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Abstract: Carbon-rich SiCN ceramics were prepared by divinylbenzene (DVB)-modified polysilazane
(PSN2), and a high-conductivity SiCN thin film sensor suitable for medium-low temperature sensing
was fabricated. The modified liquid precursors were patterned by direct ink writing to produce SiCN
resistive grids with line widths of several hundreds of micrometers and thicknesses of several mi-
crometers. The introduction of DVB not only increases the critical thickness of SiCN ceramics several
times, but also significantly improves the conductivity of SiCN, making it meet the conductivity
requirements of sensing applications in the mid-low temperature range. The electrical conductivity
and microstructure of DVB-modified SiCN ceramics were studied in detail. In the temperature range
of 30~400 ◦C, the temperature resistance performance of DVB modified SiCN resistance grid was
measured. The SiCN ceramics with low DVB content not only have excellent electrical conductivity,
but also have good oxidation resistance.

Keywords: polymer-derived ceramics; thermistor; SiCN; conductivity

1. Introduction

Polymer-derived ceramics (PDCs), such as SiCN, SiOC and SiBCN, are considered for
high-temperature sensor applications due to their semiconducting behavior and excellent
thermal stability [1–5]. The unique polymer-to-ceramic (liquid-solid) transition process al-
lows for attractive patterning options, such as direct ink writing (DIW) and soft lithography,
making PDCs a promising candidate for high-temperature micro-electromechanical sys-
tems (MEMS) and thin-film sensors (TFSs) candidate material [6–8]. Temperature sensors
are a promising application of PDCs as thermistors. A thermistor is a device that measures
temperature by measuring its resistance [9]. Manganate, SiCN, SiOC and other thermistors
with negative temperature coefficient (NTC) show exponential reduction in resistance with
temperature, while positive temperature coefficient (PTC) thermistors such as Pt and NiCr
show a linear increase in resistance with temperature [10–12]. The in-situ generated free
carbon phase plays a key role in the electrical conductivity and semiconducting behavior
of PDCs [13–16], which enables the electrical resistance of PDCs to have a pronounced
temperature response.

Although the temperature-resistance behavior of some PDCs has been developed, it is
not easy to fabricate TFSs using PDC materials. The poor electrical conductivity of PDCs
and the low critical thickness of constrained sintered PDCs films remain huge obstacles
for the wider application of PDC TFSs. For example, poor electrical conductivity makes
PDCs electrically insulating at room temperature, which limits their operating temperature
range to above 400 ◦C [17,18]. The critical thickness of constrained sintering is about 3 µm,
which limits the thin-film of PDCs device [1]. Although the relatively good conductivity
can be obtained by molecular design of precursor solutions and optimization of pyrolysis
parameters, the pyrolysis temperature is usually higher than 1400 ◦C [13]. Another effective
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strategy is to fill the PDC with conductive particles that exceed the penetration thresh-
old [6,7]. This strategy not only improves the electrical conductivity of PDCs film but also
improves their critical thickness. However, the dispersibility and stability of solid-phase
particles in the precursor solution are difficult to guarantee. Therefore, liquid-phase modi-
fied PDCs would be preferred. Divinylbenzene (DVB), as a widely used precursor of carbon
sources, has been used to improve the electrical conductivity of PDCs [19–21]. For example,
the conductivity of DVB-modified PDC-SiCN is improved by 5 orders of magnitude [11].
However, currently, DVB-modified PDC devices are usually millimeter-scale and difficult
to integrate with structural components, which significantly decreased the sensitivity and
response time of the sensor [11]. The advantages of PDCs in additive manufacturing and
controlled molding have not been well utilized.

In this study, the electrical conductivity of PDC-SiCN was increased by adding a
DVB carbon source precursor to a commercially available polysilazane (PSN). An in-situ
integrated thin-film temperature sensor was successfully fabricated via DIW platform based
on the Weissenberg effect and tested from room temperature (30 ◦C) to 400 ◦C, expanding
the application of PDC sensors in the mid-low temperature range.

