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Abstract: Today, MXenes with fascinating electronic, thermal, optical, and mechanical features
have been broadly studied for biomedical applications, such as drug/gene delivery, photother-
mal/photodynamic therapy, antimicrobials/antivirals, sensing, tissue engineering, and regenerative
medicine. In this context, various MXene-polymer composites have been designed to improve the
characteristics such as physiological stability, sustained/controlled release behaviors, biodegrad-
ability, biocompatibility, selectivity/sensitivity, and functionality. Chitosan with advantages of
ease of modification, biodegradability, antibacterial activities, non-toxicity, and biocompatibility
can be considered as attractive materials for designing hybridized composites together with MX-
enes. These hybrid composites ought to be further explored for biomedical applications because
of their unique properties such as high photothermal conversion efficiency, improved stability, se-
lectivity/sensitivity, stimuli-responsiveness behaviors, and superior antibacterial features. These
unique structural, functional, and biological attributes indicate that MXene-chitosan composites
are attractive alternatives in biomedical engineering. However, several crucial aspects regarding
the surface functionalization/modification, hybridization, nanotoxicological analyses, long-term
biosafety assessments, biocompatibility, in vitro/in vivo evaluations, identification of optimization
conditions, implementation of environmentally-benign synthesis techniques, and clinical translation
studies are still need to be examined by researchers. Although very limited studies have revealed the
great potentials of MXene-chitosan hybrids in biomedicine, the next steps should be toward the exten-
sive research and detailed analyses in optimizing their properties and improving their functionality
with a clinical and industrial outlook. Herein, recent developments in the use of MXene-chitosan
composites with biomedical potentials are deliberated, with a focus on important challenges and
future perspectives. In view of the fascinating properties and multifunctionality of MXene-chitosan
composites, these hybrid materials can open significant new opportunities in the future for bio- and
nano-medicine arena.

Keywords: MXenes; chitosan; MXene-chitosan composites; biomedicine; MXene-based nanosystems

1. Introduction

MXenes and their derivatives have been widely explored in the field of supercapacitors [1],
sensors [2], energy storage [3], diagnostics [4], (photo)catalysis [5], and drug delivery [6–9]
due to their special properties such as large surface area, superior near-infrared (NIR)
responsiveness, excellent mechanical strength, rich surface chemistry, exceptional hy-
drophilicity, and easy of surface functionalization/modification [10–14]. These materials
exhibited several advantages such as broadband absorption, light-harvesting features in
the NIR region, strong light-to-heat conversion capabilities, metallic conductivity, biocom-
patibility, biodegradability, significantly negative zeta potential, and abundant surface
functional groups [4,15]. In this context, composites of MXenes and polymers have been
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designed with fascinating physicochemical properties for biomedical applications. To im-
prove the physiological stability, sustained/controlled drug release behaviors, drug loading
capacity [16], biodegradability, biocompatibility [17], and targeting properties, several
MXene-polymer (nano)composites have been designed [18–23]. Polymer-functionalized
MXene composites exhibited enhanced the physiological stability, stimuli-responsiveness [24],
high sensitivity/selectivity [25], improved biocompatibility [26], and contrast enhance-
ment, introducing them as promising alternatives in bio- and nano-medicine [15,27–31].
Multifunctional MXene-based (nano)composites have shown suitable applicability for high-
performance energy-related devices and flexible bioelectronics [32–34]; they also exhibited
useful photocatalytic performances, electromagnetic interference (EMI) shielding, and high
charge storage [15,31,35].

