media; (ii) the more signifi-
cant the value of the stiffness coefficient, the higher the center frequency, which has nothing
to do with its viscosity coefficient; (iii) the viscous coefficient only affects the duration of
the acoustic impulse response; the more significant the viscosity is, the shorter the duration
of the acoustic impulse response; the smaller the value of the amplitude spectrum.

Above all, at each spatial position, the acoustic impulse response and vibrational
system function are related only to the physical properties of the solid and its internal
structure, which have a specific effect on the attenuation coefficient of a longitudinal wave
propagating inside a viscous solid medium.

3.2. Acoustic Attenuation Coefficient and Frequency Dispersion of Longitudinal Wave Propagating
in a Viscous Solid

In this section, let us look at the acoustic attention coefficient and the frequency
dispersion concerning the effect of medium viscosity. We will present the analysis and
compare our calculations to the results from Auld [22] in Figures 5–10.
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Figure 10. (a) The relationship of vpa versus f for several different values of η11; (b) the relationship
between vpa and η11 for several different values of f.

For a longitudinal wave propagating inside a viscous solid medium, both the created
attenuation and frequency dispersion are associated with the acoustic wave frequency and
the solids’ physical parameters (elastic and viscosity coefficients). In other words, both of
them are not only related to the propagation attenuation of an acoustic wave but also the
damping attenuation of particle vibration.

By using the conventional method, such as Auld’s method [22], the derived attenuation
coefficient for longitudinal waves (without considering the influence of damping attenuation
of particle vibration on acoustic attenuation coefficient) is shown by the following:

αpa =
ω2
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According to the newly derived attenuation coefficient, phase coefficient, and phase
velocity, i.e., Equations (21)–(23), the calculated relationships of αp, kp, and vp versus f for
several different values of η11 are shown in Figures 5a, 7a, and 9a, respectively. The plots of
η11 for several different values of f are shown in Figures 5b, 7b, and 9b, respectively.

In terms of the longitudinal wave’s acoustic attenuation coefficient, phase coefficient,
and phase velocity derived from Auld’s method [22], i.e., Formulas (27)–(29), the calculated
relationships of αpa, kpa, and vpa versus f for several different values of η11 are shown in
Figures 6a, 8a, and 10a. The relationships of αpa, kpa, and vpa verses η11 for several values of
f are presented in Figures 6b, 8b, and 10b.

Figures 5a and 6a show that for a given value of η11, both αp and αpa increase with the
increased frequency (f ). The increasing ratio of αpa to f is more prominent or much larger
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than that of αp to f. Figure 5b,c shows that, for a given f, αp increases in the low-frequency
range and decreases in the high-frequency range with η11. Corresponding to a turning
point of αp increasing to decreasing, the higher the frequency (f ) value is, the smaller the
value η11. We also observed that in the higher frequency range, the effect of f on αp is much
greater than that of η11 on αp. Figure 6b shows that for a given f, αpa increases with the
value of η11 monotonously, and this may be that the effect of particle vibrational damping
attenuation on acoustic attenuation is not considered.

Figures 7a and 8a show, for several values of η11, that kp and kpa increase with f ; the
greater the value of η11, the smaller the values of kp and kpa. Figures 7b and 8b show that
for several given values of f, (i) kp and kpa decrease when increasing η11, and (ii) the greater
the value of f, the greater the values of both kp and kpa.

In addition to the acoustic attenuation property of the longitudinal wave propagating
in a viscous solid, we also pay attention to the dispersion phenomenon of phase velocity.

Figures 9a and 10a show that for several given values of η11, (i) both vp and vpa increase
with f ; (ii) the greater the value of η11, the greater the dispersion degree of vp; (iii) the
dispersion degree of vp is somewhat greater than that of vpa. Figures 9b and 10b show
that for several given values of f, (i) both vp and vpa increase with η11, (ii) the higher the
frequency, the greater the dispersion degree of vp, and (iii) the dispersion degree of vp is
somewhat greater than that of vpa.

