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Abstract: Although the application of mathematical optimization methods for controlling machining
processes has been the subject of much research, the situation is different for µ-WEDM. This fact
has prompted us to fill the gap in this field in conjunction with investigating µ-WEDM’s very low
productivity and overall process efficiency, since the current trend is oriented towards achieving
high quality of the machined area at a high manufacturing productivity. This paper discusses in
detail the application of non-linear programming (NLP) methods using MATLAB to maximize the
process performance of µ-WEDM maraging steel MS1 sintered using direct metal laser sintering
(DMLS) technology. The novelty of the solution lies mainly in the selection of efficient approaches
to determine the optimization maximum on the basis of a solution strategy based on multi-factor
analysis. The main contribution of this paper is the obtained mathematical-statistical computational
(MSC) model for predicting high productivity and quality of the machined area with respect to the the
optimal efficiency of the electrical discharge process in the µ-WEDM of maraging steel MS1 material.
During the experimental research and subsequent statistical processing of the measured data, a local
maximum of 0.159 mm3·min−1 for the MRR parameter and a local minimum of 1.051 µm for the Rz
parameter were identified simultaneously during µ-WEDM maraging steel MS1, which was in the
range of the predicted optimal settings of the main technological parameters (MTP).

Keywords: efficiency; micromachining; optimization; performance; surface roughness; quality

1. Introduction

Electrical discharge machining is a progressive machining technology that is often used
in technical practice for machining materials characterized by high hardness or significantly
complicated machined surface shape [1]. The main advantage of this progressive machining
technology over other technologies is the high quality of the machined surface, while the
mechanical properties of the material to be machined impose almost no limits [2]. It
is, therefore, possible to machine any material regardless of its mechanical properties.
However, a limiting condition for the machinability of these materials is the minimum
value of their electrical conductivity [3]. Although this machining technology has several
advantages, it also has its shortcomings. The most significant drawback—which makes
this technology much less popular in comparison to the vast majority of conventional,
but also progressive, machining technologies—is the very low productivity and poor
overall efficiency of the production process. The current trend aims to achieve high quality
of the machined surface with high manufacturing productivity [4]. Thus, the primary
reasons for the low productivity and efficiency of the production process are the very
physical nature of the process of removing material particles from the machined surface
and the current approaches in the established way of controlling the electrical discharge
process [5]. Another reason is the absence of advanced research in this area. So far, these
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have been primarily oriented towards the area of improving the quality of the machined
surface. Therefore, the use of this progressive machining technology has been isolated
to special purpose applications where a high quality of the machined surface is required
in terms of geometric accuracy, but especially in terms of the roughness parameters of
the machined surface [6]. At the same time, not enough attention has been paid to the
productivity of manufacturing; therefore, this technology is nowhere near being able to
compete with commonly available machining technologies. Some experimental research
also points to this fact [7]. It is therefore ideal to search for ways to increase the productivity
and overall efficiency of the electroerosive process, while maintaining a high quality
standard of the machined surface [8]. In this pursuit, one of the appropriate methods is
probably to search for a unique combination of levels of important factors that can, in
all circumstances, have a favourable impact on improving the productivity and overall
efficiency of the electro-etching process while maintaining a high quality level of the machined
surface [9–11]. The problem in finding a suitable solution in this area is the large number of
factors that are involved in the machining process. At the same time, a significant number of
researchers have studied the influence of the main technological and process parameters
on the quality of the machined surface after µ-WEDM in such a way that only one input
factor of the process was changed while the others were kept at a constant value [12–14].
However, as is known, there are interactions between the factors in the electroerosive
process, so process conditions determined by such a method may not be optimal. At the
same time, these input factors participate in the contraindication of quality and productivity
in different percentages. In some specific cases, even the combination of input parameters
significantly participates in the accumulation of adverse effects, which negatively affects
the overall productivity and efficiency of the electroerosive process as a result [15,16]. It
is often possible to eliminate these negative effects only by significant intervention in the
main technological parameters (MTP) management method itself, as well as the process
parameters. Hybrid or combined approaches in the way of managing the technological
system, as well as MTP and process parameters, also appear to be a suitable methods of
solving the aforementioned problems. They could significantly contribute to the elimination
of the natural barrier of low productivity and overall efficiency of the electroerosive process.
One of the special ways to increase the quality and productivity of electrical discharge
machining was introduced by Zhu et al. in their conducted experimental research [17].
By adding TiC powder to the dielectric fluid, they were able to significantly increase the
productivity of the electrical discharge machining process though the roughness parameter
of the machined surface Ra was around 2 µm. However, the disadvantage of the given
maximization of the MRR parameter in µ-WEDM is the need to maintain the optimal
concentration of TiC in the dielectric fluid.

Another option is to take into account the interactions between factors and subse-
quently create a mathematical-statistical computational (MSC) model using the methodol-
ogy of the design of experiments (DOE) in conjunction with the correct statistical analysis
and evaluation of the experimentally obtained data. Based on the given MSC model and
taking into account nonlinearities, the optimization procedure can be performed using
suitable mathematical optimization methods and algorithms with the support of suitable
software [18,19]. Some attempts using this method have been made by Pradhan et al. [20].
As part of their research, they carried out the optimization of the electrical discharge process
in Ti-6Al-4V machining by using the response approach of selected input parameters on
the quality of the machined surface. They found that peak discharge current and pulse
duration were the most influential parameters in terms of material removal rate. In ad-
dition, Meena et al. [21] performed a mutual optimization of the material removal rate
(MRR) and tool wear rate (TWR) as a function of the selected input factors, which were
peak discharge current, voltage, and frequency, using the Taguchi method. They found that
voltage has a significant effect on the output power of the electrical discharge process. In
their experiments, Somashekhar et al. [22] described an artificial neural network method as
suitable for optimizing the input parameters of µ-EDM in terms of MRR. At the same time,
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several researchers have attempted to investigate the effects of different input factors and
their levels on the response variables such as MRR, TWR, and surface modification in µ-
WEDM [23–27]. However, their research has been limited to µ-WEDM of selected materials
in terms of machining performance parameters by modelling the material properties of the
workpiece and the tool electrode. In doing so, only limited effort has been devoted to the
optimization of these input parameters for the selected output parameters.