Overall, MXenes have been fabricated through the selective removal of “A” layer from
their MAX or non-MAX phase parents by acid etching, where A is mostly group 13 or group
14 elements in the periodic table [13,36]. A variety of top-down and bottom-up strategies
have been reported for the synthesis of MXenes and their derivatives such as the urea
glass technique [37], chemical vapor deposition [38], molten salt etching [39], hydrothermal
synthesis [40], electrochemical fabrication [41], and bioinspired/biomimetic methods [23].
Among them, chemical vapor deposition and wet etching methods are widely introduced
for synthesizing MXenes [42]. Notably, the assortment of proper optimization conditions
and synthesis methods highly depends on their MAX precursors. Besides, high-quality
MXenes with the presence of terminations could be produced through the application of
various wet etching techniques, generating MXenes with basically hydrophilic nature [43].
For the synthesis of chitosan/MXene hybrid composites, there are some reports as exem-
plified by chitosan/MXene alternating layered composites which could be synthesized
by applying layer by layer assembly technique that is inspired by the electrostatic interac-
tion between an oppositely charged chitosan solution and MXene slurry [44]. In another
study, MXenes (Ti3C2Tx) were introduced to chitosan-based porous carbon microsphere
to produce sandwich-like structures via the electrostatic interaction [45]. MXenes with
typical formula of Mn+1XnTx exhibited alluring capabilities for the surface amendment;
they can be further functionalized/modified with a variety of biocompatible/bioactive
agents, therapeutic drugs, photosensitizers, and immune adjuvants due to the presence of
functionalities such as -O, –F, and –OH, hydrophilicity, and high surface area [46].

Chitosan with biodegradability, non/low toxic effects, and renewability can be applied
for constructing novel MXene-chitosan composites with biomedical applicability [47]. The
application of chitosan can also improve the mechanical properties of MXenes [48]. For
instance, chitosan-reinforced MXene (Ti3C2X) films were prepared with shell-like nano-
laminar microstructures. As a result, the tensile strength of these MXene-based films was
improved from 8.20 to 43.52 MPa, increasing 5.3 times. In addition, the electrical resis-
tivity of them were enhanced from 0.39 (0 wt%) to 54.91 mΩ cm (14 wt%) [48]. On the
other hand, MXene-chitosan composites have been applied for constructing EMI shielding
materials such as MXene/chitosan-derived hybrid carbon aerogels with hierarchical pore
structures for durable EMI shielding [49]. When MXenes and chitosan were hybridized,
excellent electrical conductivity and EMI shielding properties can be obtained, providing
great opportunities for designing next-generation EMI shielding materials with biomedi-
cal potentials [47]. For instance, MXene/chitosan/silver nanowire sandwich films were
constructed through a vacuum-assisted filtration technique, with electrical conductivity
of 11,459.1 S/m [50]. Also, Tan et al. [44] have introduced chitosan/MXene multilayered
films with EMI shielding applicability and excellent thermal conductivity (6.3 W m−1 K−1),
which can be further explored for manufacturing next-generation devices. Herein, recent
developments in the use of MXene-chitosan composites with applications in biomedicine
such as sensing [51], antimicrobials [52], photothermal therapy [53], drug delivery [54],
and cancer therapy [55,56] are covered (Table 1), focusing on important challenges and
future perspectives.
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Table 1. Some selected examples of MXene-chitosan composites and their applications.

MXene/Chitosan Composites Applications Advantages/Properties Refs.

MXene (Ti3C2TX)-
chitosan nanocomposites (Bio)sensing

Ultrasensitive detection of prostate cancer biomarker; short
response time (~2 s) and significant recovery index
(~102.6%) for detecting sarcosine spiked into urine samples
in a clinically relevant range

[51]

Multilayer MXene
(Ti3C2)/chitosan/silver coatings Antibacterial effects

Excellent antibacterial effects against Gram-negative
bacteria (Pseudomonas aeruginosa) with reduction of
~99.97% and Gram-positive bacteria (Staphylococcus aureus)
with reduction of ~88.9%.

[57]

MXene/chitosan/Cu2O electrode (Bio)sensing
Superb sensing potentials for the detection of glucose and
cholesterol, with preferable linear ranges covering the full
concentration range in clinical diagnosis.

