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Abstract: A label-free, fixation-free and passive sorting method is presented to isolate activated
T-cells shortly after activation and prior to the display of activation surface markers. It uses a recently
developed sorting platform dubbed “Sorting by Interfacial Tension” (SIFT) that sorts droplets based
on pH. After polyclonal (anti-CD3/CD28 bead) activation and a brief incubation on chip, droplets
containing activated T-cells display a lower pH than those containing naive cells due to increased
glycolysis. Under specific surfactant conditions, a change in pH can lead to a concurrent increase in
droplet interfacial tension. The isolation of activated T-cells on chip is hence achieved as flattened
droplets are displaced as they encounter a micro-fabricated trench oriented diagonally with respect
to the direction of flow. This technique leads to an enrichment of activated primary CD4+ T-cells to
over 95% from an initial mixed population of naive cells and cells activated for as little as 15 min.
Moreover, since the pH change is correlated to successful activation, the technique allows the isolation
of T-cells with the earliest activation and highest glycolysis, an important feature for the testing of
T-cell activation modulators and to determine regulators and predictors of differentiation outcomes.

Keywords: microfluidics; droplet microfluidics; cytometry; sorting; passive sorting; T-cells; metabolism;
glycolysis

1. Introduction

T-cells are a type of lymphocyte whose activation is considered a critical step in the
adaptive immune response [1]. The activation of CD4+ T-cells leads to the proliferation
and differentiation of T-helper (Th) subtypes that both control the immune response via
cytokine secretion and directly attack infected or cancerous cells [2]. The full activation of
T-cells requires the engagement of the T-cell receptor (TCR) and co-stimulation of CD28
by antigen presenting cells (APC), such as a dendritic cell [3]. Polyclonal stimulation via
antibody-conjugated beads mimics this dendritic cellular interaction by presenting both
CD3 and CD28 stimulatory antibodies colocalized on the bead surface [4]. The strength of
TCR signaling during CD4+ T-cell activation regulates T-cell differentiation into T helper
(Th) subsets such that a strong signal favors pro-inflammatory Th1 cell differentiation and a
weaker signal promotes Th2 cells [5]. Additionally, weak TCR signal strength also promotes
the differentiation of anti-inflammatory regulatory T cells (Treg) by limiting signaling
through the mammalian target of rapamycin (mTOR), a key metabolic regulator of T-cell
differentiation [6]. Cellular metabolism and glycolysis in particular, is now understood to
be a key regulator of T-cell activation and differentiation which is also influenced by TCR
signal strength [5,7,8].

Although metabolic reprogramming after T-cell activation is central to determining
T-cell fate and function among Th subsets, the early events that dictate these metabolic
changes within minutes of TCR stimulation have been difficult to measure in heterogeneous
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samples [9]. The interplay between metabolism on early activation and the differentiation
of T-cells remains poorly understood, partly due to the lack of single-cell technology to
capture cells based on their metabolic profiles [10]. The conventional methods of isolating
activated T-cells rely on the use of antibodies that are specific to activation surface markers
(such as CD25, CD69 and CD71) [11]. However, it can take many hours and as much as
a full day after activation for specific activation markers to be displayed and detectable,
greatly limiting fast detection and selection [12]. Alternatively, secreted cytokines such as
IL-2 and IL-10, may be detectable within a couple of hours of activation, but require the
fixation and manipulation of the golgi apparatus with monensin or brefeldin A for their
detection [13,14]. This chemical inhibition of cytokine secretion is irreversible and renders
cells unviable for downstream studies [15]. Encapsulating cells in microfluidic droplets
enables the confinement of cytokines within a picoliter droplet [16–19]. These techniques
provide the high throughput and sensitivity of fluorescent sorting. However, they require
a prior knowledge of the target cytokine and specific fluorescent probes which can vary
among different Th subsets, for detection and sorting [20].