2. Materials and Methods
2.1. Materials and Fabrication Methods

In this study, a commercially available polysilazane (PSN, Institute of Chemistry,
Chinese Academy of Sciences, Beijing, China) was utilized as the SiCN precursor, DVB
(technical grade 80%, Sigma-Aldrich, St. Louis, MO, USA) was selected as the carbon
source to improve the conductivity of SiCN. The fabricated process of TFSs was illustrated
in Figure 1a. First, different mass fractions of DVB were added to PSN and magnetically
stirred at 100 ◦C for about a few minutes to form a uniform printable mixture (The contents
of DVB were 10 wt%, 20 wt%, 30 wt%, 40 wt%, 50 wt%, respectively). Briefly, DVB-modified
PSN2 ink was printed by a Weissenberg-based DIW platform, which consisted of three key
components: an x–y high-precision moving platform, a homemade printing setup including
a printing head, and a charged–coupled device camera. Then, the printed thin-film resistor
grids were pyrolyzed in a tube furnace under high-purity nitrogen atmosphere at 1100 ◦C
for 4 h.
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2.2. Characterization Techniques

Resistance grid thicknesses were determined by a profilometer (Dektak XT). SEM
(SUPRA55 SAPPHIRE) coupled with EDS was used to characterize the morphology and ele-
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mental content of the obtained films. XPS (Thermo Scientific ESCALAB Xi+) measurements
were performed to determine chemical bonds. Free carbon in SiCN was characterized using
confocal in situ Raman spectroscopy (LabRAM HR Evolution). As shown in Figure 1b, the
utilised temperature–resistance.

3. Results
3.1. Film Morphology

Pores and cracks are the main factors affecting PDCs conductivity [1]. Therefore,
the critical thickness of the DVB-modified SiCN film (defined as the maximum thickness
of monolayer deposition) was first determined. In the DIW process, the line width of
the resistance grids was fixed at about 500 µm, and the line thickness was successively
increased. After pyrolysis, the thickness of the resistance grids and the shape of the surface
profile were determined by a profilometer. As shown in Figure 2, the critical thickness
of SiCN film gradually increased from 3.7 µm of SiCN to 5.7 µm of 10 wt% DVB-SICN,
6.0 µm of 30 wt% DVB-SiCN, 6.9 µm of 50 wt% DVB-SiCN. The addition of DVB provides
more carbon sources for SiCN ceramics. The high critical thickness may be related to the
carbon content of SiCN. The increased critical thickness reduces the risk of film cracking
and peeling during DIW patterning and pyrolysis, which is beneficial for maintaining the
structural integrity of the resistive grids.
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Figure 2. Surface profile of SiCN and DVB-modified SiCN lines.

Figure 3a shows an optical image of the thin film sensor. Figure 3b is a SEM image
showing a SiCN resistive grid line, indicating that its line width is about 550 µm. Figure 3c
shows the surface morphologies of DVB20-SiCN film. It can be seen that the film is dense
without obvious defects. The SEM image of the cross-section of the SiCN film shown in
Figure 3d shows that the SiCN film is well bonded to the Al2O3 substrate. The results of
elemental analysis of all films are summarized in Table 1, and it can be clearly seen that the
addition of DVB significantly increases the carbon content in the SiCN films. The higher
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oxygen content may be related to the oxygen contamination during the DIW process, and
the oxygen adsorption on the surface of the SiCN film.
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Figure 3. (a) Optical image showing SiCN thin film sensor. (b) SEM image showing a single DIW-
SiCN line (inset shows EDS analysis conducted in the line scan mode). (c) Surface morphology of the
DVB20-SiCN film. (d) SEM image showing the cross section of the DVB20-SiCN film (inset shows
EDS analysis conducted in the line scan mode).

Table 1. Results of elemental analysis.