[58]

MXene/chitosan films Real-time pulse and respiratory
rate monitoring High biocompatibility and flexibility [59]

MXene/quaternary
chitosan membranes Photothermal therapy

Excellent mechanical robustness, high antioxidant
performance, tailored electronic conductivity;
high-performance photothermal conversion

[53]

2. MXene-Chitosan Composites
2.1. Sensing

MXene-based (nano)structures with outstanding electrical and optical features have
been widely explored for sensing applications [60]. However, very limited studies have
focused on the biosensing applications of MXene-chitosan hybrid composites with dif-
ferent properties. Hroncekova et al. [51] reported the synthesis of MXene (Ti3C2TX)-
chitosan nanocomposites to design an amperometric biosensor for the specific detection of
a potential prostate cancer marker (sarcosine) in urine samples. Accordingly, the low limit
of detection (LOD) was ~18 nM and linear range was up to ~7.8 µM (the response time
was ~2 s) [51]. These MXene-chitosan composites need to be further explored as potential
materials in designing novel electrochemical biosensing platforms for clinical and biomedi-
cal diagnostics [61]. Additionally, MXenes are recognized as ideal materials for sensitive
wearable strain sensors due to their special benefits of hydrophilicity, conductivity, and me-
chanical features. But still the unnecessary accumulation of MXene nanosheets during the
synthesis process limited the transmission of electrons and reduced the conductivity; also
it could reduce the mechanical potentials and sensitivity of sensors [61]. To overcome this
challenge, conductive polyacrylamide hydrogels that were enabled by dispersion-enhanced
MXene-chitosan hybrid assembly were prepared to design sensors with high sensitivity.
These hybrid composites exhibited excellent conductivity along with mechanical strength
and flexibility. They can be applied for designing platforms with self-adhesion properties
and antibacterial performances. Future studies should be moved toward the construction
of next-generation intelligent devices with broad applications in electronic skin and human
motion detection [61]. Wang et al. [59] introduced flexible bimodal electronic skins for the
detection of pressure (LOD = 3 Pa, stability > 3500 times, and response time of 143 ms) and
humidity (stability > 20 days). These devices were constructed from biocompatible MXene-
chitosan film (the kernel sensing layer) (Figure 1). These kinds of bifunctional sensors can
be applied for the sensitive detection and discrimination of electrophysiological signals
such as recognition of voice, finger bending, and human pulses along with the biochemical
molecules (respiratory rate), providing next-generation multifunctional sensing devices for
health and biomedicine applications [59].

MXenes and their derivatives have shown great potential in constructing sensitive
electrochemical biosensors [62]. An electrochemical sensor was constructed from multi-
walled carbon nanotubes, MXene (Ti3C2), and chitosan for the detection of ifosfamide,
acetaminophen, domperidone, and sumatriptan [63]. The prepared electrode exhibited
improved electrocatalytic performances toward the oxidation of target analytes. In addition,
the application of MXene with large surface area improved the conductivity and catalytic
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properties of the composites and could help in improving the LOD of targets along with the
selectivity and reproducibility. According, ifosfamide, acetaminophen, domperidone, and
sumatriptan were detected in the concentration ranges 0.0011–1.0, 0.0042–7.1, 0.0046–7.3,
and 0.0033–61 µM with LOD of 0.00031, 0.00028, 0.00034, and 0.00042 µM, respectively.
This sensor could be applied for voltametric monitoring of target analytes in urine and
blood serum samples (the recoveries = > 95.21%) [63]. On the other hand, MXenes with
advantages of hydrophilicity, tunable conductivity, and large surface area can be consid-
ered as promising candidates for the sensing of humidity and non-invasive monitoring
of physiological events (e.g., respiration) [64]. In one study, onion-inspired assembling
of MXene (Ti3C2Tx) and chitosan-quercetin hybrid layer-by-layer was reported for the
precise tracking of human breath (Figure 2). These hybrid structures could respond to H2O
molecules. Since the chitosan-quercetin altered multilayers suppressed the environmental
degradation of MXenes, providing an excellent and ultrafast response (317% at 90% RH,
0.75 s) with long-term stability (>15 days) [64]. These composites should be further evalu-
ated for wearable human respiration monitoring with high accuracy, providing simple and
feasible strategies for multipurpose physiological monitoring based on humidity sensing.
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Figure 1. (a–d) The preparative process of biocompatible chitosan (CTS)/MXene (MX) hybrid film
and the design of flexible bimodal humidity and pressure sensor for human health detection purposes.
(e) The sensing mechanism of the designed sensor for the detection of pressure. (f) Compressive
stress-strain curves of the prepared hybrid film under various strain values. Adapted from Ref. [59]
with permission. Copyright 2021 American Chemical Society.
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Figure 2. (a–c) The preparative process of onion-inspired MXene/chitosan-quercetin multilayers
with their schematic structures for the designing of the flexible humidity sensor based on laser-
induced interdigitated electrode upon polyimide (PI) substrate. (d) Cross-sectional scanning electron
microscopy (SEM) that was obtained from the composites. Adapted from Ref. [64] with permission.
Copyright 2020 Elsevier.