To meet this objective, it is necessary to monitor the performance of the machining
process itself. This, as already mentioned, is closely related to the properties of the material
being machined, among other things [28,29]. A special group of materials that cause
problems associated with low performance are the highly structurally non-homogeneous
materials. Maraging steel MS1 is one of these materials. Therefore, this material was
included in the experimental research on the optimization of the quality of the machined
area and the productivity of the machining process in µ-WEDM. It is a material that is
produced by one of the very flexible advanced additive manufacturing technologies, namely
direct metal laser sintering (DMLS) [30,31]. This is a technology that has many advantages,
based on its ability to produce very complex parts in the workspace of a single machine.
However, it has a number of disadvantages in addition to its number of advantages. The
most important disadvantage is that due to the many limiting factors that affect the final
quality of the machined surface, satisfactory results cannot always be achieved [32,33].
This is even more so when it comes to micromachining technology. This is because in the
production of a given material by laser sintering of powdered metal, there are changes
in the temperature and condition of the material, which often cause deformation of its
surface [34]. This surface deformation causes geometric surface variations, which according
to Sarafan et al. are at the level of 100 µm [35]. At the same time, the machined surface
roughness parameter Ra of such surfaces is at the level of 12 µm. This is—from a precision
manufacturing point of view—unacceptable. Therefore, additional finishing operations
are required. Since high-strength materials are used in the production of this technology, it
is not possible to post-machine them using conventional machining technologies. At the
same time, in the vast majority of cases, the products of this technology are characterized
by highly complex shapes, which precludes the additional application of many other
technologies [36,37]. Therefore, in this regard, the application of µ-WEDM technology is
a suitable way forward for post-machining. Here, however, the aforementioned problem
arises, which is associated with the non-homogeneity of the material structure as a negative
consequence of the given additive manufacturing technology [38]. This is due to the
anisotropic mechanical properties between the direction of the layer increment and the
plane of the build layer, which are mainly due to the principle of the technology, where the
powder is sintered layer by layer. In addition, non-homogeneity of the individual layers
also often occurs, which again causes significant problems in electrical discharge machining
associated with a substantial reduction in the productivity of the electrical discharge
machining [39]. The above reasons have therefore led us to carry out experimental research
aimed to make significant progress in solving the above-mentioned problems. At the same
time, the research carried out contributes to filling the gap in the field of productivity
maximization, as well as improving the overall efficiency of the electrical discharge process.
Thus, by predicting specific settings of the main input factors, it is possible to maximize
productivity while maintaining a high quality of the machined surface. This also results
in a substantial increase in the overall efficiency of the machining process, which can
bring the technology closer to being a serious competitor. A multi-objective optimization
technique based on the need for a specific approach and a genetic algorithm determine the
optimal combination of µ-WEDM process input parameters for machining maraging steel
MS1 material with respect to high productivity and quality of the machined area. Thus,
the main contribution of the experimental research carried out is the obtained MSC model,
predicting the MTP settings with respect to maximizing the efficiency of the electrical
discharge process, which, of course, is also reflected in the reduction of machining times.
On the basis of the MSC model, it is possible to determine the optimal values of the factors
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acting during the electrical discharge process on the quality of the machined surface and
the productivity of the electrical discharge process, namely the maximum peak current,
pulse-on time duration, pulse-off time duration, and maximum voltage of discharge. Their
specific values, determined by means of nonlinear programming (NLP) methods, make
it possible to minimize the roughness parameters of the machined surface and maximize
the productivity of the electrical discharge process, thereby reducing machining time and
increasing the overall efficiency of the electrical discharge process.

2. Materials and Methods
2.1. Mathematical Modeling and Optimization of the µ-WEDM Process Efficiency

The first step in the process of finding a suitable solution to a given problem in the
form of mathematical modelling followed by optimization is the transformation of the
physical structure into an MSC model. The MSC model describes the results of the process
accordingly based on a detailed definition of the quantifiable input parameters [40]. The
formulation of the objective function is a key step toward proper optimization, and its
selection requires deep experience in mathematical modelling issues in the given research
area. Only then can one proceed to the selection of an appropriate optimization algorithm
and its implementation in a suitable software environment in order to obtain a suitable
solution for the optimization of the specified problem [41]. Deterministic methods can be
applied to find a suitable solution to the given problem through mathematical modelling
and optimization [42]. Due to the fact that classical gradient-based methods are subject to
rigorous mathematical logic, they are considered suitable for performing optimization of
the vast majority of processes. These include gradient-based methods such as the steepest
descent method (SDM), quasi-newton methods (QNM), the interior point method (IPM),
and sequential quadratic programming (SQP). IPM and SQP have been successfully used
to solve large-scale engineering problems. Meanwhile, the SQP algorithm is generally
applied for transforming the original problem into a sequence of subproblems of quadratic
programming. However, each quadratic programming subproblem contains Jacobian and
Hessian matrices, and these must be computed for each Newton iteration of the SQP loop,
which can lead to a significant increase in the computational burden. Therefore, IPM was
developed as an alternative to the gradient SQP method. However, in certain specific cases,
the classical gradient-based method may no longer be reliable because it is difficult to
obtain the required gradient information for objective functions or special constraints. In
these cases, stochastic and metaheuristic approaches provide some advantages because
no inferred information is needed to implement evolution-based methods. Because these
methods do not suffer from the difficulty of computing Jacobian and Hessian matrices, they
are suitable for obtaining the optimum. Moreover, compared to classical gradient-based
methods, stochastic and metaheuristic approaches introduce a random step size within the
numerical iteration-based computation. This means that, in many cases, algorithms in this
category do not require any initial estimation value due to random initialization [43]. At
the same time, there are many types of evolutionary-based algorithms, commonly known
as global optimization methods, that are suitable and convenient for finding the optimum
in solving any problem. These evolutionary algorithms essentially use the “survival of the
fittest” principle. Hence, the determination of a global minimum or maximum tends to be
more likely when stochastic algorithms are applied than by applying classical deterministic
methods. Furthermore, the popularity of implementing metaheuristic methods is increas-
ing in conjunction with the continuous progress and development of computing technology.
They have also been successfully applied in complex and multivariate optimization of
processes characterized by a high degree of nonlinearity. A genetic algorithm was then
designed by mimicking natural evolution using selection, which includes the operations of
crossover, mutation, and selection. Although the feasibility of using meta-heuristic methods
to solve engineering optimization problems has been demonstrated, there are some difficul-
ties in validating the optimality of the solution and they are still not considered “standard”
optimization algorithms. Recently, a method based on convexification has started to attract
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attention. For example, linear programming as a convex optimization procedure has been
successfully used to determine optimal cutting parameters in machining processes [44–46].
Engineering optimization problems are usually nonconvex, so it is necessary to transform
the original problem formulation into the form of a convex optimization procedure using a
convexification technique [47] before applying the convex method. Thus, from the above,
it is evident that for the purpose of optimizing the productivity of an electrical discharge
process, it is appropriate to apply static nonlinear programming, with Design Expert, R,
QC Expert, Minitab, Statistica, and MATLAB software finding suitable applications in the
design of experiments, statistical analysis of data, and optimization.

Based on a preliminary analysis of the state of the field, it was evident that the
optimization of the response of the machined surface based on suitability analysis was the
ideal technique to find the optimum conditions for machining maraging steel MS1 material
using µ-WEDM technology. The optimization criterion in this case was the maximization of
the material removal rate (MRR) parameter and the minimization of the machined surface
roughness parameter Rz, where the predicted response is y and the desired function is
MRR and Rz. The goodness of fit value varies from 0 to 1. If the goodness of fit value is 0, it
means that the predicted value is completely undesirable. If the suitability value is 1, the
predicted value is ideal. The requirement for an appropriate response increases with the
value of the MRR and Rz parameters. Formula (1) describes the one-sided transformation
maximization function for MRR, and Formula (2) describes the minimization function for
the selected surface roughness parameter Rz.

MRR =


(

y− ymin
ymax − ymin

)vol


0→ y ≤ ymax
ymin ≤ y ≤ ymax

1→ y ≤ ymax

(1)

Rz =


(

y− ymax

ymin − ymax

)vol


0→ y ≤ ymin
ymin ≤ y ≤ ymax

1→ y ≤ ymax

(2)

In these equations, MRR and Rz are the desired value of function y and the parameters
ymin/max are the lower/upper response limit values of y. Vol is the volume, which can be
varied from 0.01 to 10 to adjust the shape of the desired function. The total desired function
D (0 ≤ D ≤ 1) is then defined as the geometric mean of the individual desired functions.
The multi-objective function is then the geometric mean of all the transformed responses of
the single objective problem shown in Equation (3). The higher the value of D, the better
the need for combined response levels.