Sample Si (wt%) C (wt%) N (wt%) O (wt%)

SiCN 32.75 17.89 2.02 47.34
D10-SiCN 31.87 19.24 3.23 45.67
D20-SiCN 32.64 18.99 4.84 43.53
D30-SiCN 33.35 20.01 2.31 44.33
D40-SiCN 29.46 23.29 5.52 41.72
D50-SiCN 31.20 22.69 3.92 42.19

3.2. Film Composition

The XPS was employed to analyze the chemical composition and bonding characteris-
tics within the film. The XPS spectra of DVB10-SiCN film pyrolyzed at 1100 ◦C are shown
in Figure 4. The spectrum of Si (2p) shows peaks at 102.35 eV and 104.19 eV due to the
formation of Si-N, Si-O bonds. For the C (1 s) spectrum, peaks were observed at 284.8 eV,
286.06 eV, and 288.25 eV and are attributed to C-C/C-H, C-O/C-N, and C=O, respectively.
The highest intensity of the C-C peak indicates the completion of the pyrolysis process and
the formation of free carbon. Similarly, for N (1 s) spectrum, the peaks at 399.35 eV, and
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400.95 eV correspond to C-N and Si-N, respectively. As for the O 1 s spectrum, two peaks
centered at 532.4 eV and 533.87 eV, respectively, are associated with the Si-O band and
adsorbed -OH, which is related to the oxygen contamination during the preparation [1].
The above results indicate the formation of free carbon-rich SiCN ceramics.
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Raman spectroscopy was used to further analyze the carbon in the SiCN films. The
Raman spectra of the investigated SiCN ceramic films are shown in Figure 5. The spectra
of SiCN modified with different DVB concentrations exhibit similar shape, which contains
a D peak at ~1333 cm−1, and G peak at ~1610 cm−1, indicating a strong disorder state of
the amorphous carbon. The intensity, position, and width of the D and G bands may vary,
depending on the structural organization of the sample under study [22]. The intensity
ratio of the D and G modes, ID/IG, enables the evaluation of the carbon nanoparticle size
by using the Ferrari-Robertson equation [22,23]:

ID
IG

= C′(λ)L2
a (1)

C′(λ) is a coefficient depending on the excitation wavelength of the laser. The value of C′(λ)
for the wavelength of 532 nm is assigned to 0.6195 nm−2 [24]. The La values are listed in
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Table 2. The lateral cluster size La in all samples is between 1 nm and 2 nm, indicating
the nanostructural nature of the free carbon in SiCN. Previous studies have shown that
carbon in PDC SiCN will undergo precipitation during the pyrolysis process, and then
evolve into free carbon [24]. The value of ID/IG is used to measure the disorder degree of
free carbon, and the higher the ratio is, the higher the defect carbon content would be [25].
When the DVB content is 20 wt%, the ID/IG value suddenly increases, implying that the
content of disordered carbon in SiCN gradually increases. The increase in La may be due to
the in-plane growth of nano-polycrystalline graphite [23].
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Table 2. The intensity ratio of D peak to G peak ID/IG and carbon cluster size La obtained from the
curve-fitting of Raman spectra.

Sample SiCN DVB10-
SiCN

DVB20-
SiCN

DVB30-
SiCN

DVB40-
SiCN

DVB50-
SiCN

ID/IG 0.77 0.76 0.89 0.80 0.84 0.87

La (nm) 1.118 1.106 1.198 1.133 1.630 1.183

3.3. Electrical Performance

The sensing properties of the thin film resistance grids were characterized by measur-
ing the temperature-dependent resistance. The SiCN resistance grid pyrolyzed at 1100 ◦C
is insulated at room temperature (conductivity: 10−6 S/m–10−4 S/m) [5,26]. The elec-
trical conductivity of the DVB-modified SiCN films was calculated from the resistance
and size of the resistive grid. The room temperature conductivities of the DVB10-SiCN,
DVB20-SiCN, DVB30-SiCN, DVB40-SiCN and DVB50-SiCN resistor grids are 9.4 S/m,
39.8 S/m, 32.3 S/m, 24.8 S/m and 30 S/m, respectively (Figure 6a). Compared with SiCN,
the electrical conductivity of DVB-modified SiCN is significantly improved. However,
when the DVB content was increased to 20%, the conductivity did not further improve.
This is related to the content of free carbon in SiCN and the percolative network formed by
it. In conductive composites, when the conductive phase reaches the percolation threshold,
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the conductivity increases by orders of magnitude. Further increasing the concentration of
the conductive phase, the conductivity increases slowly and becomes stable [27]. The perco-
lation behavior can be attributed to the formation of free carbon network. In DVB20/SiCN
the percolative network is already completely formed and it does not improve significantly
in DVB50/SiCN [28]. This explains that the electrical conductivity of the two compositions
is quite similar despite their DVB amounts of 20 wt% and 50 wt%, respectively.
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the format ln(1/R) vs. 1000/T: (d) DVB10-SiCN film, (f) DVB20-SiCN film, (h) DVB30-SiCN film, (j)
DVB40-SiCN film, (l) DVB50-SiCN film.

