
Citation: Tomy, A.W.; Dadzie, S.K.

Diffusion-Slip Boundary Conditions

for Isothermal Flows in Micro- and

Nano-Channels. Micromachines 2022,

13, 1425. https://doi.org/10.3390/

mi13091425

Academic Editors: Ridong Wang and

Zhihua Pu

Received: 26 July 2022

Accepted: 26 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Diffusion-Slip Boundary Conditions for Isothermal Flows in
Micro- and Nano-Channels
Alwin Michael Tomy * and S. Kokou Dadzie

School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH11 4AS, UK
* Correspondence: amt4@hw.ac.uk

Abstract: Continuum description of flows in micro- and nano-systems requires ad hoc addition of
effects such as slip at walls, surface diffusion, Knudsen diffusion and others. While all these effects
are derived from various phenomenological formulations, a sound theoretical ground unifying these
effects and observations is still lacking. In this paper, adopting the definition and existence of various
type of flow velocities beyond that of the standard mass velocity, we suggest derivation of model
boundary conditions that may systematically justify various diffusion process occurring in micro-
and nano-flows where the classical continuum model breaks down. Using these boundary conditions
in conjunction with the classical continuum flow equations we present a unified derivation of various
expressions of mass flow rates and flow profiles in micro- and nano-channels that fit experimental
data and provide new insights into these flow profiles. The methodology is consistent with recasting
the Navier–Stokes equations and appears justified for both gas and liquid flows. We conclude that
these diffusion type of boundary conditions may be more appropriate to use in simulating flows in
micro- and nano-systems and may also be adapted as boundary condition models in other interfacial
flow modelling.

Keywords: diffusion slip; volume diffusion; micro- and nano-channels

1. Introduction

Advancements in fabrication methods and developments in microfluidics are driving
the research interests to understand the unconventional physics that govern the operation
and manufacturing of micro- and nano- scale devices such as micropumps, heat exchangers
for electronic devices, gas chromatography analyzers and other micro-electro-mechanical-
systems [1–5]. Classical flow models such as the Navier–Stokes (N-S) equations with
no-slip boundary condition are unable to replicate some of the phenomena pertaining
fluid flows in the micro- and nano- length scales [6]. Experimentally, it has been observed
and confirmed that there is a significant enhancement of fluid flow through micro- and
nano- channels but classical continuum models fail to accurately predict the observed
flow enhancement as well as other flow profiles such as non-linear pressure profiles [7–9].
Initial observations were made by Knudsen while investigating rarefied gas flows through
narrow tubes [10]. Since then several studies have verified this enhancement for gas flows
through micro-channels at various states of rarefaction [11–13] and for liquid flows through
nano-tubes [7,8,14,15]. The degree of rarefaction in a gas is defined by its Knudsen number,
Kn, as the ratio between the mean free path (λ) of the gas particles to a characteristic length
of the flowing system [16]. Based on the Knudsen number, gas flows are generally divided
into four regimes: the continuum flow regime with Kn≤ 0.001, the slip flow regime with
0.001 ≤ Kn ≤ 0.1, the transition regime with 0.1 ≤ Kn ≤ 10, and the free molecular
regime with Kn ≥ 10. In an effort to extend the application of continuum flow models to
predict non-conventional fluid flow phenomena in the rarefied regime, many researchers
have over the years formulated slip boundary conditions and new continuum models
e.g. Extended Navier–Stokes equations (ENSE) [17,18], Bi-velocity model [19] and Recast
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Navier–Stokes (RNS) equations [20,21]. Of the velocity boundary conditions developed,
the most elegant and widely used is the Maxwell slip model, introduced by James Clerk
Maxwell in 1879 [22]. Arkilic et al. [11] analytically solved a simplified set of Navier–Stokes
equations along with first-order Maxwell slip boundary conditions for micro-channel flow
and successfully predicted the mass flow rate up to Kn ∼ 0.1. For high values of Knudsen
number, up to Kn ∼ 1.2, the validity of N-S equations to predict these flow rates is seen
to be improved by using a second-order slip boundary conditions with an appropriate
selection of slip coefficients extracted from the given experimental data [23,24]. Karniadakis
and Beskok [1] proposed a general slip boundary conditions, and their solution of N-S
equations for a micro-channel case agrees well up to Kn = 5.