In contrast to the display of activation surface markers or cytokines, changes in cellular
metabolism upon TCR activation present a general indicator of activation [21] and occur
within minutes after the activation of T-cells [7,22]. Naive T-cells attain most of their energy
needs through oxidative phosphorylation [8]. However, upon activation, T-cells undergo
metabolic reprogramming to support rapid replication and effector functions [21,23,24].
This anabolic and bioenergetic demand is covered by enhanced metabolism, in particular
glycolysis [21,23,24]. Moreover, this metabolic switch is not simply a downstream product
of activation but rather a key regulator of activation and T-cell differentiation [24,25]. The
ramp up of glycolysis where glucose is converted to lactate, otherwise known as aerobic
glycolysis or the “Warburg effect” [26], is a characteristic shared by many proliferating
cells including cancer cells [27]. Increased glycolysis leads to the secretion of protons and
lactate rendering the surroundings of the cells more acidic [28]. The increased glycolysis
and its concurrent extra-cellular acidification upon activation presents a unique handle
for the early isolation of activated T-cells. For these reasons, there is a large interest in
the immunometabolism field for new methods that can isolate cells based on their active
metabolic state as opposed to traditional activation markers. A recent method designed to
profile heterogenous immune cell samples based on their metabolic profile and glycolytic
metabolism is SCENITH flow cytometry [29], which uses metabolic inhibitor treatments
followed by puromycin to quantify translation as a readout for the energy state of the
cells. Although useful for profiling metabolic dependencies at the single-cell level, this
methodology also requires the fixation of cells for the detection of intracellular puromycin
and leaves samples unviable for downstream studies.

Microfluidics has been used extensively for single cell studies in immunology includ-
ing to profile T-cell signaling dynamics, [30–32] isolate cells of interest [16–18,33] or study
cell–cell interactions [34,35]. Droplet microfluidics is often used for these applications, as it
is well adapted to the manipulation of suspended cells and confines secreted molecules at
high concentrations [16,32,36–38]. Our lab recently developed a novel sorting technique
dubbed “Sorting by Interfacial Tension” (SIFT) based on the observation that under specific
chemical conditions, a decrease in pH leads to a concurrent increase in droplet interfacial
tension [39]. This technique was previously used to sort enzymes based on activity, [40],
photo-tagged droplets [41], empty and cell-occupied droplets, live and dead cells [39], and
cancer cell subpopulations [42]. By leveraging changes in metabolism upon activation, the
use of SIFT is demonstrated here for the early isolation of highly activated T-cells from
naive cells. This method offers both label-free and passive sorting to separate activated
T-cells in minutes rather than hours after activation. Passive sorting has been used in the
literature to describe both techniques that select droplets without external fields (electric,
acoustic, optical etc.) [43] and also those that do not use electronics for active droplet selec-
tion [44]. SIFT would fit both these definitions of passive sorting. Given the links between
metabolism with activation and differentiation, SIFT offers a method to isolate activated
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T-cells based on their active metabolic state in real-time without chemical manipulations or
fixation. This proof of concept is important for the immunometabolism field as isolating
viable T cells within minutes of activation may be used to determine regulators and/or
predictors of differentiation outcomes.

2. Materials and Methods

Jurkat T-Cell Activation and Preparation for on-chip experiments: Jurkat, Clone E6-1 TIB-152™
Human Acute T-cell leukemia cells were purchased from ATCC and grown at 37 ◦C
in a 5% CO2 atmosphere in ATCC-formulated RPMI-1640 Medium supplemented with
10% fetal bovine serum (HyClone, GE Healthcare Life Sciences, Logan, UT, USA) and
2% v/v penicillin–streptomycin (10,000 units/mL–10,000 µg/mL) solution (Gibco, Life
Technologies Corporation, Grand Island, NY, USA).

