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Abstract: This paper presents a piezoelectric heterostructure for extracting mechanical energy from
human foot strikes based on the impact of a moving block on the tips of the piezoelectric unimorph
cantilevers. The use of the magnetic springs allows low-frequency and high-amplitude movements
of the device. The piezoelectric unimorph cantilevers deform under a human foot strike on the pedal,
and the piezoelectric elements in d31-mode produce output voltages. An analysis was conducted,
and the working principle was stated. A prototype was fabricated to validate the feasibility of the
proposed design. The experimental results show that the generated RMS voltage increases with
human walking (running) speed. At the walking speed of 6 km/h, an average power of 36.26 µW
is produced across a matching resistive load of 4 MΩ with an initial separating distance of 9 mm.
Improvements of the device are possible, allowing an increase in the average power by increasing
the number of piezoelectric unimorph cantilevers and using the piezoelectric materials with higher
piezoelectric constants.

Keywords: piezoelectric heterostructure; mechanical energy; human foot strike; magnetic spring;
piezoelectric unimorph cantilever

1. Introduction

With the rapid development of wearable electronic devices, higher requirements
for the power supplies of the devices have arisen. At present, these electronic devices
are usually powered by batteries, but the available energy of the batteries is limited.
Furthermore, frequent battery replacements will bring inconvenience to the applications
of the electronic equipment. Researchers have put forward schemes to convert the energy
originating from the temperature differences [1,2] sunlight [3], magnetic field [4–6], and
mechanical vibration [7–10] into electrical energy to power the electronics, which is called
energy-harvesting technology. Energy harvesting can effectively solve the power supply
problem of low-power electronic equipment. For wearable electronic devices, there are
great prospects for harvesting energy from the body as the human body can produce
different forms of energy throughout daily life. Mechanical energy with high energy
density produced by human motions (e.g., walking, running, jumping, arm swing) is
easy to capture and can be readily found. Technologies for harvesting mechanical energy
from human motions to supply power to low-power electronic devices have attracted
growing attention, mainly including electromagnetic [11–15], piezoelectric [16–19], and
magnetoelectric [20] methods.

A human foot strike exerts a large force on the insole, and the mechanical energy origi-
nating from the foot strikes can be harvested by inserting an energy-harvesting device into
a shoe. Some researchers used triboelectric materials embedded in the insole to scavenge
the mechanical energy produced by foot strikes [21,22]. The triboelectric generators usually
occupy large areas in the shoes. Piezoelectric energy-harvesting devices have been devel-
oped for foot strikes [23–25]. An amplification mechanism was used to harvest energy from
human footsteps [23]. Output powers can be generated with high efficiency due to the large
mechanical strain. A piezoelectric sandwich structure was fabricated [24] that is compatible
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with a shoe for extracting energy from foot strikes. However, protection mechanisms were
not devised for the piezoelectric materials of the devices reported in [23,24] under large
pressure resulting from the foot strikes. Recently, a shoe-mounted piezoelectric harvester
was presented [25], who explored the utilization of three different excitations produced by
the foot. The harvester uses traditional springs to generate the recovery force. However,
traditional springs might not be preferred under large pressure induced by foot strikes
due to the intrinsic limitations of the mechanical springs. In this paper, an impact-based
piezoelectric heterostructure using magnetic springs is developed for extracting energy
from human foot strikes. The use of the magnetic springs makes the proposed device suited
to the low-frequency (e.g., less than 2 Hz) and high-amplitude movements under large
pressure resulting from foot strikes. A protection mechanism is used to protect the piezo-
electric unimorph cantilevers, and the maximum tip displacement is adjustable (within
the permitted impact load). The feasibility of the device was experimentally validated.
The device exhibits a monotonous increase in the RMS voltage as the walking (running)
speed increases from 3 km/h to 7 km/h. The generated maximum average power increases
with the initial separating distance d, which reaches 36.26 µW for d = 9 mm at 6 km/h (the
matching load resistance is 4 MΩ). Further optimization of the piezoelectric heterostructure
is possible, which might allow for large increases in the induced RMS voltages and the
average power.