D = (MRR× Rz)1/n (3)

Multi-response optimization can be performed using the desirability function in
conjunction with the machined surface response methodology [48–50]. The process input
parameters were the maximum peak current, the pulse-on time duration, the pulse-off
time duration, and the maximum voltage of discharge. The objective was to maximize the
MRR and minimize the machined surface roughness parameter Rz. Volume values were
assigned for both MRR and Rz, with equal importance assigned to each. Using the statistical
software Design Expert, a set of optimal solutions were derived for the specified spatial
design constraints, namely for the MRR and the machined surface roughness parameter
Rz. The set of constraints with the highest desirability value was selected as the optimal
constraint for the desired responses.

2.2. Identification of MTP in Relation to MRR and Roughness Parameter Rz in the
µ-WEDM Process

The MRR in the µ-WEDM process is significantly affected by the MTP. This parameter
can generally be considered to be an important quantitative output parameter of the µ-
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WEDM process, which comprehensively characterizes the material removal rate from the
workpiece as well as the performance of the electrical discharge process itself. The MRR
parameter describes the amount of material removed in a specific operation in a specific
time unit. It is expressed mathematically by relation (4):

MRR =
Volume o f Material Taken

Time Taken
(4)

In addition to the quantitative output power parameter MRR, the output quality
parameter Rz is also important in the µ-WEDM optimization process. This characterizes
the quality of the machined surface after µ-WEDM in terms of its roughness [51]. It
is an objective parameter that serves to assess the surface roughness of the µ-WEDM
surface accurately, as it determines the amount of profile roughness without any averaging
quantities. In the case of µ-WEDM, this parameter exceeds the arithmetic mean value of
the surface roughness Ra of the machined surface by a factor of approximately 5. The
roughness of the machined surface after µ-WEDM is, as in the case of MRR, significantly
influenced by the MTP setting. Of these, the maximum peak current I (A), the pulse-on
time duration ton (µs), and the associated pause for discharge channel recovery, i.e., the
pulse-off time duration toff (µs), and the electrical discharge voltage U (V) have a decisive
influence on the roughness of the machined surface. An overview of the MTPs in µ-WEDM
that significantly affect the quantitative performance parameter MRR and the qualitative
parameter of machined surface roughness Rz, including their range of settings within the
experiment, is given in Table 1.

Table 1. The range of MTP settings for µ-WEDM and their influence on the output parameters MRR
and Rz.

MTP µ-WEDM Operation Setting Range Influence of MTP on Rz Influence of MTP on MRR

Maximum peak current
I (A)

roughing 6.0–8.0 As the value of parameter I
increases, the surface roughness

deteriorates [13].

As the value of parameter I
increases, the MRR

increases [22].
semifinishing 4.0–6.0

finishing 2.0–4.0

Pulse-on time duration
ton (µs)

roughing 20.0–40.0 As the value of the parameter ton
increases, the surface roughness

deteriorates [14].

As the value of the
parameter ton increases, the

MRR increases [22].
semifinishing 10.0–20.0

finishing 5.0–10.0

Pulse-off time duration
toff (µs)

roughing 9.0–15.0 As the value of the parameter toff
increases, the surface roughness

improves [23].

As the value of the
parameter toff increases, the

MRR decreases [23].
semifinishing 6.0–9.0

finishing 3.0–6.0

Voltage of discharge
U (V)

roughing 85–90 As the value of parameter U
increases, the surface roughness

improves [40].

As the value of the
parameter U increases, the

MRR decreases [51].
semifinishing 75–80

finishing 70–75

2.3. Conditions of the Experiment

A galvanized wire tool electrode, made of drawn CuZn37 brass wire with a diameter
of 0.070 mm, a tensile strength of 1000 MPa, and an elongation >1%, was used in the exper-
iment. The experimental specimens with dimensions of 50.0 mm × 15.0 mm × 15.0 mm
were made of high-alloy steel with the designation of maraging steel MS1 in powder form.
The sintering of the fine particles of the material was carried out by direct metal laser
sintering (DMLS) technology using a 3D metal printer with a laser power of 400 W and
a wavelength of 1060–1100 nm. The sintering process consisted of successive sintering
of Maraging Steel MS1 powder material using laser technology, which was deposited
in fine layers until the desired shape and dimension of the experimental specimen were
achieved. The detailed procedure for the manufacture of experimental samples using
DMLS technology is described in detail by Simkulet et al. in their work [30,33]. The metal
powder was produced by atomization and its chemical composition corresponded to US
18% Ni maraging 300 grade steel with material number 1.2709 and the German steel stan-
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dard X3NiCoMoTi18-9-5. Table 2 shows the chemical composition and Table 3 shows the
mechanical and physical properties of the high-alloy steel designated maraging steel MS1.

Table 2. Chemical composition of steel MS1 [52].

Fe Ni Co Mo Ti Al Cr C Mn, Si P, S

Zb. 17–19% 8.5–9.5% 4.5–5.2% 0.6–0.8% 0.05–0.15% ≤0.5 ≤0.03 each≤ 0.1% each ≤ 0.01%

Table 3. Mechanical and physical properties of steel MS1 [52].

Mechanical properties of maraging steel MS1

Parameter As built After age hardening

Tensile strength (MPa) 1200 ± 100 1950 ± 100
Yield strength Rp 0.2% (MPa) 1100 ± 100 1900 ± 100
Elongation at break (%) 8 ± 3 2 ± 1
Hardness (HRC) 33–37 50–54

Ductility (J) 45 ± 10 11 ± 4

Modulus of elasticity (GPa) 150 ± 25

Physical properties of maraging steel MS1

Density (g·cm−3) 8.0–8.1
Electrical conductivity (Siemens·m·mm−2) 2.25
Thermal conductivity (W·m−1·◦C) 15 ± 0.8
Specific heat capacity (J·kg−1·◦C) 450 ± 20
Melting temperature (◦C) 1370–1400

Based on the mechanical and physical properties listed in Table 3, it is evident that
maraging steel MS1 has high tensile strength and a relatively low thermal conductivity
(15 Wm−1K−1) at 20 ◦C. At the same time, it has a favourable electrical conductivity
(2.25 Siemens·m·mm−2) and is therefore suitable for µ-WEDM machining. This steel is also
characterized by very good mechanical properties and heat treatability after the atomization
process. Heat treatment at 820 ◦C followed by age hardening at 490 ◦C results in a hardness
of the final material of more than 50 HRC, which precludes the suitability of many post-
machining technologies. Figure 1 shows an experimental sample after sintering prepared
on µ-WEDM.
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Subsequently, the prepared experimental samples were subjected to electrical dis-
charge machining by µ-WEDM technology (Figure 2a,b) using a CNC electroerosive ma-
chine CHMER G32F (Figure 2c). Eroding was carried out in a dielectric fluid based on
deionized water with an electrical conductivity of less than 10 µS·cm−1.
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Figure 2. Made of experimental samples from maraging steel MS1 by µ-WEDM. (a) µ-WEDM process
of the specimens; (b) marking of roughing sections E1 to E8, (c) the used electroerosive machine
CHMER G32F.