On the day of experiment, Jurkat T-cells were centrifuged, washed with 1X PBS and
resuspended in PBS. To distinguish cell populations, naive control cells were labeled with
Calcein AM (Thermo Fischer, Waltham, MA, USA), a viability fluorescent dye, for 30 min at
37 ◦C and 4% CO2 atmosphere. Subsequently, the cells were washed again and resuspended
in media at a cell concentration of 1 × 106 cells/mL.

Gibco™ Dynabeads™ Human T-Activator CD3/CD28 for T-Cell Expansion and Ac-
tivation (Thermo Fisher Scientific, Waltham, MA, USA) were washed 3x with media and
suspended at a bead concentration of 1 × 106 beads/mL to ensure a 1:1 bead to cell ratio
after mixing. To activate T-cells, beads and cells were mixed and incubated at 37 ◦C in
an CO2 incubator for varying times. Alternatively, cells were also activated with soluble
activation complexes (ImmunoCult, StemCell Technologies, Vancouver, BC, Canada) fol-
lowing manufacturer protocol. After activation, cell/bead suspensions were pipetted up
and down to disturb the bead/cell aggregates and beads were separated from the cells
using a magnet (Invitrogen DynaMagTM-2, Thermo Fisher Scientific, Waltham, MA, USA).
Care was taken to ensure that the naive cells, which were not exposed to activation beads,
experienced the same mechanical manipulations and washing steps as the activated cells.

Naive and activated cell populations were prepared separately, centrifuged, and
resuspended in on-chip solutions. Naive and activated cell suspensions were prepared
at a final cell concentration of about 5 × 105 cells/mL which was determined using a
Cellometer Auto T4 Bright Field Cell Counter (Nexcelcom Bioscience LLC, Lawrence, MA,
USA) to ensure single cell occupation of droplets. On-chip solutions were a 1:1 mix of media
and 1X PBS buffer. The media was prepared without fetal bovine serum (deproteinated
media), but both solutions were supplemented with 1% w/w Pluronic F-68 (Affymetrix
Inc., Maumee, OH, USA), 15% v/v Optiprep (Fresenius Kabi Norge AS for Axis-Shield
PoCAS, Oslo, Norway) and 0.1 mg/mL pyranine (AAT Bioquest Inc., Sunnyvale, CA, USA).
Solution pH and osmolality (determined with Vapro Vapor Pressure Osmometer 5520,
Wescor, ELITech Biomedical Systems, Logan, UT, USA) of on-chip solutions were adjusted
to physiological values (pH 7.4; 280–320 mOsmol) prior to experiment. Pluronic F-68 was
used to promote droplet stability and cell viability, whereas Optiprep modulated solution
density to limit cell sedimentation within the tubing and droplets. Pyranine served as a
fluorescent ratiometric pH probe for analyzing droplet pH on chip. Before injection onto
chip, activated and naive cell suspensions were combined at approximately a 1:1 ratio.

CD4+ T-Cell Activation and Preparation for on-chip experiments: Cryo-preserved, fresh
CD4+ Helper T-Cells from a healthy donor were purchased from HemaCare Corporation,
Northridge, Los Angeles, CA, USA. Cells were thawed, washed and resuspended in media
as described above, and incubated for 2 h to allow the cells to recover. Subsequently, CD4+
T-cells were activated and prepared for on-chip experiments as described above.

