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Abstract: In this paper, SiNx film deposited by plasma-enhanced chemical vapor deposition was
employed as a gate dielectric of AlGaN/GaN high electron mobility transistors (HEMTs). We found
that the NH3 flow during the deposition of SiNx can significantly affect the performances of metal–
insulator–semiconductor (MIS) HEMTs. Compared to that without using NH3 flow, the device
with the optimized NH3 flow exhibited three orders of magnitude lower gate leakage current, two
orders of magnitude higher ON/OF drain current ratio, and an increased breakdown field by 69%.
In addition, an in situ N2 plasma surface treatment prepared prior to SiNx deposition can further
improve DC performances of MIS-HEMTs to a very low gate leakage current of 10−9 mA/mm and
a high ON/OFF drain current ratio up to 109 by reducing the interface state density. These results
demonstrate the great potential for using PECVD-SiNx as a gate dielectric in GaN-based MIS-HEMTs.

Keywords: PECVD-SiNx; AlGaN/GaN; MIS-HEMTs; in situ plasma treatment; breakdown field

1. Introduction

Gallium nitride-based HEMTs have been considered excellent candidates for next-
generation high-efficiency power switching devices due to their remarkable material and
transport properties. However, conventional Schottky-gate HEMTs have a large gate
leakage current and a small gate swing, which are limited by the Schottky-gate forward turn-
on voltage (e.g., <3 V) [1,2]. To mitigate these issues, MIS-HEMTs have been proposed. It
can suppress gate leakage and improve gate reliability by inserting an insulator between the
gate metal and the barrier layer. Various dielectric materials are suitable as gate insulators,
such as SiO2 [3], SiNx [4–10], Al2O3 [11,12], and SiON [13]. Among them, nitride-based
gate dielectrics (e.g., SiNx) can avoid the additional introduction of interfacial Ga-O bonds,
which tend to introduce interface traps and cause threshold voltage instability [4,14–17].
Currently, SiNx has been widely used as a gate dielectric/interfacial gate dielectric. There
are many methods to deposit SiNx, such as plasma-enhanced chemical vapor deposition
(PECVD) [1,18], low-pressure chemical vapor deposition (LPCVD) [4–6,8], and metal–
organic chemical vapor deposition (MOCVD) [7,9].

Deposition methods, deposition conditions, and surface treatment before dielectric
deposition can significantly affect the properties of SiNx films. Recently, LPCVD has
been reported as a possible alternative technique for depositing high-quality SiNx [4–6,8].
However, dielectric deposition at a very high temperature is not compatible with typical
microelectronic interconnect processing and may create surface defects due to the decompo-
sition of GaN above 650 ◦C [19]. In situ SiNx grown by MOCVD may have Si contamination
in the MOCVD chamber [5]. Compared with these gate dielectric deposition methods,
using plasma-enhanced chemical vapor deposition (PECVD) SiNx shows great advantages
in low temperature, easy operation, and high deposition rate [20–22]. PECVD-grown SiNx

Micromachines 2022, 13, 1396. https://doi.org/10.3390/mi13091396 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13091396
https://doi.org/10.3390/mi13091396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-0751-4202
https://orcid.org/0000-0003-1350-2053
https://doi.org/10.3390/mi13091396
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13091396?type=check_update&version=1


Micromachines 2022, 13, 1396 2 of 9

has been proven to be an effective material to suppress current collapse and reduce the
surface states in AlGaN/GaN HEMTs.

In this work, we investigated the influence of SiNx deposition condition and surface
treatment on the electrical properties of GaN-based MIS-HEMTs employing PECVD-SiNx
as the gate dielectric. To evaluate the dielectric quality and interface properties, current–
voltage (I–V) characterization, X-ray photoelectron spectroscopy (XPS), and capacitance–
voltage (C–V) measurements were performed. The results showed that the optimized
device exhibits a lower leakage current, a higher ON/OFF drain current, and a higher
breakdown field than the device without any optimization.