The concept of a diffusive velocity or a diffusive flux based on Fick’s law has given
rise to diffusive slip boundary condition and new continuum models such as ENSE, Bi-
velocity model and Recast Navier–Stokes model. Adachi et al. [25] introduced a diffusion
based velocity-slip boundary condition that is based on physical insights to predict the
diffusive velocity at the wall. Veltzke and Thöming [26] have shown that a superposition
of convective transport and Fickian diffusion term matches experimental data for micro-
channel flows, up to Knudsen number of 0.4. Dongari et al. [27] provided analytical solution
for the ENSE model applied for a micro-channel flow and validated the solutions against
Direct Simulation Monte Carlo (DSMC) solutions, showing a good agreement in the early
and late transition regimes (Kn < 0.3 and 1 < Kn < 10). Brenner introduced the concept of
volume diffusion hydrodynamics [6,28,29]. Dadzie and Brenner [30], on the basis of the
volume diffusion hydrodynamics, derived analytical solution to micro-channel flows that
agreed well with Ewart et al.’s [13] data up to Knudsen number of 5.

Motivated by the previous works, in this paper we provide a formulation of new
velocity boundary conditions unifying the existing Maxwellian and diffusion velocities
from recast Navier–Stokes models [20]. This new boundary conditions when used with the
conventional Navier–Stokes equations, predict gas mass flow rates from the continuum to
free-molecular regime. Additional terms appearing in the expressions for the flow rates
directly link to the definition of the new diffusion velocities. The new boundary conditions
also reveal new insights into the velocity and pressure profiles that are more consistent with
the flow enhancement observed. For example, in the high Knudsen number regime, the
flow profiles become clearly that of plug flows corroborating the high flow enhancement
phenomena beyond the simple traditional wall slip velocity explanation.

The rest of the paper is organised as follows: In Section 2, we introduce the new
diffusion-slip boundary conditions and the reduced governing equations for flows in
micro-channels. Analytical solutions for micro- and nano-channel gas flows are derived
in Section 2.4 and include effects of rarefaction as described in Section 2.3. In Section 3,
we compare the dimensionless flow-rate predicted by the new model with experimental
data and also present the solutions for velocity and pressure profiles at various states of
rarefaction. Finally, in Section 4, we outline our concluding remarks based on the results of
the study.

2. Governing Equations and the New Models

The present governing equations and models are based on the observation that a
change in velocity variable in classical Navier–Stokes equations leads to various type of
mass and volume diffusion continuum models [20].

2.1. Governing Equations

We consider the compressible Navier–Stokes set of equations to model flow through
the micro-channels. In the absence of any temperature gradients the Navier–Stokes sys-
tem of equations, ignoring the body force, for single species can be written in Cartesian
coordinates as:
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∂ρ

∂t
+

∂(ρUi)

∂xi
= 0, (1)

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
−

∂τij

∂xi
, (2)

where i and j are the coordinate indices and ρ, U, P and τ are the density, velocity, pressure
and viscous stress, respectively. For a newtonian fluid,

τij = −µ

(
∂Uj

∂xi
+

∂Ui
∂xj

)
+

2
3

µδij
∂Uk
∂xk

, (3)

where µ is the dynamic viscosity and δij is the Kronecker Delta function, and equation of
state for an ideal gas is given by,

P = ρRT, (4)

where R is the specific gas constant and T is the temperature. In this paper we consider
an isothermal pressure driven flow of an ideal gas through a rectangular micro-channel of
length L, width w and height h, as shown in Figure 1. The stream-wise coordinate is x with
velocity Ux = u, the wall-normal coordinate is y with velocity Uy = v, and the height to
length ratio is ε = h/L. For the case of ε� 1 and h/w� 1 we can consider the flow to be
two-dimensional, neglecting the variations in the z direction.

po

pi

y

xz

L

h

w

Figure 1. Schematic of pressure driven flow of a rarefied gas through a micro-channel of length L,
height h and width w (L, w� h).