Cell Treatment with 2-Deoxy-D-glucose (2DG): Jurkat cells were harvested and suspended
in low glucose media supplemented with 100 mM 2DG (Sigma Aldrich, St. Louis, MO,
USA) whereas a Calcein AM labeled control population was resuspended in the same media
with 100 mM glucose. Samples were incubated for 3.5 h at 37 ◦C and 4% CO2 atmosphere.
After incubation, the cells were prepared for on-chip experiments as described above.
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Microfluidic Device: The microfluidic chip was described in detail in Zielke et al. [42].
Briefly, the chip consists of a droplet generator where cells are encapsulated into droplets;
an incubator region enabling a change in droplet pH due to cell metabolism; and a sorting
region (Figure S1). Cellular solution was injected onto the chip through an aqueous inlet.
Via a flow focuser, droplets were generated in 0.1% w/w Picosurf-1 surfactant oil (Sphere
Fluidics Limited, Cambridge, United Kingdom) in Novec 7500. Droplet diameter was
approximately 70 µm (height 25 µm) and a corresponding volume of about 80 picoliters.
An additional oil outlet after droplet generation was set to a flow in the opposite direction
of the main flow to reduce the amount of oil before the droplets entered the incubator
region. This enabled the tight packing of droplets within the incubator to ensure the
same incubation times for all droplets [45]. Average incubation time ranged from 6 to
8 min depending on the experiment before the channel narrowed and droplets entered the
sorting region. At the end of the incubator, the oil solution was exchanged with QX100 oil
(QX100 droplet generation oil for probes, Biorad, Hercules, CA, USA). Droplets entered the
sorting region that included a rail of higher channel height (Figure S2). The rail, oriented at
45 degrees to the flow direction, allowed for the sorting of droplets by interfacial tension
and hence pH. A short horizontal section of the rail served to direct droplets to the angled
section of the rail, improving sorting performance as more droplets followed a similar
flow path.

Flows within the chip were controlled via a computer-controlled syringe pump system
(Nemesys, Cetone, Korbussen, Germany). Typical flow conditions can be found in the
Supplemental Table S1. The temperature of the chip during experiments was maintained at
37 ◦C using a heating stage with control module and temperature feedback (CHS-1 heating
plate, TC-324C temperature controller, Warner Instruments, Hamden, CT, USA).

Images and videos were taken on an inverted fluorescence microscope (Olympus
IX-51, Olympus, Tokyo, Japan) equipped with a 4× objective, a shuttered LED fluorescence
excitation source (Spectra-X light engine, Lumencor, Beaverton, OR, USA) and a high-speed
camera (VEO-410, Vision Research, Wayne, NJ, USA). The microscope filter cube contained a
dual-edge dichroic mirror (Di03-R488/561-t1-25 × 36, Semrock, IDEX Health & Science LLC,
Rochester, NY, USA) and dual-band emission filter (FF01−523/610-25, Semrock, NewYork,
NY, USA) that enabled transmission of both pyranine and Calcein AM fluorescence. To
determine droplet pH values, the excitation source with individually addressable LEDs
was coupled to an Arduino (Arduino LLC, Scarmagno, Italy) to allow for rapid alternation
between different colored LEDs using simple TTL triggering. Droplets were excited with
alternating violet (395 nm BP 25 nm), blue (440 nm BP 20 nm) and green excitation (561 nm
BP 14 nm) at a rate of 100 frames per second (33 fps for each color).

Data Analysis: ImageJ software was used for image analysis [46]. The pH values of
individual droplets were determined at the end of the incubator before droplets entered the
sorting region via the ratio of fluorescence intensity from background-subtracted blue and
violet excitation. A calibration curve from fluorescence ratios of droplets of known pH was
used to determine pH using a procedure described previously [42]. Droplets containing
two cells were rare and were excluded from the analysis. Green excitation was used to
identify cells labeled with Calcein AM. Logistic regression was used to statistically estimate
optimal pH thresholds to separate selected from non-selected cells. The pH threshold
was defined at a 50% predicted probability of selecting the cell. The standard error of the
prediction was used to obtain a 95% confidence interval around that threshold.

Flow cytometry: The cells were prepared as described above. After activation, the
cells were incubated in media overnight to allow for the display of CD69 surface markers
specific for activation. The next day, cells were fixed with 4% paraformaldehyde (32%
solution, EM grade, Electron Microscopy Science, Hatfield, PA, USA) in PBS for 15 min at
RT and washed twice with PBS before staining with Human CD69 APC conjugate (Life
Technologies, Frederick, MD, USA). Staining was performed at a v/v ratio of cell suspension
(~1 × 106 cells/mL) to CD69 staining solution of 100:5 for 30 min on ice. After washing,
the cells were resuspended in PBS and analyzed in a BD Accuri C6 Plus Flow Cytometer
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(BD Biosciences, San Jose, CA, USA). Cytometry files were then analyzed using FlowJo
software v.10.8.1 (FlowJo, Ashland, OR, USA).