An enzyme-free biosensor with excellent anti-interference potential and reproductivity
was designed utilizing MXene/chitosan/Cu2O electrode (as a biomimetic electrocatalyst)
for the specific sensing of glucose and cholesterol with clinical diagnostic potentials [58].
Accordingly, the sensitivity for the detection of glucose was 60.295 µA·L/(mmol·cm2)
with LOD of 52.4 µmol L−1, while the sensitivity for cholesterol detection was up to
215.71 µA·L/(mmol·cm2) with LOD low to 49.8 µmol L−1. They can be applied for analyz-
ing multiple metabolites to overcome the disadvantages of an enzyme-based biosensor,
which can pave the way for designing portable electrochemical devices with capabilities of
sensing blood metabolites [58].

2.2. Antimicrobials

MXenes have shown excellent antimicrobial effects against pathogenic bacteria through
the physical damages, photocatalytic inactivation, and photothermal effects [65]; their
antimicrobial activities were dose-dependent and higher than in the case of graphene-
based materials [66]. MXenes with negatively charged surfaces and hydrophilicity il-
lustrated efficient bacterial contact, causing bacterial inactivation with direct contact-
killing mechanisms [67–72]; hydrogen bonding between oxygenate groups of MXenes
and lipopolysaccharide strings of the bacterial cell membranes can be one of the important
reasons for the inhibition of pathogenic bacteria by avoiding nutrient intake. However,
the related interactions between these structures and bacterial cell membranes ought to
be studied in detail [66]. In one study, encapsulated delaminated MXene (Ti3C2Tz) flakes
within chitosan nanofibers were constructed using an electrospinning technique [73]. These
biocompatible hybrid nanofibers were employed in passive antibacterial wound dressing
purposes. Accordingly, they exhibited suitable antibacterial effects against Escherichia coli
(~95% reduction in colony forming units) and Staphylococcus aureus (~62% reduction in
colony forming units) after 4 h of treatment. The direct mechanical destruction of bacterial
cell membranes via MXene flakes was described as one the major ways of their antibacterial
effects. Furthermore, these composites with hydrophilicity and negatively-charged flake
surfaces owing to the reactive –O, –OH, and –F surface terminations could stimulate the
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bacterial agglomeration [73]. Wang et al. [52] utilized a poly L-lactic acid membrane for
the assembling of positively-charged chitosan and negatively-charged silver-MXene on the
surface via a layer-by-layer technique. The composite demonstrated an excellent growth
inhibition ratio E. coli (91.27%) and S. aureus (96.11%) under 808 nm near-infrared laser
radiation with synergistic photothermal antibacterial effects. Notably, this composite exhib-
ited enhanced biocompatibility compared with the examined poly L-lactic acid membrane,
which ought to be further explored as biomedical materials [52].