Arkilic et al. [11] in his work on slip flows in micro-channels has categorised the flow
regimes based on Mach number, Ma, and Reynolds number, Re = ρuh/µ. In this work
we are interested in flow regimes with low Mach numbers, Ma ∼ O(ε) and low Reynolds
number, Re ∼ O(ε), i.e., the flows having Knudsen numbers of O(1), given by the relation:

Kn =

√
π

2
γ

Ma
Re

, (5)

where γ is the specific heat ratio. In these flow regimes with Kn ∼ O(1), the wall-normal
velocity and stream-wise gradients of u are insignificant as is evident by an order of magni-
tude analysis [11,25]. Therefore under the assumption of a steady-state fully developed
flow, and neglecting the above terms and non-linear terms, the governing equations reduce
to the following form:

∂(ρu)
∂x

= 0, (6)

∂

∂y

(
µ

∂u
∂y

)
=

∂P
∂x

, (7)

∂P
∂y

= 0. (8)
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The reduced y-momentum equation, Equation (8), implies that pressure in the channel is a
function of stream-wise coordinate, i.e., P = P(x), and from the reduced continuity and the
x-momentum equation we can infer the stream-wise velocity, u, is a function of coordinates
x and y.

2.2. Slip boundary Conditions

In most flow regimes where Kn is quite small (Kn≤ 0.001), no slip boundary condition
is used to describe velocity at the solid interface. The condition assumes that the velocity
of the fluid layer in direct contact with the boundary is identical to the velocity of the
boundary, i.e.,

uslip = u− uw = 0, (9)

where uw = 0 is the velocity of the stationary solid wall. However, it is now well established
that this condition fails to predict the near-wall velocity for rarefied gas flows. In 1879,
Maxwell [22] introduced a first order slip formulation widely known as Maxwell slip,
which is of the form:

uslip = Ksλ
∂Ux

∂y
+

3
4

µ

ρT
∂T
∂x

, (10)

where λ is the mean free path and Ks is the standard slip coefficient. The temperature
gradient term in Equation (10) can be neglected under the current assumption of an
isothermal flow but the term is important to predict flows arising from thermal gradients
at the interface [31]. Researchers have also suggested a slip-velocity dependent on pressure
gradients of the form [25,32]:

ρ uslip ∝ −µ

P
∂P
∂x

. (11)

The definition of slip velocity in Equation (11) is reminiscence of the diffusion component
in the expression of volume-velocity in Recast Navier–Stokes system of equations [20,21].
Conventionally, derivation of continuum flow models as well as their analysis is routinely
based on the flow’s mass-velocity (i.e., a velocity definition based on mass-averaging).
Recast Navier–Stokes equations (RNS) developed in [20] define three type of volume-
velocity variables, Uv, UT and Up, that are each a sum of the standard mass-velocity, Um,
and a diffusion velocity component which takes into account one of the thermodynamic
variable, namely, density, temperature or pressure, as:

Uv = Um + κm∇ ln ρ = Um +
κm

ρ
∇ρ, (12)

where κm is a molecular diffusivity coefficient,

UT = Um + κT∇ ln T = Um +
κT
T
∇T, (13)

where κT is a molecular thermal diffusivity coefficient, and

Up = Um + κp∇ ln P = Um +
κp

P
∇P, (14)

where κp is a molecular pressure diffusivity coefficient. In a standard flow simulation a slip
or no-slip boundary conditions may be adopted on the mass velocity, Um. In this paper
we propose to set these boundary conditions using the new velocity variables described in
the RNS system. For example, in the pressure-driven flow in a micro- or nano-channel, we
set a slip or no-slip on the pressure-diffusion velocity, Up, defined in Equation (14). For a
2-dimensional rectangular channel as detailed in Figure 1, setting a first-order Maxwellian
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slip boundary condition on the stream-wise volume-velocity up translates into the following
mass-velocity boundary conditions:

uslip = −
κp

P
∂P
∂x
∓ KsKb

∂Ux

∂y
at y = ±h

2
. (15)

Here Kb = λ in the case of gas flow and Ks is the standard slip coefficient. Reddy and
Dadzie [33] in their work on the effects of molecular diffusivity on shock-wave structures
in monatomic gases assumed the following form for the molecular pressure diffusivity
coefficient:

κp = αp µ/ρ.