3. Results and Discussion

Droplet microfluidics has been shown to be a powerful tool for both single-cell analysis
and sorting [36,47,48]. A major advantage of this technique is that cell secretions remain con-
fined in the picoliter droplet and thus associated to the cell and at high concentration. These
features of droplet microfluidics are leveraged in a label-free and passive sorting method,
SIFT, developed in our lab [39,40]. With a specific surfactant/oil combination (QX100
droplet generation oil for probes) a change in pH leads to a concurrent increase in droplet
interfacial tension. This allows for the separation of cells based on single-cell glycolysis.

Figure 1A demonstrates the sorting mechanism for two cell populations with either
low glycolysis (red) or high glycolysis (green). Cells are encapsulated and incubated. After
incubation, droplets containing cells with higher glycolysis attain a lower droplet pH and
concurrent increase in droplet interfacial tension. Droplets encounter a tapered rail [49], a
trench with increased height oriented at 45 degrees relative to the direction of flow. The
flattened, pancake-shaped droplets expand in the rail. In the case of droplets of low pH and
hence high interfacial tension, they follow the rail laterally and exit near the tapered end. In
contrast, in the case of droplets of higher pH and hence lower interfacial tension, the drag
force of the oil immediately pushes the droplets off the rail. Hence, empty droplets or those
containing low metabolism cells are only slightly deflected by the rail. The flow rate in the
sorting region can be controlled by the user. This provides an independent parameter that
determines the droplet pH threshold for droplet selection. This strategy can sort droplets
by pH in the range of pH 6.0–7.5 [40,42]. It is used here as a passive sorting strategy to
isolate highly activated T-cells.

Figure 1. (A) Schematic of SIFT sorting mechanism for the population of cells with low (red) and
high (green) metabolism. Empty droplets or those containing low metabolism cells are only slightly
deflected by the rail. Droplets containing cells with high metabolism are separated as they follow the
rail laterally. (B) Workflow of the sorting of activated T-cells. Naive T-cells are represented in red and
activated T-cells in green. Sorting region indicated by red rectangle.

The general scheme for the proof-of-concept isolation of activated T-cells is shown in
Figure 1B. Prior to injection onto the chip, a population of T-cells is activated with beads
and is mixed with a population of naive T-cells. The naive cells are fluorescently labeled
so the two populations of cells can be distinguished on-chip. The cell solution is injected
on chip and cells are encapsulated in droplets. Cell concentration is kept dilute to avoid
multiple occupancy in the droplets. Droplets are incubated as they flow for several minutes
through a wide serpentine channel to allow a change in droplet pH due to proton secretion.
This change in droplet pH can be tuned by adjusting the concentration of buffer used in the
droplet solution. Droplets then enter the sorting region where the rail sorts droplets by their
pH. Two chip exits allow for separate collection of the unselected and selected droplets.
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The pH of the droplets containing Jurkat T-cells were first characterized after incuba-
tion as a function of activation time, the time of the exposure of cells with the activation
beads (Figure 2A). Cultured Jurkat cells, rather than donor CD4+ cells, were used for the
time series as they provide easier preparation and manipulation. The incubation time on
chip was held constant for all experiments (8 min). The pH of individual droplets was
determined using a ratiometric fluorescent sensor, pyranine, as described previously [42].
Naive cells, not exposed to activation beads, had an average droplet pH of 7.29 ± 0.02
(average ± error of the mean), lower than the pH of empty droplets (7.39 ± 0.04) that
remain near the initial buffer pH. The variability in pH values for naive T-cells (standard de-
viation of 0.10) highlights the heterogeneity of cell glycolysis for individual cells. Droplets
containing activated Jurkat T-cells displayed, on average, lower pH values. After 1 h of
activation, average droplet pH values were 7.12 ± 0.03. For longer activation times, droplet
pH values decreased further and stabilized near an average pH of 7.00. The lower pH
values for droplets containing activated cells were indicative of an increase in glycolysis
upon activation. To confirm, cells with different activation times were analyzed for the
surface marker CD69, a conventional indicator of early activation (Figure S3).