The quantitative performance parameters of the MRR electroerosive process were
determined for the individual experimental section cuts based on the time t required
to execute them and the total mass loss of the sample mwi during the making of the
individual sections using accurate laboratory scales with an average of five repetitions.
The measurement of the qualitative parameter Rz of the machined area in the individual
sections of the experimental samples was carried out using a Mitutoyo SJ 210 contact
roughness meter with a measuring range of −200 µm to +160 µm, again with an average of
five repetitions.

3. Results and Discussion
3.1. DoE Statistical Analysis of Experimentally Measured MRR and Rz Data at µ-WEDM

As is well known, experimental measurement results are commonly characterized in
practice by a highly asymmetrical distribution and an unconventional scatter. However, the
violation of the basic requirements of the dataset being evaluated is no exception. Therefore,
when evaluating the obtained results of experimental measurements of the quantitative
performance parameter MRR, as well as the qualitative parameter of the roughness of the
machined surface Rz, it was not necessary to implement a series of sequential steps [53].
The first step was an exploratory data analysis (EDA), which allowed to exclude certain
anomalies of the obtained results of the experimental measurements. These were mainly
specificities in the shape of the data distribution, the exclusion of outliers, and the detection
of the local concentration of the measured data. In the next step, it was unavoidable
to carry out the verification of the requirements for the set of measured data due to
the considerable non-homogeneity of the material of the experimental samples [54–57].
Finally, through confirmatory data analysis (CDA), verification of the measured data was
performed with the application of the estimation of the position, scattering, and shape
parameters. The sampling analysis procedure was aimed at determining the objective
mean of a representative sample from the experimental measurements of the output
parameters MRR and Rz of the µ-WEDM. The results of the individual measurements
of these parameters were firstly evaluated by standard statistical methods (Shapiro–Wilk
test), which aimed to examine the normality of the dataset and then to identify outliers and
extremes (Grubs and Dixon tests). This analysis was applied to the results of all recorded
data for both MRR and Rz. In the case of recorded data where the analysis confirmed
the presence of outliers or extremes and a normal distribution could not be established,
even in cases where the normality of the data distribution was not demonstrated even
after exclusion of confirmed outliers, exponential and Box–Cox transformations were
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performed. This ensured the accuracy of further statistical analyses of the experimentally
obtained data.

3.2. Design and Validation of the MSC Model for the Prediction of MRR and Rz at µ-WEDM

An important step in the process of optimizing the performance of the µ-WEDM
process of machining maraging steel MS1 sintered by DMLS technology is the design of the
MSC model for the prediction of the output quantitative process performance parameters
(MRR) and the output qualitative parameters (Rz) of the machined area [58,59]. It is
important that the MSC model is designed with suitable prediction capability. This can
only be achieved if data evaluation, regression analysis, and model interpretation have
been performed in a statistically correct manner [60,61].

The basic statistical analysis of the used general model (17) for predicting the inves-
tigated response y depending on the change of the independently investigated variables
xi (maximum peak current, pulse-on time duration, pulse-off time duration, and voltage
of dis-charge) was carried out using analysis of variance (ANOVA). ANOVA for the in-
vestigated parameter y represents a basic statistical analysis of the appropriateness of the
used general model (17). Using ANOVA, it was analysed whether the variability caused by
random errors is significantly smaller than the variability of the measured values explained
by the model. The second statistical use of ANOVA results from its basic nature, where
the null statistical hypothesis that none of the effects used in the model (I, ton, toff, U) have
a significant impact on the investigated variable (MRR; Rz) is tested. The basic general
ANOVA table is shown in Table 4.

Table 4. ANOVA table.

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model DFModel = a − 1 SModel MSModel = SModel/DFModel F = MSModel/MSError pM

Error DFError = N − a SError MSError = SError/DFError

C.Total DFC.Total = N − 1 SC.Total MSC.Total = SC.Total/DFC.Total

The sum of squares of model SModel represents the sum of squares of the differences
between the sample means of individual groups from the overall mean and is calculated as:

SModel =
a

∑
i = 1

ni(yi − y)2 (5)

where a is the number of groups of factor A and ni is the number of subjects in the
i-th group.

It is also possible to calculate the residual sum of squares sum of squares SError, which
represents the sum of squares of the difference between the observed values and the
respective group averages, i.e., the amount of data fluctuation around the mean value in
individual selections according to the relationship (6):

SError =
a

∑
i = 1

N

∑
j = 1

(
yij − yi

)2 (6)

Finally, the total sum of squares SC.Total describes the overall variability of the measured
quantity by comparing individual observations with the overall average and is calculated
according to the relationship (7):

SC.Total =
a

∑
i = 1

N

∑
j = 1

(
yij − y

)2 (7)
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For the sums of squares, SC.Total = SModel + SError is valid and thus represents the
decomposition of the total variability of the measured quantity between the variability of
the model and the residual variability of the error. The pM value (Table 4) represents the
resulting calculated value of the level of significance reached. For the value of the Fisher
test statistic:

F > F1 − α (a − 1, N − a) (8)

where α represents the chosen level of significance (α = 0.05).
If relation (8) is valid, then we reject the null statistical hypothesis of the agreement

of the mean values of individual groups of subjects and we can say that the variability
caused by random errors is significantly smaller than the variability of the measured values
explained by the model. The used model (17) is adequate, based on the Fisher–Snedecor
test criterion. The second conclusion of relation (8) is that at least one of the used input
factors xi is different from zero and thus has a significant influence on the change in the
value of the investigated parameter y.

The actual calculation of specific values of the regression coefficients b = (b0, b1 . . . ,
b1234) of the general model is possible from a known relationship. It is based on the least
squares method of deviations between the original and model-determined response values
y in matrix form (9):

b =
(

XT · X
)−1
· XT · y = M−1 · XT · y = V · XT · y (9)

where M s the so-called moment matrix and V is the variation matrix (inverse matrix of
the moment matrix M). The fact that the calculated regression coefficient of the model has
a non-zero value does not mean that it is statistically different from zero at the chosen
significance level α. This can only be assessed after determining its inaccuracy, which is
characterized by directional deviation. The variance of the regression coefficient bj, j = 0 . . .
p (if we only consider the first-order model without interactions), where p is the number of
regressors, can be determined using the relationship (10):

s2(bj
)
= s2(e) ·Vjj (10)

where Vjj is the main diagonal of the variation matrix V, i.e., diag(V), and s2(e) is the residual
(unexplained) variance. This unexplained variance can be calculated from the residual sum
of squares (RSC), i.e., from the sum of squared residuals (model error) e:

e = y− ỹ (11)

RSC = eT · e (12)

s2(e) =
RSC

n− (p + 1)
=

eT · e
n− p− 1

(13)

where n is the number of measured values and p + 1 is the number of model regressors
including the absolute term. The standard deviation of the regression coefficient is the
square root of the variance:

s
(
bj
)
=
√

s2
(
bj
)

(14)

where for the test t-statistic of the statistical significance of the respective regression coeffi-
cient the ratio applies:

t
(
bj
)
=

bj

s
(
bj
) (15)

As long as the inequality holds∣∣t(bj
)∣∣ ≥ t

(
1− α

2
, n− p− 1

)
(16)
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where t
(
1− α

2 , n− p− 1
)

is the quantile of the Student’s t-distribution, then we reject the
hypothesis of statistical insignificance of the regression coefficient.