In the present paper, we consider the above relation for the molecular pressure-diffusivity
coefficient where the coefficient αp is the phenomenological coefficient determined from
the experimental data.

2.3. Effects of Rarefaction

Various length scales exist in the evaluation of gas micro-flows. At the molecular level,
the mean free path (MFP) is considered along with other characteristic length scales such
as mean molecular diameter and mean molecular spacing. In microfluidics where solid
boundaries enclose the fluid, the MFP may be smaller than the characteristic length scale of
the system and surface effects must be taken into account. The idea of “effective MFP”, λe,
as a spatially varying function near the wall, can be traced back to the work of Stops [34].
Non-linear constitutive relations may be developed by incorporating effective-transport
coefficients such as diffusivity, viscosity and thermal-conductivity based on λe , thereby
accounting for rarefaction effects in a continuum description [35–38].

In the present work we adopt the definition of mean free path (λ) provided by G.A.
Bird [16]

λ =
µ

P

√
π

2
RT. (16)

The associated Knudsen (Kn) number for the micro-channel shown in Figure 1, with a
characteristic length h, pressure P and temperature T is:

Kn :=
λ

h
=

µ

hP

√
π

2
RT. (17)

Beskok and Karniadakis [35] in their rarefaction theory suggested a Bosanquet-type of
expression for the viscosity in the transition regime and conducted numerical computations
of flow in cylinders and channels using the Navier–Stokes equations complemented with
slip boundary conditions. They suggested a Knudsen number dependent effective viscosity
with a parameter a. Their formulation of the effective viscosity was of the form:

µe := µ
λe

λ
=

µ0

1 + aKn
. (18)

In the present study we adopt the above effective viscosity model in Equation (18) and
assume a to be a constant as seen in the works of Michalis [38] and Lv [37]. Using this in
our diffusion-slip model we incorporate the rarefaction effects into the molecular pressure
diffusivity as:

κp := αp
µe

ρ
=

αp

1 + aKn
.
µ0

ρ
(19)

2.4. Analytical Solution

We solve the reduced governing equations Equations (6)–(8), along with the following
boundary conditions,



Micromachines 2022, 13, 1425 6 of 14

u = ±KsKb
∂u
∂y
−

κp

P
dP
dx

at y = ±h
2

, (20)

P = Pin at x = 0, (21)

P = Po at x = L. (22)

The velocity profile can be derived as a function of the pressure gradient by solving the
x-momentum equation satisfying the boundary condition in Equation (20) as:

u =
1

2µ

dP
dx

(
y2 − h2

4
−

2µκp

P
− KsKb h

)
. (23)

Integrating this expression for the stream-wise velocity along the height of the channel
and multiplying with the width, w, we get the expression for volumetric flux:

Q̇ =
∫ h

2

− h
2

w u dy, (24)

= −wh3

12µ

dP
dx

(
1 +

12µκp

Ph2 +
6Ks

h
Kb

)
. (25)

Mass flow rate through the micro-channel is calculated by integrating the density times
volumetric flux across the length of the channel,

Ṁ =
1
L

∫ L

0
ρQ̇dx. (26)

For the case of an incompressible fluid, the density of the fluid is constant, and we
substitute the expression KsKb in the equation [see Equation (25)] with slip-length, Kl . This
gives us

Ṁ =
ρ

L

∫ L

0
Q̇dx,

=
wh3ρ∆P

12µL

(
1 +

12µκp

h2∆P
lnP +

6Kl
h

)
. (27)

Following the above procedure, the expression for mass flow rate of incompressible
fluid through a cylindrical tube with radius ‘R’ and length ‘L’ can be derived in cylindrical
coordinates as,

Ṁ =
πR4ρ∆P

8µL

(
1 +

8µκp

R2∆P
lnP +

4Kl
R

)
,

= ṀHP

(
1 +

8µκp

R2∆P
lnP +

4Kl
R

)
, (28)

where ṀHP is the mass flow rate relation predicted by the classical Haigen-Poiseuille law.
Stamatiou et al. [21] uses the RNS system of equations and no-slip condition at the wall to
derive an equation for mass flow rate for liquid flow through micro-channel as:

ṀRNS =
πR4ρ∆P

8µL

(
1 +

8µκp

R2∆P
lnP

)
. (29)

It is evident that including effect of first order slip to the above relation gives us the mass
flow rate expression derived with the present model, in Equation (28).
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In the case of compressible fluid flowing through nano- and micro-channels, we
consider expression for volumetric flow rate, Equation (25), where molecular diffusivity, κp,
is substituted as per Equation (19). The rarefaction effects are included by replacing viscosity
with an effective viscosity as given in Equation (18) and Kb = λ as λoρo/ρ, respectively. We
then substitute ρ with ideal gas equation, Equation (4) to get the expression of volumetric
flux for the compressible case as,

Q̇ = −wh3

12µ

dP
dx

(1 + aKn)

[
1 +

24αp

π

Kn2

(1 + aKn)2 + 6KsKn

]
, (30)

where the Knudsen number, Kn is defined as per Equation (17). Under the assumption of
isothermal flow we also have the following expression relating the pressure and Knudsen
number at the outlet (Po, Kno) with pressure and Knudsen number inside the channel:

Kno Po = Kn P. (31)

We use the expression of volumetric flux for a compressible gas, Equation (30) and
calculate the mass flow rate in the channel with Equation (26) as,

Ṁ = ṀNS

[
1 +

48αp

π

Kn2
o

P2 − 1
ln
(
P + aKno

1 + aKno

)
+

2KsKno(a + 6Ks)

P + 1
+

12aKsKno
2

P2 − 1
lnP

]
, (32)

where P = Pin/Po is the ratio of pressures at the inlet and outlet of the channel and ṀNS is
the mass flow rate expression for compressible flow through a pipe with no-slip boundary
condition, and its expression is given by:

ṀNS =
wh3

24µL RT
P2

o (P2 − 1).

To derive the expression for pressure profiles we utilise the fact that mass flux across
any arbitrary cross-section of the channel is constant. i.e., ṀA = ρQ̇ = constant. Substi-
tuting the expression for κp and Q̇ from Equation (30) and rearranging the terms we get a
differential equation in pressure of the form,

dP
dx

(
P + B +

C
P + D

+
E
P

)
= −Z =

F
A

, (33)

where A = wh3/(12µRT), B = (a + 6Ks)KnoPo, C = 24αp(KnoPo)2/π, D = aKnoPo,
E = 6aKs(KnoPo)2 and F = ρQ̇.

Integrating the above differential equation for pressure with respect to x, we get a
function in pressure:

f (P(x)) :=
P(x)2

2
+ BP(x) + C ln(P(x) + D) + E ln P(x) = −Zx + C1.

In the above expression Z = ( f (Pin)− f (Po))/L and the constant of integration, C1 = f (Pin)
are calculated from the value of function f (P) at x = 0 and at x = L. The pressure profiles
as a function of the stream-wise coordinate, P(x), can be calculated numerically by solving
the equation,

f (P(x)) = f (Pin)− ( f (Pin)− f (Po))
x
L
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By rearranging Equation (33) we get the following expression for pressure gradient along
the stream-wise direction,

dP
dx

= − 1
L

f (Pin)− f (Po)

P + B + C
P+D + E

P
. (34)

The stream-wise velocity profile for the compressible fluid flow in the channel shown
in Figure 1 can be written as a function of Knudsen number by rewriting Equation (23) to
include effective viscosity and rarefaction effects:

u =
1
2

h2

µe

dP
dx

[(
y
h
+

1
2

)(
y
h
− 1

2

)
−

4αp

π

Kn2

(1 + aKn)2 − KsKn

]
. (35)

In the limit of Kn→ 0, the above velocity expression converges to the classical parabolic
expression, but when Kn� O(1), the diffusion and slip terms dominate in magnitude
and the dependence of the stream-wise velocity on the wall-normal coordinate is reduced,
thereby, attaining a plug-flow profile with corresponding slip at the walls,

u ≈ 1
2

h2

µe

dP
dx

[
−

4αp

π

Kn2

(1 + aKn)2 − KsKn

]
. (36)

3. Results and Discussion

Using the expression for mass flow rate, Equation (32), derived in the previous section,
we can predict the mass flow rates for helium gas in a long micro-channel for the various
Knudsen regimes covered in the experiment of Ewart et al. [13], whose conditions are
summarised in Table 1. The value for model parameter Ks = 1.1466, is chosen as per the
first order slip coefficient reported by Cercignani [39] and Sreekanth [40]. Phenomenological
coefficients, αp = 0.3724 and a = 0.4614, are determined by fitting with the experimental
data of Ewart et al. [13].