The above-calculated results show the differences between the various physical pa-
rameters αp vs. αpa, kp vs. kpa, and vp vs. vpa. During the calculation of αp, kp, and vp,
we consider both the effect of propagation attenuation and particle vibrational damping
attenuation on them. In contrast, during the analyses of αpa, kpa and vpa, only the effect of
the propagation attenuation of fluctuation is considered.

4. Conclusions

From the energy conservation perspective, we have analyzed the effect of particle
vibration damping decay caused by viscosity on acoustic attention. Based on Auld’s theory,
we introduced damping decay of particle vibration and derived the acoustic attenuation
coefficient. Our new expression of the acoustic attenuation coefficient is an enhancement of
Auld’s and the acoustic attenuation coefficient reported in the literature.

From theoretical derivation, calculation, discussion, and analysis, we conclude with
the following remarks:

(i) We analyzed the difference between acoustic and electromagnetic waves, i.e., the
electromagnetic wave is a material with energy and without mass, and a vibration
particle is a material with both mass and energy. Then, we derived new expressions
of the acoustic attenuation coefficient (αp), phase coefficient (kp), and phase velocity
(vp). These new expressions are different from conventional expressions. The reason
for generating these differences may be that the newly derived acoustic attenuation
coefficient (αp), phase coefficient (kp), and phase velocity (vp) consider the effects of
both particle vibration-damping and fluctuation propagation attenuation on them; the
conventional attenuation coefficient (αpa), phase coefficient (kpa), and phase velocity
(vpa) only consider the effect of the fluctuation propagation attenuation on them.

(ii) For all frequencies, the greater the value of η11 is, the greater the attenuation coefficient
(αp) and phase velocities (vpa, and vp ) and the smaller the phase coefficients (kp and
kpa). In the higher frequency area, the larger the value of viscosity coefficient (η11), the
smaller the value of the attenuation coefficient (αp). In the lower frequency region,
the larger the value of η11, the larger the αp.

(iii) For a given value of η11, the values of αp, αpa, vp, and vpa increase with frequency f,
and the kp and kpa decrease with f ;

(iv) We also obtained the acoustic impulse response and vibrational system function
corresponding to the longitudinal wave, which depends only on the viscous solid
medium’s physical properties and internal structure.



Micromachines 2022, 13, 1526 16 of 17

In summary, the conventional expression of the acoustic attenuation coefficient is
usually an analogy of the attenuation of an electromagnetic wave propagating in a non-
ideal medium. It considers only the influence of fluctuation propagation attenuation on
it. The new expression of the acoustic-attenuation coefficient reported in this article is
related not only to the attenuation of the fluctuation propagation but also to the damping
attenuation of particle vibration, which is different from that of the conventional acoustic
attenuation. Because a vibrating particle inside a solid medium with viscosity has mass,
energy, and inertia motion, it yields a short transition process and damping attenuation for
particle vibration. The impulse response and system function can help invert the physical
properties of the solid medium and the anomalies of the rock’s internal structure.

This report provided a more comprehensive explanation of the physical mechanism
of the acoustic attenuation and frequency dispersion of longitudinal waves propagating
inside viscous solids, which is essential to the forward study of inversion analysis of
acoustical fields.

Based on Equations (21) and (23) and as an example of seismic exploration, we can
modify the reflection coefficient of the elastic wave to improve the accuracy of amplitude
versus offset (AVO) analysis. We can obtain a more accurate acoustic velocity of a longitu-
dinal wave to perform the time-depth of seismic exploration data [25]. We can accurately
convey the acoustic-velocity information of longitudinal waves to inverse the measured
formation’s porosity in acoustic logging.

For the next step, exploring the attenuation pattern of the acoustic waves propagating
inside anisotropic rocks should be interesting. As reported by Thomsen, some well-known
rock anisotropic parameters are available for this purpose, e.g., [26]. Understanding the re-
lationship between the transfer of interaction forces amongst particles and the propagation
speed is also significant for dense solid media and solids with different porosities versus
acoustic waves’ attenuation. These studies would enhance our understanding further for
practical application.
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