When conducting an experiment, the estimate of the investigated dependent variable
is generally described by a model of the form (17):

_
y = b0.x0 +

N

∑
j = 1

bj.xj +
N

∑
u, j = 1

u 6= j

buj.xu.xj +
N

∑
u, j = 1

u 6= j

buj.x2
u.xj+

N

∑
u, j = 1

u 6= j

buj.xu.x2
j +

N

∑
j = 1

bjj.x2
j (17)

where b0, bj, buj, bjj are the respective regression coefficients and xj are the respective
independent variables, factors.

Table 5 shows the estimated parameters of the MSC model for the prediction of the
output quantitative performance parameters MRR and the output qualitative parameters
Rz of the machined area.

Table 5. Estimated MSC model parameters for prediction of MRR and Rz.

Term for MRR Estimate Std Error t-Ratio Prob > |t|

Intercept (x0) −0.010813 0.020121 −0.54 0.5929
x1 0.0165482 0.000279 59.26 0.0001 *
x2 0.0012834 7.19 × 10−5 17.86 0.0001 *
x3 −0.001947 0.00014 −13.94 0.0001 *
x4 0.0008016 0.000237 3.38 0.0013 *
(x1 − 5)· · · (x1 − 5) 0.0128791 0.003127 4.12 0.0001 *
(x1 − 5)· · · (x2 − 22.8767) −0.000387 0.000016 −24.17 0.0001 *
(x2 − 22.8767)· · · (x2 − 22.8767) −0.000275 8.03 × 10−5 −3.42 0.0011 *
(x2 − 22.8767)· · · (x3 − 9) 0.0000673 0.000008 8.40 0.0001 *
(x2 − 22.8767)· · · (x4 − 80) 0.0000419 4.70 × 10−6 8.93 0.0001 *
(x1 − 5)· · · (x1 − 5)· · · (x4 − 80) −0.000165 2.62 × 10−5 −6.32 0.0001 *
(x1 − 5)· · · (x1 − 5)· · · (x1 − 5)· · · (x1 − 5) −0.000438 5.73 × 10−5 −7.63 0.0001 *

Term for Rz Estimate Std Error t-Ratio Prob > |t|

Intercept (x0) 4.312305 0.462060 9.33 <0.0001 *
x1 1.263985 0.017863 70.76 <0.0001 *
x2 0.108301 0.003054 35.46 <0.0001 *
x3 −0.115140 0.009508 −12.11 <0.0001 *
x4 −0.025370 0.005077 −5.00 <0.0001 *
(x1 − 5)· · · (x1 − 5) −0.459620 0.148820 −3.09 0.0030 *
(x1 − 5)· · · (x2 − 22.8767) −0.025260 0.001029 −24.55 <0.0001 *
(x1 − 5)· · · (x3 − 9) 0.113915 0.035306 3.23 0.0020 *
(x2 − 22,8767)· · · (x3 − 9) −0.031130 0.011999 −2.59 0.0119 *
(x2 − 22,8767)· · · (x4 − 80) −0.009710 0.003622 −2.68 0.0094 *
(x1 − 5)· · · (x1 − 5)· · · (x1 − 5)· · · (x1 − 5) 0.051696 0.016525 3.13 0.0027 *
(x1 − 5)· · · (x1 − 5)· · · (x1 − 5)· · · (x4 − 80) 0.013128 0.004660 2.82 0.0065 *

x1—maximum peak current I (A); x2—pulse-on time duration ton (µs); x3—pulse off duration time toff (µs);
x4—voltage U (V), *—statistically significant at the significance level α = 0.05.

The regression coefficients of the MSC models listed separately for the prediction
of the MRR and Rz parameters in the estimate column are not scaled but refer to the
original scale of measurement of each factor. As can be seen in Table 5, the largest effect
on explaining response variability, i.e., on MRR and Rz, is penetration (x0), also referred
to as the absolute term of the model. In terms of the four considered input factors of the
electrical discharge process, the peak discharge current I (factor x1) has a major influence
of 37.513% on MRR as well as on Rz with a contribution of 41.466%. Another significant
member of the MSC model is pulse-on time duration ton (factor x2) with an influence weight
of 11.306% on the variation in MRR value and with an influence weight of 20.814% on
Rz. In a similar way to the peak discharge current, increasing the value of pulse-on time
duration results in an increase in the MRR parameter but also in Rz. The interaction of
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MTP maximum peak current and pulse-on time duration also has a significant effect on
MRR and Rz. Their interaction has an impact weight of 15.3% on MRR and 14.347% on
Rz. Pulse-off time duration toff (factor x3) also contributes significantly to the change in
MRR and Rz parameters. The latter influences the output process performance parameter
MRR with a weight of 9.51% and the quality output parameter Rz of the machined area
after µ-WEDM with a weight of 12.76%. By increasing its value, we achieve a decrease in
both the MRR parameter and the Rz parameter. The last significant factor, acting as the
main factor in the electrical discharge process, is the applied voltage of discharge U (factor
x4). The effect of factor x4 on the change of output power parameter MRR is 5.18% and its
effect on the change of output quality parameter Rz is 7.42%. As in the case of pulse-on
time duration toff, the response decreases as the value of the applied voltage of discharge
increases. Consequently, based on the estimation of the parameters presented in Table 5,
it was possible to construct MSC models expressing the relationship between the input
factors (x1–x4) and the response to a change in the output quality parameter MRR according
to relation (18) and the response to a change in the output quality parameter Rz according
to relation (19):

MRR = 4.868 · 10−2 · I + 1.209 · 10−2 · ton − 3.489 · 10−3 · to f f − 4.407 · 10−3 ·U − 3.900 · 10−4 · I · ton+

+1.700 · 10−3 · I ·U + 6.730 · 10−5 · ton · to f f + 4.190 · 10−5 · ton ·U − 1.700 · 10−4 · I2 ·U − 4.632 · 10−2 · I2+

+8.800 · 10−3 · I3 − 2.800 · 10−4 · t2
on − 4.400 · 10−4 · I4 + 0.106

(18)

Rz = 1.292 · ton − 99.204 · I + 2.734 · 10−2 · to f f − 1.444 ·U − 2.526 · 10−2 · I · ton + 0.114 · I · to f f+
+0.985 · I ·U − 3.113 · 10−2 · ton · to f f − 9.711 · 10−3 · ton ·U − 0.197 · I2 ·U + 1.313 · 10−2 · I3 ·U+

+23.048 · I2 − 2.084 · I3 + 5.169 · 10−2 · I4 + 134.468
(19)

A graphical representation of the most significant effects in terms of Table 5 on
the change in the value of the variable under study, i.e., the MRR process performance
(mm3·min−1) as a function of the change in the maximum peak current I parameter, at
different values of the pulse-on time duration ton in the minimum and maximum values
of the pulse-off time duration toff and voltage from discharge U parameters is shown in
Figure 3.

The above-presented graphical dependencies confirmed the increasing trend of the
output quality parameter of the electrical discharge process MRR depending on the in-
creasing values of the input parameters I and ton. Its lowest value of 0.005 mm3·min−1

was obtained at the combination of MTP I = 2.5 A, ton = 3 µs, toff = 15 µs, and U = 90 V.
Conversely, its highest value of 0.190 mm3·min−1 was achieved at a combination of MTP
I = 8.0 A, ton = 40 µs, toff = 3 µs, and U = 70 V.