2. Device Fabrication

To improve the breakdown field of the SiNx dielectric, we first optimized the deposi-
tion conditions of SiNx on Pt substrates using plasma-enhanced chemical vapor deposition
by changing the flow of NH3. The reactant precursors were SiH4 (5%)/N2, NH3 and
N2. The as-deposited 100 nm SiNx films were fabricated into metal–semiconductor–metal
(MIM) capacitors for the measurements of breakdown field strength. The flow of NH3 was
varied with a fixed SiH4: N2 ratio, a chamber pressure (=600 mtorr), and an RF power of 10
W. The results showed that NH3 flow could significantly affect the breakdown field of SiNx
films, as presented in Figure 1a, and finally a maximum breakdown field of 11.45 MV/cm,
which exceeds the reported breakdown field strength of PECVD-SiNx as a gate dielectric,
was obtained at the condition of NH3 flow of 40 sccm.

Figure 1. (a) Forward leakage current characteristics for circular MIM patterns with a 100 µm diameter.
(b) Schematic cross–sectional view of fabricated PECVD-SiNx MIS-HEMTs. (c) I–V characteristics
of a TLM structure of Ti/Al/Ni/Au contacts after annealing at 850 ◦C in N2 ambient. (d) Extracted
resistance versus TLM distance.

The AlGaN/GaN heterostructure was grown by MOCVD on a silicon substrate. The
epitaxial structure consisted of a 1-nm GaN cap layer, a 15-nm AlGaN barrier layer, a 1-nm
AlN layer, a 4-µm GaN buffer layer, and an AlN nucleation layer, as shown schematically
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in Figure 1b. The use of AlN nucleation layer can release the tensile stress and reduce the
dislocation defects on the epitaxial surface of GaN, thus improving the crystalline quality of
GaN and reducing the cracking [23,24]. The device-fabrication started with electron beam
evaporation of Ti/Al/Ni/Au and alloyed at 850 ◦C for 30 s in a N2 atmosphere to form
an ohmic contact. The value of specific contact resistivity (ρc) of the ohmic contact was
3.39 × 10−5 Ω·cm2, as seen in Figure 1c,d [25,26]. Subsequently, a mesa isolation process
was implemented by an inductively coupled plasma (ICP) system using a BCl3/Cl2 gas
mixture. After that, 30-nm SiNx under the condition without NH3 gas was deposited
for sample A and 30-nm SiNx under the condition with 40 sccm NH3 was deposited for
sample B. Considering the effect of surface treatment, an in situ N2 plasma treatment before
SiNx deposition, with NH3 gas flow of 40 sccm, was employed for sample C. The Ni/Au
(50/100 nm) gate metal was then deposited by E-beam evaporation. Finally, the contact
window was opened by a reactive ion etching (RIE) dry-etching system. The gate-to-
source space is 4 µm, the gate-to-drain space is 12 µm, and the gate width and length are
100 µm and 4 µm, respectively. The fabricated devices were marked device A, B, and C,
corresponding sample A, B, and C, respectively.

3. Results and Discussion
3.1. Material Optimization Characteristics

Figure 2 shows typical DC transfer, gate leakage, and output characteristics of PECVD-
SiNx/AlGaN/GaN MIS-HEMTs. The transfer characteristics of MIS-HEMTs were mea-
sured at a drain bias voltage of 10 V. Compared with device A, device B exhibits a much
higher ON/OFF drain current ratio of ~108. In addition, device B shows a very low gate
leakage current of ~10−8 mA/mm at both VG = −20 V and VG = 10 V, three orders of
magnitude lower than that of device A, suggesting that SiNx deposition with NH3 flow
can effectively suppress leakage paths in the gate dielectric. In Figure 2b, device B shows a
relatively larger threshold voltage hysteresis, compared with device A. This indicates that
SiNx without NH3 can alleviate the surface trapping effect. Meanwhile, a large negative
threshold voltage shift in device B may come from the high density of positive charges exist-
ing at the interface between SiNx and AlGaN [27]. In addition, these positive charges may
be introduced by the hydrogen radicals originating from NH3. As shown in Figure 2c,d,
device B shows a larger saturated output current of 608 mA/mm and a lower on-resistance
of 8.9 Ω·mm, compared with device A.