Figure 2. (A) pH of droplets containing Jurkat T-cells plotted vs. activation time with activator beads.
Each marker represents the pH of one droplet with one encapsulated cell. Grey markers represent
naive cells which were not exposed to activator beads. Ordinary one-way ANOVA with Dunnett’s
multiple comparisons test: 1 h (p = 0.0002), 3.75 h (p < 0.0001) 5.5 h (p < 0.0001), overnight (p < 0.001).
(B) pH of cells exposed to 15 min of activation compared to naive cells. Horizontal bar represents
average pH value. Two-tailed Student’s t-test (p = 0.0025).

Average droplet pH values, however, provide a limited picture of the overall pop-
ulation of activated and naive cells. More relevant for single cell sorting by SIFT is that
no droplets containing naive cells attained a pH below 7.10. In contrast, droplets lower
than this pH represent 40% of cells activated for 1 h and from 65–85% of cells activated for
longer times. Thus, by targeting this population of droplets of lower pH, we will not only
largely exclude naive cells but also select cells that are highly glycolytic.

The droplet pH values for short activation time with beads (15 min) are presented
in Figure 2B. Even for this short incubation time, activated cells show on average a lower
droplet pH of 6.99 ± 0.03 as compared to 7.11 ± 0.02 for naive cells. This fast change
is consistent with bulk measurements of extracellular acidification made on metabolic
profilers [7,22]. In the droplets containing naive cells, only a single droplet displays a pH
below 7.00 (3% of cells). In contrast, for activated cells this population represents about half
of all droplets. A similar change in pH between droplets containing naive and activated
cells was observed not only using activation beads but also through activation with soluble
complexes (Figure S4). In this case, only activated cells attain a droplet pH below 7.2. The
change in droplet pH upon activation was largely impeded by the treatment of cells with
a glycolysis inhibitor, 2-deoxy-D-glucose (2DG), confirming that the change was indeed
associated with cellular glycolysis (Figure S5). The difference in droplet pH between naive
and activated cells can be leveraged to enrich highly-activated T-cells.
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Figure 3 (and supplemental Video S1) demonstrates the sorting of an activated T-cell
and naive cell using the SIFT technology. The droplet containing the naive cell, determined
to be at pH 7.19 after incubation, is only slightly deflected by the rail. Empty droplets
are also directed to the unselected exit. In contrast, a droplet containing an activated cell
(15 min activation time), at pH 7.10, rides the trench laterally up and is thus separated from
other droplets. This droplet is considered a selected droplet.

Figure 3. SIFT device sorting of activated and naive Jurkat T-cells. A droplet containing an activated
cell (circled in green), at pH 7.10, rides the trench laterally up (selected). A droplet containing a naive
cell (circled in red) with higher pH, pH 7.19, is only slightly deflected by the rail (unselected). Empty
droplets are also directed to the unselected chip exit.

Figure 4 summarizes the sorting of CD4+ fresh, cryopreserved human T-cells from
a healthy donor. CD4+ T-cells were activated and mixed with a naive population before
injection onto the chip for sorting. For 15 min activation, the buffering concentration of
the on-chip solutions was reduced from 2.5 mM to 1 mM phosphate buffer to account
for the lower glycolysis for CD4+ T-cells compared to Jurkat T-cells. The lower buffer
concentration ensured a substantial change in droplet pH after incubation.