A graphical representation of the most significant effects in terms of Table 5 on the
change in the value of the variable under study, i.e., the Rz machined surface roughness
(µm) as a function of the change in the maximum peak current I parameter, at different
values of the pulse-on time duration ton at the minimum and maximum values of the
pulse-off time duration toff and voltage from discharge U parameters is shown in Figure 4.
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Figure 3. Dependence of the output power parameter of the MRR process on the change in the value
of the maximum peak current I parameter at different values of ton, toff, and U. (a) Impact on MRR at
minimum values of the parameter toff and U. (b) Impact on MRR at maximum values of toff and U.
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Figure 4. Dependence of the output qualitative parameter of the Rz process on the change in the value
MTP of the maximum peak current I parameter at different values of ton, toff, and U. (a) Impact on Rz at
minimum values of the parameter toff and U. (b) Impact on Rz at maximum values of toff and U.

The above presented graphical dependencies confirmed the increasing trend of the
output quality parameter of the electrical discharge process Rz depending on the increasing
value of the input parameters I and ton. Its lowest value of 0.09 µm was obtained at the
combination of MTP I = 2.5 A, ton = 3 µs, toff = 15 µs, and U = 90 V. Conversely, its highest
value of 23.50 µm was achieved at a combination of MTP I = 8.0 A, ton = 40 µs, toff = 3 µs,
and U = 70 V.



Micromachines 2022, 13, 1446 15 of 25

In terms of confirming the accuracy and suitability of the proposed MSC models
(18) and (19), it was necessary to verify the residuals, the difference between the actual
measured and predicted values, using the prediction model in terms of their distribution.
The value of the Shapiro–Wilks test at the chosen significance level α = 5% for the MSC
model (18) represents a value of 2.311% (p = 0.0519) and for the MSC model (19) represents
a value of 1.756% (p = 0.0883). Therefore, the null statistical hypothesis that there is no
autocorrelation can be accepted. The achieved significance level of the Shapiro–Wilk test
indicates a Gaussian distribution of the residuals on a basis of which it can be concluded
that the predictive MSC models (18) and (19) were designed correctly in terms of statistical
and numerical accuracy.

The model error for the investigated variables MRR and Rz were calculated as the
difference between the experimentally obtained value and the value predicted by model
(18) for the variable MRR and model (19) for the variable Rz. In general, we can express the
model error by the relation (20):

Model error =
ye − ym

ye
· 100 [%] (20)

where ye s the value of the investigated variable (MRR or Rz) obtained experimentall and, ym
is the value of the investigated variable calculated using the prediction model (18) or (19).

A graphical representation of the deviation of the measured and calculated MSC
values by models (18) and (19) is shown in Figure 5.

In the next stage, it was necessary to perform a cumulative analysis of the usefulness
of the developed MSC models describing the influence of input factors on MRR and Rz
for µ-WEDM. A cumulative analysis of the quality of the fit of the MSC models for the
prediction of the output parameters MRR and Rz of the µ-WEDM for maraging steel MS1 is
carried out and presented in the following Table 6.

Table 6. Cumulative analysis of the quality of the fit of the MSC models for prediction of the output
parameters MRR and Rz of the electrical discharge process.

Parameter for MRR Value

RSquare 0.998175
RSquare Adj 0.997846
Root Mean Square Error 0.002675
Mean of Response 0.136644
Observations (or Sum Wgts) 73

Parameter for Rz Value

RSquare 0.998773
RSquare Adj 0.998528
Root Mean Square Error 0.164369
Mean of Response 9.332192
Observations (or Sum Wgts) 73

To express the suitability of the regression model application, appropriate model
fit diagnostic tools need to be implemented to assess the specified MSC model in terms
of graph fit, lack of fit, and likelihood of residuals. As can be observed from the results
presented in Table 6, the variability index denoted as RSquare of the established MSC model
for the prediction of the output quantitative performance parameters MRR in the µ-WEDM
has a value of 99.8175% and for the prediction of the output qualitative parameters Rz has
a value of 99.8773%. The adjusted index of determination denoted as RSquare Adj, which
indicates the overall level of model variability, reaches a value of 99.7846% in the case of
the MSC model for MRR and 99.8528% in the case of the MSC model for Rz. The average
error of the proposed MSC model is 0.002675 mm3·min−1 for MRR and 0.164369 µm for Rz.
The average value of the output quantitative performance parameter MRR in the µ-WEDM
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is 0.136644 mm3·min−1 and the average value of the output qualitative parameter Rz of the
machined area is 9.332192 µm. However, the R2 index alone is not a sufficient indicator
to investigate the validity of the established MSC model for the prediction of the MRR
and Rz parameters, mainly because an advanced analysis of the measured data has been
performed. Based on the indices presented in Table 6, it can be concluded that the achieved
value of the adjusted index of determination is satisfactory in terms of performance, quality,
and the functionality of the developed MSC models. Therefore, the given models are
suitable for the further optimization process.
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To assess the suitability of the application of MSC models for the prediction of MRR
and Rz parameters, the parametric statistical method analysis of variance (ANOVA) is also
a suitable tool. The results of this analysis are presented in Table 7 below.

Table 7. Results of evaluation of MSC models for prediction of MRR and Rz parameters by ANOVA.

Source for MRR DF Sum of Squares Mean Square F-Ratio Prob > F

Model 11 0.2387703 0.021706 3033.879 0.0001 *
Error 61 0.0004364 7.16 × 10−6

C. Total 72 0.2392067

Source for Rz DF Sum of Squares Mean Square F-Ratio Prob > F

Model 12 1319.781 109.982 4070.833 0.0001 *
Error 60 1.621 0.027

C. Total 72 1321.402

*—significant at the level of α = 0.05.

From the results of the evaluation of the MSC models for the prediction of the output
parameters of the MRR and Rz µ-WEDM by ANOVA presented in Table 7, it can be observed
that the variability due to random errors is significantly smaller than the variability of the
values determined and explained by the model. If the obtained value (Prob > F) is less
than the significance level α, it can be said that there is at least one non-zero term in the
proposed MSC model that significantly affects the value of the variable under study. Based
on the application of the Fisher–Snedecor test criterion, it was found that the achieved
value (Prob > F) for the MSC model predicting the output performance parameter MRR of
the µ-WEDM was 0.0001 at the significance level α = 5.0% that of the MSC model predicting
the output qualitative parameter of the machined surface Rz was 0.0001 at the selected
significance level α = 5.0%. This indicates the adequacy of the determined MSC models,
which is also implied by the verification of null statistical hypothesis. The latter is further
confirmed by the fact that none of the input factors of the MSC model significantly affects
the resulting value of the variable under study.

In terms of the complexity of assessing the validity of the MSC models for the pre-
diction of the output parameters of the electrical discharge process MRR and Rz in the
machining of maraging steel MS1 by µ-WEDM technology, it was still appropriate to apply
the ANOVA lack of goodness-of-fit test. This is to reveal the predictive power of the
established MSC models. The variance of the residuals and the variance of the measured
data should be applied to diagnose whether the proposed MSC model fits the observed
dependence well. The results of the ANOVA lack of goodness-of-fit test are presented in
Table 8 below.

Table 8. Results of the lack of goodness-of-fit test of MSC models for the prediction of the output
parameters MRR and Rz in µ-WEDM by ANOVA.