2. Design and Analysis

Figure 1 shows the schematic diagram of the presented piezoelectric heterostructure.
The heterostructure is composed of two piezoelectric unimorph cantilevers, two magnetic
springs, a movable plate, a retaining plate, a pedal, an impact block, two stoppers, and
the auxiliary components (e.g., screws, clamp, outer frame). Each piezoelectric unimorph
cantilever is constructed from a base beam (26 mm× 8 mm× 0.8 mm for each base beam)
and a piezoelectric element (12 mm × 8 mm × 0.6 mm for each piezoelectric element). The
materials in the magnetic rings and the piezoelectric elements are, respectively, NdFeB and
PZT5H. The internal and external diameters of each magnet ring are 10 mm and 18 mm,
respectively. The movable plate, the retaining plate, the pedal, the impact block, the clamp,
and the outer frame are made up of aluminum alloy (6061). The maximal dimension of
the assembled prototype is 80 mm × 40 mm × 42 mm (respectively along the directions
of length, width, and height) under operation. The movable part is constructed from the
pedal, the movable plate, the impact block, and the top magnet rings, and a downward
movement of the movable part will be induced when the pedal is struck. The impact block
then strikes the tips of the based beams (the stoppers are used to protect the cantilevers and
to prevent direct collisions of the magnetic rings), which causes the based beams to bend.
The stress is transmitted to the piezoelectric elements, which produce output voltages due
to the piezoelectric effect (d31 mode). The movable part then returns to its original position
for the next gait cycle due to the repulse force of the magnetic springs.

Figure 2 shows the schematic diagram of one magnetic spring of the heterostructure.
Based on the concept of magnetic charge, the positive magnetic charge is distributed on the
N poles, and the negative magnetic charge is distributed on the S poles. The z-component
magnet force Fz on the movable magnet ring is of primary concern. The magnetic flux
intensity at Q(x0, y0, z0) on the magnetic pole surface S3 (S pole of the movable magnet
ring) induced by P(x, y, z) on the magnetic pole surface S1 (N pole of the fixed magnet ring
that is fixed on the retaining plate) can be expressed as

dBz =
σmdS1

4π|r|3 (z0 − z), (1)

where |r| is the distance between P and Q, |r| =
√
(x0 − x)2 + (y0 − y)2 + (z0 − z)2, σm

is the surface magnetic charge density, and σmdS1 represents the corresponding surface
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magnetic charge. Thus, the z-component magnetic flux intensity at Q(x0, y0, z0) produced
by the fixed magnet ring can be expressed as

Bz =
x

S1

σmdS1

4π|r|3 (z0 − z)−
x

S2

σmdS2

4π|r|3 (z0 − z), (2)

where S2 is the magnetic pole surface (S pole of the fixed magnet ring) with a surface
magnetic charge density of −σm. For the surface magnetic charge −σmdS3 on S3, the
resulting z-component magnetic force induced by the fixed magnet ring is

dFz = −σmdS3Hz. (3)

where Hz is the magnetic field, Hz = Bz/µ0 and µ0 is the permeability of vacuum.
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The z-component magnetic force on the movable magnet ring is calculated by

Fz = −
x

S3

σmHzdS3 +
x

S4

σmHzdS4, (4)

where S4 is the magnetic pole surface (N pole of the movable magnet ring) with the surface
magnetic charge density of σm. The total z-component magnetic force Ftotal on the movable
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part (including the pedal, the movable plate, the impact block, and the movable magnet
rings) is given by

Ftotal = 2Fz. (5)

The magnetic force Ftotal makes the movable part return to its original position under
human foot strikes, and it can be expressed as a power series of the displacement z that is
given by

Ftotal = k1z + k2z2 + k3z3, (6)

where ki (i = 1, 2, 3) is the coefficient of the polynomial.
Maxwell 3D was used to analyze the magnetic force Ftotal on the movable part as a

function of the displacement Z. Here, Z is the displacement of the movable magnet ring,
which also represents the distance between the top surface of the fixed magnet ring and the
bottom surface of the movable magnet ring. In simulation, one magnetic spring is modeled,
and 3D transient field analysis is conducted. The movable magnet ring moves along the
Z-axis, while the fixed magnet ring is static. The material NdFe35 in the software is selected
for the magnet rings. The default boundary conditions and the automatic meshing are
employed. The FEA simulation results are plotted in Figure 3. As can be seen from Figure 3,
the magnetic force exhibits nonlinear properties, and the coefficients in Equation (6) can be
obtained using the polynomial fitting method.
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Figure 3. FEA predictions of the total Z-component magnetic force on the movable part as a function
of the displacement Z. The blue spherical symbol denotes the total Z-component magnetic force for
the corresponding displacement. The origin of coordinate is established at the geometric center of the
top surface of the fixed magnet ring. The total Z-component magnetic force is obtained based on the
force superposition of the two magnetic springs.