In Figure 2 we compare the present results with the experimental data and previous
studies as dimensionless flow rate, G, versus mean Knudsen number, Knm. The non-
dimensional flow rate is defined as,

G = Ṁ

[
L
√

2RT
wh2Po(P − 1)

]
,

and the mean Knudsen number, Knm, is calculated using Equation (17) at a mean pressure
of (Pin + Po)/2.

Table 1. Experimental conditions of Ewart et al. [13] for a pressure ratio of P = 5.

Experimental Parameters Value

Gas used Helium
Length, L 9.39 ± 0.1 mm
Height, h 9.38 ± 0.2 µm
Width, w 492 ± 1 µm

Avg. Temperature, T 296 K
Viscosity, µ 1.967× 10−5 Pa s

Gas Constant,R 2078.5 J/(kg K)
Inlet Pressure range 60.4–109,825 Pa

Outlet Pressure range 12.2–22,633 Pa
Average Kn range 0.027–50.2



Micromachines 2022, 13, 1425 9 of 14

10−2 10−1 100 101 102

Kn

0

1

2

3

4

5

6

7

8

di
m

en
si

on
le

ss
  l

ow
ra

te
, G

Ewart (Ex(eriment)
NSF (No slip)
Pure diffusion
Maxwell (1st Order Slip) 

Cercignani (2nd Order Slip)
Dadzie & Brenner 2012
Lv et al. 2013
Present work

Figure 2. (Color Online) Comparison of dimensionless flow rate, G, versus the mean Knudsen
number, Knm, between current work and other analytical expressions and the experimental data by
Ewart et al. [13,30,37].

We observe in Figure 2 that the N-S solution with no-slip boundary conditions and
pure diffusion boundary conditions diverge significantly from the experimental data, even
in the slip flow regime (0.001 < Knm < 0.1). The used of Maxwell’s first order slip boundary
conditions predicts the mass flow rate up to Knm < 0.5. Dadzie and Brenner [30] used a
first order slip along with the bi-velocity continuum model as the governing equations
to predict the mass flow rate. Their model is able to capture the Knudsen minimum and
predicts the mass flow rate up to Knm = 5 beyond which the model shows a diverging
upward trend. The analytical formulation by Lv et al. [37] which also invokes a bi-velocity
formulation shows significant improvement by addressing the rarefaction effects and
captures the Knudsen minimum and mass flow rate trend in the whole Kn range. Our
present model follows this, matching the experimental data well along the whole range of
Knudsen number up to 50 with a better fit than Lv et al. model in the transition regime.

In Figure 3, a comparison is made of normalized stream-wise pressure distributions
against the experimental data of Pong et al. [41] and analytical solution for pressure profile
provided by Arkillic et al. [11] at various pressure ratios (P). Here, pressure is normalized
with the outlet pressure of the micro-channel and the pressure ratio is defined as the ratio
of inlet to outlet pressure. The measurements by Pong et al. [41] were made by embedding
measurement ports in a micro-channel in which pressure transducers were mounted. The
working gas was nitrogen and the outlet Knudsen number was fixed at 0.044. The current
model predicts the non-linear pressure profiles very accurately within the errors of the
experiment as seen in Figure 3.
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Figure 3. (Color Online) Pressure profiles along the micro-channel for various inlet-outlet pres-
sure ratios as predicted by the current model (solid-line) plotted against the experimental data by
Pong et al. [41] and pressure profiles predicted by analytical solution of Arkilic et al. [11].