Source DF Sum of Squares Mean Square F Ratio Prob > F

Lack of Fit 7 0.0001104 0.000016 2.6133 0.0513
Pure Error 54 0.000326 6.04 × 10−6

Total Error 61 0.0004364

Source DF Sum of Squares Mean Square F Ratio Prob > F

Lack of Fit 6 1.588221 0.264703 435.7923 0.0677
Pure Error 54 0.0328 0.000607
Total Error 60 1.621021

From the results presented in Table 8, it can be observed that the residual variability
was compared to the within-group variability of the measured data. Thus, it can be argued
that the null statistical hypothesis (H0) and the variance of the residuals are less than the
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within-group variance. At the same time, the alternative hypothesis (H1) was tested, i.e.,
the hypothesis that the variance of the residuals is greater than the within-group variance.
Then, at the chosen significance level α = 5.0%, the value of Fisher’s criterion converted to a
probability scale (Prob > F) for the MSC model predicting the output performance parameter
MRR is 0.0513 and that of the MSC model predicting the output qualitative parameter Rz
is 0.0677. Based on this, it can be argued that there is sufficient evidence to reject the null
statistical hypothesis (H0). As a result, the variance of the residuals is less than or equal
to the within-group variance and therefore the model is statistically significant. When a
sufficiently low model error is obtained, the model shows an excellent fit to the real data.
Based on the obtained results of the lack of agreement test of the proposed MSC models
by ANOVA for the prediction of the output quantitative performance parameters of the
MRR and the output qualitative parameters Rz of the machined area in the machining of
maraging steel MS1 by µ-WEDM technology, it can be claimed that the established MSC
models are significantly valid.

3.3. Optimization of Process Efficiency in µ-WEDM Maraging Steel MS1

Based on the empirically designed MSC models predicting the behaviour of the
output quantitative process parameter MRR and the output qualitative parameter Rz of the
machined area at µ-WEDM of maraging steel MS1, verified by numerical and statistical
analysis, it is possible to proceed with the optimization of the performance of the µ-WEDM
process. In the context of techno-economic optimization of µ-WEDM, the MSC models
defined through relations (18) and (19) can be used to formulate the optimization criterion.
In practice, the performance of the electrical discharge process at µ-WEDM of maraging
steel MS1 is defined as the amount of material removed per unit of time while achieving
the desired quality level of the machined surface in terms of its roughness. Therefore,
when optimizing this process, we are looking to save machining time while maximizing
the quality of the machined surface, which is defined by the lowest possible value of the
machined surface roughness parameter Rz. At the same time, the optimal criteria must
take into account the aspect of the economic efficiency of the process, with machining time
being the decisive indicator of economic efficiency. By minimizing the machining time to
achieve the desired value of the machined surface roughness parameter Rz by setting the
optimum combination of values of the input factors, which are represented by the MTP, we
can maximize the economic benefit. Therefore, in the optimization procedure, our aim was
to minimize the machining time for a predetermined quality level of the machined surface
in terms of the roughness parameter Rz. Since the empirically determined MSC models
(18) and (19) are parametrically nonlinear, it can be expected that the objective function is
also nonlinear. Therefore, nonlinear programming was chosen to perform the optimization
procedure using the MATLAB software system.

The formation of a mathematical model is the first step towards the optimal solution,
followed by the formulation of the optimization problem, which means the formulation
of the objective function and the determination of the limiting constraints on the process
to avoid unrealistic solutions during the optimization procedure. The choice of the ap-
propriate optimization method and suitable software support is up to the user, as there
is no one-size-fits-all optimization method suitable for any optimization problem. Our
investigated process is limited by several constraints and exhibits nonlinearity in functional
dependencies, so it is necessary to formulate the optimization problem with constraints
and select from the optimization methods of nonlinear programming.

The optimization problem of mathematical programming aims at the extremization
of the objective function f0(x), i.e., to find the minimum/maximum of the objective func-
tion f0(x) while solving the minimization/maximization problem. The validity of the
relationship min

x∈Rn
f (x) = −max

x∈Rn
(− f (x)) allows us to transform each maximization into a

minimization optimization problem. The optimization problem with equality and inequal-
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ity constraints is generally focused on the minimization of an objective function f0(x) in a
feasible region K and is formulated in the following shape:

Min
{

f0(x) | x ∈ X, fi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J
}

(21)

where I and J are index sets, OP (3) is called a mathematical programming problem. The
NLP problem arises when at least one of the functions f0, fi, i ∈ I, hj, j ∈ J is nonlinear in
the optimization process (21). Clearly, the optimal solution of the NLP (21) is such a vector
x∗ ∈ X, which satisfies the condition ∀x ∈ X : f0(x∗) ≤ f0(x), i.e., the objective function
attains the smallest value.

From the point of view of the exact execution of the optimization of the electrical
discharge process in the machining of Maraging Steel MS1, it is necessary to define con-
straints. These constraints need to be defined within the framework of the experiments
carried out and take into account the MTP intervals, which are shown in Table 1. Based on
the definition of the specific values of the input parameters of the µ-WEDM defined by the
MTP, it is then possible to define the boundary conditions in the following form (22):

2.0 ≤Maximum peak current I (A) ≤ 8.0
5.0 ≤ Pulse-on time duration ton (µs) ≤ 40.0
3.0 ≤ Pulse-off time duration toff (µs) ≤ 15.0

70.0 ≤ Voltage of discharge U (V) ≤ 90.0

(22)

The optimization of the performance of the electrical discharge process in the ma-
chining of Maraging Steel MS1 by µ-WEDM technology involves the optimization criteria,
which are the maximization of the objective function defined by the MSC model (18) and
at the same time the minimization of the objective function defined by the MSC model
(19) with the application of the optimization constraints defined by the functions (22).
Subsequently, by applying nonlinear programming in MATLAB 2019a software, the corre-
sponding script was created. The task of the performed nonlinear optimization was to find
the local extreme of the objective function for a given optimization problem.

The objective function (18) modelling the performance of the MRR, where x1—maximum
peak current I [A]; x2—pulse-on time duration ton [µs]; x3—pulse-off time duration time toff
[µs]; x4—voltage U [V], can be written in this case as an optimization problem in general form:

MRR = f0(x1, x2, x3, x4) → max (23)

or in natural scale in abbreviated form:

MRR = f0

(
I [A] (x1), ton [µs] (x2), to f f [µs] (x3), U [V] (x4)

)
→ max (24)

This maximization problem was transformed into a minimization problem since this
is the method by which software programs work in the MATLAB environment, where each
optimization problem must be rewritten in a suitable format:

min f (x)


c(x) ≤ 0

ceq(x) = 0
A · x < b

Aeq · x = beq
lb ≤ x ≤ ub

(25)

where x, b, beq, and lb (lower bound) and ub (upper bound) are vectors, A and Aeq are
matrices with constant coefficients, c(x) and ceq(x) are vector functions, and f(x) is a scalar
function. The functions f(x), c(x) and ceq(x) are nonlinear.

In the case of optimization of the output qualitative roughness parameter Rz, the
objective function (19) modelling the values of the resulting roughness Rz, where x1—
maximum peak current I (A), x2 is pulse-on time duration ton (µs), x3 pulse-off time
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duration time toff (µs), and x4 is voltage U (V) can be written as an optimization problem in
a general form:

Rz = f0(x1, x2, x3, x4) → min (26)

or in natural scale in abbreviated form:

Rz = f0

(
I [A] (x1), ton [µs] (x2), to f f [µs] (x3), U [V] (x4)

)
→ min (27)

Subsequently, the objective functions (18) and (19), respecting the optimization con-
straints defined by relations (22), were rewritten into a form suitable for optimization in
the MATLAB software environment. The performed optimization obtained combinations
of input parameters that represent the MTP and the optimum time of the maraging steel
MS1 µ-WEDM in achieving the desired quality level of the machined surface in terms of
the surface roughness parameter Rz. To better illustrate the performed optimization of the
performance of the machining maraging steel MS1 by µ-WEDM technology, a graphical
dependence was constructed, which is presented in the following Figure 6.
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The achieved value of the local maximum of function (18) is MRR = 0.159 mm3·min−1,
and this value is reached by the function at: I = 5.5 A, ton = 21.5 µs, toff = 5.5 µs, and U = 75 V.