The temperature sensing properties of thin-film resistive grids were characterized by
measuring temperature-dependent resistance (Figure 6b–l). Below 350 ◦C, the resistance of
the SiCN resistive grid is greater than 1 GΩ, which limits the application of SiCN TFSs in the
mid-low temperature range. The high conductivity of DVB-modified SiCN resistive grid
makes it more suitable for sensing in the mid-low temperature range. In the temperature
range of 30–400 ◦C, all DVB-modified SiCN resistive grids exhibit negative temperature
coefficient of resistance, that is, the resistance decreases monotonically with increasing
temperature, presenting a good sensitivity of DVB-modified SiCN resistive grids under
high temperature (T) environments. The ln(1/R)–1000/T curves for the DVB-modified
SiCN resistive grids were obtained according to the thermistor equation [17,18]:

ln
1
R

= c1
1
T
− c2 (2)

where c1 and c2 are constants. For all SiCN resistive grids, linear behavior following the
thermistor equation was obtained. The constant c1 values of DVB10-SiCN, DVB20-SiCN,
DVB30-SiCN, DVB40-SiCN, and DVB50-SiCN thermistors are −372.35, −509.72, −478.65,
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−388.51 and −811.69, respectively, indicating that they all have excellent sensitivity to
temperature change. However, during one cycle of heating and cooling tests, it can be
found that SiCN films modified with low DVB content (DVB: 10–30 wt%) have better
repeatability. The incomplete coincidence of the heating and cooling resistance curves in
the temperature range of 200–400 ◦C is related to the response speed of the thermocouple
and the thermal conduction behavior of thermal components such as Al2O3 substrates. In
other words, the thermocouple measures the ambient temperature of the Al2O3 substrate,
while the temperature experienced by the TFS is closer to the surface temperature of the
Al2O3. During the heating and cooling process, their thermal conduction behaviors are
different, resulting in incompletely consistent resistance curves. However, when the heating
and cooling are completed, the resistance of the TFS can return to its original value. For the
SiCN films modified with high DVB content (DVB: 40–50 wt%), it can be found that the
resistance of TFS increases significantly after one thermal cycle. This may be related to the
oxidation of carbon. The modified SiCN films with low DVB content not only significantly
improved the electrical conductivity, but also exhibited better resistance repeatability.

4. Conclusions

In this study, a DVB-modified PDC thin-film resistive grid with a line width of about
550 µm and a thickness of less than 7 µm was fabricated for by a DIW process. Compared
with PDC-SiCN, the introduction of more carbon sources by adding DVB not only signifi-
cantly improves the electrical conductivity of SiCN, but also increases the critical thickness
of SiCN film several times. This provides another method for the thinning, patterning and
high conductivity of PDC devices. A thin thermistor integrated with the Al2O3 substrate
was successfully fabricated using DVB-modified PDC-SiCN as the sensing element, which
demonstrated the feasibility of the proposed method. The conductive behavior and mi-
crostructure of DVB-modified PDC-SiCN ceramics were studied in detail. The temperature
resistance behavior of the DVB-modified SiCN resistive grid in the mid-low temperature
range from room temperature to 400 ◦C was measured. The SiCN ceramics modified with
low DVB content not only effectively improved the electrical conductivity but also had
better oxidation resistance.
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