The variation of non-linearity in the pressure distribution predicted by the current
model can be better understood in the comparison made in Figure 4. In this figure the
pressure non-linearity expressed as, (P− Plin)/(Pin − Po), measures the deviation from a linear
pressure profile from the incompressible flow case, Plin. The comparison of pressure
profiles are made for various outlet pressures with fixed pressure ratio of P = 4. We have
considered outlet pressures 0.25Pch, 0.5Pch, Pch, 2Pch and 4Pch which correspond to outlet

Knudsen numbers of 4, 2, 1, 0.5 and 0.25, respectively, where Pch = µ
h

√
πRT

2 is pressure
at which outlet Knudsen number is 1. There is an apparent asymmetry observed in the
pressure profiles in Figure 4. The location of the peaks or dips depend on the inlet/outlet
pressure ratio and the Knudsen number. Current slip model predicts that with increase in
Kn, the curvature of the nonlinear pressure distribution changes from a convex profile with
respect to origin to a concave profile. The change in curvature of pressure profile is also
captured by volume diffusion hydrodynamic model [42], second-order slip model [18] and
ENSE with a diffusion boundary condition [32]; however, N-S equations with Maxwell’s
first-order slip model fails to predict this phenomena.

We use the analytical solution for the stream-wise velocity in Equation (35) to plot
the velocity profiles for a micro-channel at various states of rarefaction. In Figure 5 we see
that the current model predicts a parabolic profile with a small slip for Kn = 0.01. As the
Knudsen number increases, slip increases until the parabolic profiles with slip at the wall
becomes a full plug flow profile in the free molecular regime at Kn = 10. It is evident from
Equation (35) that in the limit of Kn→ 0, the analytical solution for velocity converges to
the description of a parabola as is the case in the continuum regime. The progression of the
flow profile from a parabola with slip to a full plug flow is seen in the stream-wise velocity
contours in Figure 6.
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Figure 4. Variation in non-linearity of pressure profiles along the micro-channel for a pressure ratio
P = 4, plotted for various outlet pressure conditions.
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Figure 5. (Color Online) Comparison of normalised stream-wise velocity plotted as a function of
normalised height, y/H, at location X = 0.9 along the micro-channel, for various Knudsen numbers
as predicted by current model (in black) and N-S with no-slip condition (in red). The velocity profiles
are normalised with the corresponding maximum value for each case which corresponds to the exit
velocity along the center-line of the pipe.
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Figure 6. (Color Online) Stream-wise velocity contours predicted by the new model for outlet
pressure conditions corresponding to Knudsen numbers (a) 10, (b) 1, (c) 0.1 and (d) 0.01. The velocity
contour lines are plotted over the stream-wise velocity contour field for a typical parabolic velocity
profile predicted by N-S equations with no slip boundary condition.

4. Conclusions

In this article, we developed a diffusion-slip model that predicts mass flow rates,
velocity distribution and pressure profiles in a rectangular channel over the entire flow
regime. The new slip model is a three-parameter model and is able to predict the Knudsen
minimum that occurs in the transitional regime. The model compares well against other
analytical solutions in predicting the mass flow rates up to free molecular regime.

The proposed diffusion-slip model derived from adopting the definition of other
type of velocity variables alongside the conventional mass velocity as seen in the recast
Navier–Stokes models [20]. Setting a first order Maxwell’s slip boundary conditions on the
new velocity variable leads to the new diffusion-slip model. This investigation strengthens
the usefulness of the concept of volume diffusion and the definitions of the new velocity
variables. The article also details on the variation of pressure profiles for micro-channels
with rarefaction. The present model is able to capture the non-linearity and the change in
curvature of pressure profiles with increasing Knudsen number as reported in the literature.
A characteristic pressure is determined below which the flow is dominated by diffusion.
The velocity profiles predicted by using the new slip model with N-S equations agree
with the trends observed in a micro-channel at various states of rarefaction. In the free
molecular regime, the diffusive terms have a larger effect in governing the flow profiles,
thereby giving a plug flow velocity profile along the channel. This plug flow profile can
be noted in the numerical simulations in the works of Christou and Dadzie [43]. The new
slip conditions and analytical solutions provide an alternative physical explanation for
rarefied flows in micro-channels and may be adopted to interpret other non-equilibrium
flow phenomenons.
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