To better illustrate the optimization performed on the quality of the machined marag-
ing steel MS1 by µ-WEDM technology, a graphical dependence was constructed and is
presented in the following Figure 7.

The achieved value of the local minimum of function (19) is Rz = 1.051 µm, while this
value is reached by the function at: I = 3.014 A, ton = 3.0 µs, toff = 3.0 µs and U = 70 V.

As can be observed from the results of the analysis of the recorded data and the
outputs of the optimization process for µ-WEDM of maraging steel MS1, the performance
of the MRR µ-WEDM and the quality of the machined surface, in terms of the roughness
parameter Rz, are most influenced by the maximum discharge current I and the pulse
duration ton. The results indicate that the optimum performance of the µ-WEDM can be
achieved by increasing the maximum discharge current while maintaining a constant value
of the electrical discharge voltage and, at the same time, setting the values of the pulse
duration close to the mean value and the duration of the pause between pulse discharges
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close to the lower limit of the interval defined in constraints (8). At the same time, the
results of the performance optimization process of the electrical discharge machining of
maraging steel MS1 were verified in real operating conditions, showing a close agreement.
Although based on the research result, it is clear that the maximum discharge current
has the greatest influence on the performance of the µ-WEDM, increasing its value has
limit constraints. It is necessary to consider the value of the critical discharge current I, at
which the wire tool electrode is destroyed, which reduces the efficiency and performance
of the µ-WEDM of maraging steel MS1 process. Therefore, its value was limited to 10.0 A
based on the experimental validation results. If it is exceeded, the wire tool electrode
is destroyed and the quality of the machined surface in terms of the Rz parameter is no
longer satisfactory.
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4. Conclusions

A typical feature of contemporary industrial production is the drive to increase the
overall efficiency of the production process. The aim is to achieve maximum machining
performance while maintaining a high quality of the machined surface. Achieving this
is often problematic because, in general, as cutting power increases, the quality of the
machined area decreases. This is to be aided by the optimization of the µ-WEDM, which
identifies the appropriate combination of input MTP values. This combination of values
of the input parameters of the µ-WEDM is then intended to guarantee its high efficiency.
Therefore, the objective of the performed optimization of the performance of the electrical
discharge process in the machining of maraging steel MS1 was to maximize the MRR while
maintaining the quality level of the machined surface as high as possible. The optimization
of the output parameters of the µ-WEDM in relation to the MTP is described in detail in
the paper. An inappropriate combination results in a very low cutting performance and
poor quality of the machined surface not only in terms of geometric accuracy but also
in terms of surface roughness parameters. The developed MSC models predicting the
output quantitative parameter MRR and the qualitative parameter Rz, provided the basis
for the subsequent optimization of the µ-WEDM. In addition, based on the performed
experimental measurements, the original dependencies of the influence of the MTP process
input parameters on MRR and Rz for µ-WEDM maraging steel MS1 were obtained. At
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the same time, several significant facts were observed from the results of the experimental
measurements.

The results of the experiment are summarized in the following points:

� It was found that in terms of the four considered input factors of the electroerosive
process, maximum peak current I with a weight of 37.513%, pulse-on time duration
ton with a weight of 11.306%, pulse-off time duration toff with a weight of 9.51%, and
voltage of discharge U with a weight of 5.18% have the main influence on MRR;

� It was also found that in terms of the four considered input factors of the electroerosive
process, maximum peak current I with a weight of 41.466%, pulse-on time duration
ton with a weight of 20.814%, pulse-off time duration toff with a weight of 12.76%, and
voltage of discharge U with a weight of 7.42% have the main influence on Rz;

� It was found that with increasing values of the input parameters of the electrical
discharge process I and ton, the cutting performance of MRR increases but the quality
of the machined surface decreases in terms of the surface roughness parameter Rz.
The highest value of the MRR parameter = 0.190 mm3·min−1 was obtained for the
combination of MTP: I = 8.0 A, ton = 40 µs, toff = 3 µs, and U = 70 V;

� At the same time, it was found that with increasing values of the input parameters
of the electrical discharge process toff and U, the cutting performance of the MRR
decreases but the quality of the machined surface increases in terms of the surface
roughness parameter Rz. The lowest value of the Rz parameter = 0.09 µm was obtained
for the combination of MTP: I = 2.5 A, ton = 3 µs, toff = 15 µs, and U = 90 V;

� It was found that the aforementioned pairs of MTP input parameters in the electrical
discharge process behave oppositely in relation to MRR and Rz;

� For the given reasons, it was necessary to search for an appropriate ratio of the MTP
input parameters in the electrical discharge process to achieve the optimum value
of the process output performance parameter MRR and the quality parameter of the
machined surface Rz;

� Optimization was performed with respect to maximizing the output parameter of
the MRR and minimizing the quality parameter of the machined surface in terms of
the surface roughness parameter Rz for µ-WEDM maraging steel MS1. Through the
optimization, a local maximum of 0.159 mm3·min−1 of the MRR parameter can be
achieved at with MTP settings of I = 5.5 A, ton = 21.5 µs, toff = 5.5 µs, and U = 75 V.
Conversely, through optimization a local minimum of 1.051 µm of the Rz parameter
can be achieved at MTP settings of I = 3.014 A, ton = 3.0 µs, toff = 3.0 µs, and U = 70 V;

� The performed optimization of the electrical discharge process can generally achieve
an increase in the overall efficiency of µ-WEDM in the machining of maraging
steel MS1.

Further scientific research in this area needs to be oriented towards a more compre-
hensive approach to optimizing the electrical discharge process as well as other machined
materials using different wire tool electrodes to take into account the critical values of all
important factors. To perform µ-WEDM of maraging steel MS1 under optimum machining
process conditions, it is necessary to consider the value of the critical discharge current and
pulse duration, as exceeding them results in the destruction of the wire tool electrode, which
results in a decrease in the overall efficiency of the electrical discharge process. Therefore,
in order to increase the efficiency of the actual electrical discharge process in practice, future
experimental and research activities will focus on data analysis to determine the critical
values of these defined MTPs.
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Nomenclature

CDA Confirmatory Data Analysis
DOE Design of Experiments
DMLS Direct Metal Laser Sintering
D Total required functionality
EDA Exploratory Data Analysis
I Maximum peak current (A)
IPM Interior Point Method
MSC Mathematical-Statistical Computational
MTP Main Technological Parameters
MRR Material Removal Rate
NLP Non-Linear Programming
QNM Quasi-Newton Methods
Rz Ten-point Mean Roughness (µm)
SDM Steepest Descent Method
SQP Sequential Quadratic Programming
ton Pulse-on time duration (µs)
toff Pulse-off time duration (µs)
U Voltage of discharge (V)
y Desired value function
ymin/max Lower/upper response limit values
µ-WEDM micro-Wire Electrical Discharge Machining
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