The pH values of droplets with encapsulated naive and cells activated for 15 min
are presented in Figure 4A. The droplets containing activated T-cells attain lower average
pH (7.26 ± 0.04) than for naive cells (7.37 ± 0.01). There is substantial overlap between the
pH values of the two populations. However, unlike activated cells, the naive cells do not
achieve a droplet pH below 7.24. The control of flow conditions on chip allows a selection
of droplets below this pH.

Figure 4B presents the activated and naive cells as a function of selected and unselected
cells. Prior to sorting, the cell population contains 27% activated T-cells. The selected
droplets contain exclusively activated cells with a droplet pH range of 7.11–7.26. While the
unselected population includes 22% activated cells, the activated T-cells within the selected
population represent droplets with a lower pH, with an average pH of 7.20 versus 7.35 in
the unselected population.
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Figure 4. (A) pH of droplets containing CD4+ T-cells that are either naive (gray) or activated for
15 min (orange). Average pH values, indicated by a horizontal line, are 7.37 ± 0.01 (n = 59) for naive
cells and 7.26 ± 0.04 (n = 22) for activated cells (B) Droplet presented as unselected and selected
populations after sorting using SIFT device. While activated cells make up 27% of cells prior to
sorting, selected cells contain exclusively activated cells. (C) pH of droplets containing naive (gray) or
cells activated for 2 h (orange). Average pH values, indicated by a black line, are 7.39 ± 0.01 (n = 37)
for naive cells and 7.32 ± 0.01 (n = 34) for activated cells. (D) Droplets presented as unselected and
selected populations. The sorting of droplets leads to an enrichment of activated cells from 48%
before sorting to 96% of selected cells.

The pH threshold, the pH value at which there is an equal probability that a cell
is selected or unselected, can be determined by fitting the data to a logistical regression
(Figure S6A). The pH threshold was determined to be 7.24. This selection threshold can
be modified by the user via a change in flow rate in the sorting region allowing for more
or less stringent sorting criteria [42]. The fit also provides a measure of the resolution in
pH for accurate sorting from the standard error of the prediction at 95% confidence (light
blue shading in Figure S6). The pH range was determined to be 7.19 to 7.25. This error is
consistent with previous measurements on the device [42].

SIFT sorting was also performed on CD4+ cells activated for 2 h. Naive cells have
an average pH value of 7.39 ± 0.06 compared to 7.32 ± 0.05 for cells activated for 2 h
(Figure 4C). The lowest droplet pH value for a naive cell is 7.33. In contrast, more than
half (52%) of all activated cells attained pH values below 7.33. On average, pH values are
higher than those observed for 15 min activation. This can be explained by the use of higher
phosphate buffer in these experiments (2.5 mM vs. 1mM).

Figure 4D shows the naive and activated cells as a function of selected and unselected
populations. The enrichment of activated T-cells from 48% to 96% was obtained from the
initial to selected population (Figure 4D). In contrast, the unselected cell population con-
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tained 20% activated cells. The pH threshold was determined to be 7.34 ± 0.01 (threshold
±95% confidence interval) (Figure S6B).

In the above experiments, the mixed population of naive and activated cells was
enriched to over 95% activated cells. Moreover, as extracellular acidification rate can be
correlated to level of activation, [7] the technique can be used to select the subpopulation
of cells with the strongest activation. As activation strength is also correlated to cell
fate [5], the selected highly glycolytic population may also favor differentiation to pro-
inflammatory Th1 cells. For these experiments, the flow conditions were chosen to set
a threshold just below the pH of droplets in the population of naive cells and led to the
selection of approximately 40% of the activated cells. The threshold could be set to either
further exclude naive cells or to capture a small percentage of highly activated T-cells for
study or use. The phosphate buffer used in experiments was either 1 mM or 2.5 mM. The
lower buffer concentration ensured a spread of pH values even for short activation times
(Figure 4A). This parameter can be tuned based on the glycolysis levels of the cells under
study. Although the focus here was on the sorting of cells shorty after activation, metabolic
reprogramming after activation is long-lasting (Figure 2A), persisting even for several days.
This would mean that highly-glycolytic activated cells could be isolated long after the
initial activation event.