2.3. Drug Delivery and Cancer Therapy

MXene-based systems have been designed with photo-/magnetic-responsive drug deliv-
ery potentials for chronic wound healing [74]. Furthermore, innovatively designed MXene-
based delivery platforms were introduced with NIR laser-triggered and pH-responsive drug
release behaviors for cancer therapy. Notably, surface-functionalized MXene-based drug
delivery systems exhibited high drug-loading capacity, sustained/controlled release, and
specificity/selectivity [55,56]. A pH/NIR multi-responsive microcapsule was constructed
from hollow hydroxyapatite, chitosan, hyaluronic acid, gold (Au) nanorods, and MXene
(Ti3C2) through a layer-by-layer technique for the targeted delivery of an anticancer drug
(doxorubicin) [54]. The application of MXenes and Au nanorods could significantly en-
hance the photothermal conversion efficiency of this microcapsule, showing outstanding
pH-/NIR-responsive drug delivery features and high drug loading efficiency along with
suitable biocompatibility and controlled release behavior (Figure 3) [54].

2.4. Photothermal Therapy

MXenes have shown excellent photothermal conversion efficiency, which make them
suitable candidates for photothermal therapy and solar energy [75]. Several MXene-based
structures have been constructed with photo-physical features for targeted cancer photother-
mal therapy [76]. Besides, MXene-based structures (e.g., muscle-inspired MXene/polyvinyl
alcohol hydrogels) with outstanding mechanical features exhibited local hyperthermia of
infected sites under NIR laser irradiation (808 nm) [77]. These materials with photother-
mal effects demonstrated broad-spectrum antibacterial performances against pathogenic
bacteria along with the effective promotion of cellular proliferation, providing efficient
nanoplatforms for inhibiting wound infections, and stimulating skin wounds healing [77].
MXene/quaternary chitosan membranes with mechanical robustness, excellent antioxi-
dant activity, and tailored electronic conductivity were constructed in a bio-inspired by
the “brick and mortar” structure of natural nacre for photothermal conversion with high
efficiency [53]. These membranes exhibited significant tensile strength (50.93 MPa) with
a Young’s modulus of 4.4 GPa due to the electrostatic interaction and hydrogen bonding be-
tween the nanosheets of MXenes and molecular chains of chitosan. Notably, the electronic
conductivity could be adjusted by changing the weight ratio of MXene/quaternary chitosan,
obtaining a maximum value of 128 S m−1; the antioxidant nature of quaternary chitosan
contributed to significant radical scavenging capacity (>80%). These membranes with effi-
cient photothermal conversion demonstrated great potentials in the field of photothermal
therapy [53].
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3. Biosafety Issues

Biocompatibility and toxicity (toxicological and cytotoxicity properties) are two impor-
tant aspects, which ought to be systematically analyzed for successful clinical translation
of MXene-based composites with biomedical potentials [78–82]. The potential cytotoxic
effects of these materials on human cells are chiefly associated with their physicochemical
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properties, cellular interactions, and accumulations in the targeted organs/tissues [83].
Thus, cellular/molecular interactions and toxicological aspects of these composites should
be deeply investigated, including penetration/attachment, endocytosis, ROS, possible
DNA damages, inflammatory reactions, apoptosis, etc. [84–87]. In some studies, physical
damages, modifications in the subcellular internalization mechanisms, and the oxidative
stress that is caused by the generation of active reactive oxygen species have been reported
as possible toxicity mechanisms of MXene-based materials [88]. It appears that compre-
hensive and specific in vitro/in vivo studies are still required for delineation of toxicity
mechanisms as well as long-term biosafety assessments. Some studies revealed that MX-
enes could have possible toxic effects on zebrafish embryo models (an in vivo study) [89].
The MXenes were up-taken by the zebrafish embryos with the highest NOEC (no observed
effect concentration) of ~50 µg mL−1, the lethal concentration 50 of ~257.46 µg mL−1, and
LOEC (lowest observed effect concentration) of ~100 µg mL−1. The toxicity of MXenes
was dose-dependent and could be changed by altering the concentrations; no noticeable
teratogenic effects were identified on the studied models at 100 µg mL−1. Notably, further
neurotoxicity assessments illustrated that MXene-based structures had no meaningful toxic
effects on neuromuscular activities at 50 µg mL−1. They can be classified as practically
non-toxic materials at concentrations below 100 µg mL−1, based on the Acute Toxicity
Rating Scale (ATRS) by the Fish and Wildlife Service [89]. Besides, the teratogenic pheno-
type analyses demonstrated that some MXene-based composites including Au/MXene and
Au/Fe3O4/MXene had no acute toxic or teratogenic effects on zebrafish embryos at all the
evaluated concentrations [90].