To further understand the reasons for the improved electrical performances obtained
by optimizing the NH3 flow, we analyzed the dielectric surface roughness and the N/Si
ratio of SiNx with different deposition conditions by employing atomic force microscopy
(AFM) and X-ray photoelectron spectroscopy (XPS). As shown in Figure 3a,b, the root
mean square (RMS) roughness over a 5 µm × 5 µm area is 1.59 nm for SiNx without NH3,
but 0.69 nm for SiNx with 40 sccm NH3, indicating that NH3 can effectively reduce the
surface roughness of the SiNx dielectric. Typical Si 2p core-level spectrums were captured
as shown in Figure 3c,d. Three components corresponding to Si-Si bonds, Si-N bonds,
and Si-O bonds were extracted from the spectrum. The amount of elemental composition
incorporation in SiNx was estimated in Table 1 by using the standard method, as reported
in Ref. [28]. The SiNx stoichiometry (x = [N]/[Si]) was analyzed by the peak area sensitivity
method [29], and the results showed that the corresponding N/Si ratio was changed
from 0.75 to 1.05 before and after optimizing NH3 flow, respectively. Moreover, with the
increase in N/Si ratio, the Si-Si bond contents decreased while the Si-O bond and Si-N
bond contents increased. An increase in the N/Si ratio was demonstrated to be able to
improve the insulation characteristics of the SiNx dielectric film, as reported in Refs. [27,30],
which can explain why device B exhibits better DC characteristics than device A.
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Figure 2. (a) Transfer and gate leakage characteristics of device A and B on a log scale. (b) Transfer
characteristics of device A and B on a linear scale. Output characteristics of (c) device A and (d) device B.
Device dimensions: LGS/LGD/LG/WG = 4/12/4/100 µm.

Figure 3. AFM images of the SiNx surface in (a) device A and (b) device B within a 5 µm × 5 µm
area. Fitting XPS results of the Si 2p core-level spectrum of (c) the SiNx film without NH3 gas and
(d) the SiNx with an NH3 gas flow of 40 sccm.
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Table 1. The elemental composition of SiNx grown by PECVD.

Samples Si N N/Si

SiNx-W/O NH3 34.43 25.7 0.75

SiNx-W/NH3 28.1 29.52 1.05

3.2. Interface Optimization Characteristics

However, device B shows a larger voltage hysteresis than device A, which may result
from hydrogen radicals originating from NH3. It has been confirmed that NH3 can diffuse
into the GaN structure and react with Ga-N bonds, thus resulting in the generation of
nitrogen vacancies and Ga-H bonds near the surface [31,32]. To reduce these interface
defects, some surface treatment methods have been well developed [33–37]. In this work, an
in situ N2 plasma surface treatment was adopted before dielectric deposition for device C
which has the same subsequent processes as device B. As shown in Figure 4a,b, device A
shows the smallest VTH hysteresis and the lowest ON/OFF drain current ratio. In addition,
it can be seen that the saturation current in device A is the smallest, indicating that device A
has the lowest 2DEG concentration at the AlGaN/GaN interface. Device C exhibits a
large positive shift of VTH compared to device B, which may be related to the reduction
of nitrogen-vacancy defects, thus reducing the positive charges [34]. Meanwhile, the
transconductance and ON/OFF drain current ratio (~109) of device C are further improved,
indicating that in situ N2 plasma treatment can suppress the trapping of channel carriers
by surface defects. Moreover, device C exhibits the lowest ON-resistance of 7.9 Ω·mm and
the highest saturation output current up to 650 mA/mm in comparison with device A and
B, which can be attributed to the improvement of field-effect mobility. As presented in
Figure 4d, device C shows the highest field-effect mobility because of the improvement
in device transconductance, thus reducing the on-resistance in device C. Since the on-
resistance is mainly related to field-effect mobility and carrier concentration, device A has
the largest on-resistance. Generally, after optimization, the maximum drain current and the
field-effect mobility of device C increased by 32% and 28%, respectively, compared with
device A.