The data presented in Figure 4 represent 2 min of collection time with the SIFT
device and a corresponding video file consisting of approximately 12,000 frames. Droplets
were sorted at a rate of about 12–20 Hz. Cell density was kept low (1 in 20–30 droplets
contain a cell) to avoid multiple occupancy of cells in droplets. This collection time was
ultimately limited by video collection that was necessary here for the determination of
pH and validation of sorting accuracy. Without this constraint, longer collection times
would allow the sorting of hundreds of cells. To recover cells after sorting, droplet breakup
can be initiated by de-emulsifier chemicals, [50] dilution of surfactant [51] or electrostatic
charge [52]. The surfactant in oil used in the sorting region (Droplet generation oil for
probes) may have detrimental effects on cells [39,53]. However, exposure is kept at a
minimum by introducing this chemical only after incubation. Furthermore, the addition
of Pluronic F-68 to the droplet media also promotes cell viability. Breaking-up of droplets
immediately upon collection off-chip leads to viable cells as determined by trypan blue
and Calcein AM assays.

4. Conclusions

The SIFT technique presents a method to isolate activated cells with the highest
glycolysis from both naive cells and activated cells with a lower metabolism. The activation
and differentiation of T-cells leads to a complex metabolic reprograming that serves both to
initiate and regulate these events. These events are further impacted by cell environment
and nutrient availability [24,25]. The full understanding of the coordination of these
events and differentiation outcomes has been limited by tools that can select single cells
by their metabolic profiles. Thus, by selecting cells by single-cell glycolysis, prior to
the display of surface markers, SIFT presents a method to help detangle this complexity
especially when combined with downstream analysis tools. Moreover, since the pH change
may be correlated to the level of activation, this technique allows for the isolation of
T-cells with the earliest activation and metabolic reprogramming for the testing of T-cell
activation modulators. Indeed, the isolation of T-cells based on their metabolism rather than
conventional activation markers is relevant to multiple aspects of immunometabolism and
downstream applications in T-cell biology. Immunotherapy and co-receptor manipulations
have impacts on activation-induced glycolytic metabolism, [54] and regulators of T-cell
differentiation may also act via the fine-tuning of early metabolic signaling.

The presented SIFT technology is both a label-free and passive sorting method. It
offers potential benefits in simplicity and cost. By transposing cell activation to a physical
property, droplet interfacial tension, the technique forgoes the components associated
with the fluorescent sorting of T-cells such as labels, light sources, detectors, and active
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sorters. This simplicity facilitates correlating glycolytic activity with cell markers using the
fluorescence channel during sorting or more elaborate analysis (genomic, transcriptomic,
proteomic) on collected cell populations. Future efforts will focus on the improvement of
the device while developing a robust workflow for the study and characterization of sorted
T-cells. The current chip design (Figures S1 and S2) has a maximum throughput of about
30 droplets per second, lower than the typical throughput of hundreds or thousands of
droplets per second by active droplet sorters [36,38]. Increasing this throughput, through
design or parallelization, would enable its application for isolating rare cells within a
population such as antigen specific T-cells, or the most activated T-cells isolated from the
tumor microenvironment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi13091442/s1, Figure S1: SIFT device channel geometry; Figure S2:
Sorting rail dimensions and position.; Figure S3: Flow cytometry analysis for CD69 expression;
Figure S4: Droplet pH for ImmunoCult Activation; Figure S5: Droplet pH for 2-deoxy-D-glucose
(2DG) treatment; Figure S6: Logistic Regression Fits; Table S1: Typical flow parameters; Video S1:
SIFT cell sorting.
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