Pan et al. [91] introduced MXene-based composites for osteosarcoma phototherapy and
enhanced tissue reconstruction. The results of in vivo toxicity assessments after 24 weeks
upon implantation as well as the hematological and histological analyses illustrated no
noticeable changes in the values compared to the control samples, showing non/low toxic-
ity of these materials [91]. Besides, acute toxicity assessment of MXene-based composites
was reported upon intravenous administration of these materials at 6.25, 12.5, 25, and
50 mg kg−1 [84]. Accordingly, the histocompatibility of the mice organs upon days 1 and
7 exhibited no evidence of pathologies and significant histomorphological alterations in
the evaluated organs compared to the control samples, showing no acute toxicity and
adverse effects from these composites. It was also indicated that the excretion with urine
and feces was ~18.70% and ~10.35% after 48 h, respectively [84]. In another study, biocom-
patibility/biosafety assessments (in vivo) of MXene-based composites after single-dose
intravenous administration at 5, 10, and 20 mg kg−1 to healthy lab mice demonstrated no
noticeable toxicity and all the major vital signs were normal upon the 30-day observation
period, with barely any deviation from the control; biochemical blood assays and the target
organs examinations indicated no signs of toxic effects [92].

In addition, biocompatibility, pharmacokinetics, and biodegradability of these ma-
terials can be improved by employing eco-friendly synthesis techniques, hybridization
with natural polymers (e.g., chitosan), and surface functionalization/modification with
bioactive/biocompatible agents [66,89,92–96]. For instance, Pu et al. [97] utilized chitosan
with renewability and non-toxicity advantages for fabricating nitrogen-doped MXene nano-
materials through an eco-friendly technique. These above-mentioned aspects can also
improve their targeting features (selectivity and specificity), and also reduce possible off-
target effects and undesired events such as aggregation or accumulation, which can hinder
their future biomedical and clinical applications and reduce their functionality [12,82,98].

4. Conclusions and Future Outlooks

MXenes have been investigated in biomedical sciences due to their special thermal,
electronic, optical, mechanical, and biological characteristics. These materials with the abun-
dant surface functional groups can be simply functionalized or modified with a variety
of polymers. Several MXene-polymer hybrid composites have been constructed with
advantages of enhanced photothermal conversion efficiency, higher antibacterial activi-
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ties, sensitivity/selectivity, contrast enhancement, and stimuli-responsiveness behaviors.
Despite these benefits, there are still some important challenges regarding large-scale
production, stability, storage, in vivo retention, and long-term biosafety, which can hin-
der the widespread applications of these materials at medical levels. Natural polymers
such as cellulose and chitosan have been studied for designing hybrid MXene-based com-
posites with improved biomedical potential and multifunctionality as well as reduced
toxicity. Notably, finding suitable environmentally-benign techniques for the synthesis of
MXenes and their derivatives ought to be further explored, focusing on optimization condi-
tions, physiological stability, up-scalable production, surface chemistry characterization,
nano-/eco-toxicological studies, long-term biocompatibility assessments, and pre-/clinical
analyses. By adjusting interlayer spacing, surface functional groups/terminations, and syn-
thesis/reaction conditions (such as pH or temperature), their optical, mechanical, electronic,
and thermal properties can be further amended.
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