Furthermore, the gate leakage characteristics of the MIS-HEMTs were measured at
VDS = 0 V as shown in Figure 5. In comparison with device A, device B and C exhibit
much lower gate leakage current and higher forward gate breakdown voltage up to 34 V at
room temperature due to the optimized deposition condition of the SiNx dielectric with
NH3 flow. The corresponding electric field strength (Eb) was estimated to be 11 MV/cm,
a very competitive result referring to those of reported MIS-HEMTs. We benchmarked
the gate leakage current versus electrical field against these reported AlGaN/GaN MIS-
HEMTs [3–13,38], as plotted in Figure 5b. In general, the gate leakage and breakdown field
of the optimized device in this work are comparable to those of the reported state-of-the-art
AlGaN/GaN MIS-HEMTs.

Finally, capacitance–voltage (C–V) measurements were performed on the MIS diodes,
corresponding to device B and C, with different frequencies varying from 20 kHz to 1 MHz
at room temperature. As shown in Figure 6, there are two obvious steps in both C-V curves.
The first step corresponds to the process of accumulating two-dimensional electron gas in
the AlGaN/GaN heterojunction while the second step reflects the electron transfer from
the AlGaN/GaN to the SiNx/GaN interfaces [39]. In comparison with device B, device C
exhibits a smaller frequency dispersion in the second step, indicating a higher quality
interface of SiNx/GaN that has a lower trap density. We also calculated the interface state
density using the method in Ref. [40], and the results are shown in Figure 6c. We found that
the interface state density was reduced by almost one order of magnitude after the in situ
N2 plasma surface treatment indicating that nitrogen vacancies and surface oxygen-related
bonds can be effectively reduced by an in situ N2 plasma treatment, thus obtaining a
high-quality SiNx/GaN interface.



Micromachines 2022, 13, 1396 6 of 9

Figure 4. Transfer characteristics of device A, B, and C on the (a) linear scale and (b) log scale. (c) Output
characteristics of device C. Device dimensions: LGS/LGD/LG/WG = 4/12/4/100 µm. (d) Extracted
field–effect mobility using a long–channel device with LG/WG = 40/100 µm at VDS = 0.1 V.

Figure 5. (a) IG−VGS characteristics of PECVD-SiNx/AlGaN/GaN MIS-HEMTs. Device dimensions:
LGS/LGD/LG/WG = 4/12/4/100 µm. (b) Benchmark of leakage current versus electrical field in
recent reports [3–13,38].
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Figure 6. C−V characteristics of (a) device B and (b) device C with frequencies varying from 20 kHz
to 1 MHz. (c) Trap density as a function of energy level for device B and C.

4. Conclusions

In summary, we studied the impact of SiNx growth condition and surface treatment
on the electrical properties of AlGaN/GaN MIS-HEMTs when employing PECVD-SiNx as
a gate dielectric. The results show that the gate leakage current can be greatly suppressed
by increasing the N/Si ratio of SiNx, and the interface state density can be obviously
reduced through in situ N2 plasma surface treatment. The optimized SiNx/AlGaN/GaN
MIS-HEMTs exhibit low gate leakage current, high ION/IOFF ratio, and high breakdown
field. These results prove that PECVD-SiNx/AlGaN/GaN MIS-HEMT is comparable to
those of the reported state-of-the-art AlGaN/GaN MIS-HEMTs.
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