Considering one piezoelectric unimorph cantilever shown in Figure 4, the cantilever
has a length ratio of a > 1(nonpiezoelectric base beam to piezoelectric element). Under
the impact of the impact block resulting from the foot strikes, the following piezoelectric
constitutive equations for the piezoelectric element can be applied:

S1 = sE
11T1 + d31E3, (7)

D3 = d31T1 + εT
33E3, (8)

where S1 and T1 are the strain and stress, respectively, sE
11 denotes the piezoelectric elastic

compliance, d31 is the piezoelectric coefficient, E3 and D3 are, respectively, the electric
field and electric displacement along the polarization direction in Figure 4 (namely the
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thickness direction of the piezoelectric element), and εT
33 represents the permittivity at

constant stress. Assuming that the Young’s modulus of the base beam is much less than
that of the piezoelectric element (Ep/Es > > 1), the stress is then given by [26,27]

T1 =
kEptph
8E0b

(l1 + 2l2), (9)

where k is the effective spring constant of the entire cantilever (namely the cantilever with
the length of l = l1 + l2 in Figure 4), Ep is the Young’s modulus of the piezoelectric element,
tp is the thickness of the piezoelectric element, h is the tip displacement of the cantilever, l1
is the length of the piezoelectric element, l = l1 + l2 is the length of the entire cantilever, b is
the width of the cantilever, and E0 is the bending modulus per unit width for the composite
part (including the base beam and the piezoelectric element) with the length of l1, which is
given by

E0 =
Ept3

p

12
+

Ests

6
(2t2

s + 2t2
p + 3tstp), (10)

where Es and ts are, respectively, the Young’s modulus and the thickness of the base beam.
The electric displacement and the electric field can be respectively expressed as

D3 =
Q
A

, (11)

E3 =
V
tp

, (12)

where Q and V are the induced charge and voltage, respectively, and A is the area of the
electrode. When a load resistance RL is connected to the electrodes of the piezoelectric
element, the generated current and the load voltage can be respectively expressed as

I(t) =
dQ
dt

=
Ad31kEptp(l1 + 2l2)

8E0b
dh
dt

+
AεT

33
tp

dV
dt

, (13)

V(t) = RL I(t) =
RL Ad31kEptp(l1 + 2l2)

8E0b
dh
dt

+
RL AεT

33
tp

dV
dt

. (14)
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Figure 4. Schematic diagram of the piezoelectric unimorph cantilever under impact. The red arrow
denotes the polarization direction of the piezoelectric element.

Supposing that the gaits are all the same during human walking (running) with a
period of t0, the RMS of V(t) can then be calculated by

VRMS =

√
1
t0

∫ t0

0
V2(t)dt, (15)
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The RMS power delivered to RL is given by

P =
V2

RMS
RL

=

∫ t0
0 V2(t)dt

RLt0
. (16)

Based on Equations (14) and (16), the generated power depends on the tip displace-
ment of the base beam after determining the materials and the structural parameters of
the piezoelectric unimorph cantilever. As the force on the pedal resulting from human
foot strikes is much greater than the magnetic force of the magnetic springs, the maximal
tip displacement is dependent on the initial distance between the stopper and the mov-
able magnet ring and the initial separating distance between the impact block and the
base beam.

3. Results and Discussions

Experiments were carried out using an assembled prototype with a maximal dimen-
sion of 80 mm× 40 mm× 42 mm (the dimension of the pedal is 30 mm × 32 mm × 10 mm)
to investigate the output performances of the piezoelectric heterostructure. The piezoelec-
tric elements (PZT5H) of the two piezoelectric unimorph cantilevers are connected in
parallel. The assembled harvester was inserted into a shoe. The foot strikes resulted from
the realistic human motion (walking at 3–6 km/h and running at 7 km/h) of a tester (with
a weight of 66.5 kg) waking (running) on a treadmill. Figure 5 shows the experimental
setup of the energy-harvesting system. An accelerometer sensor (CT1100LC) was used
to conduct the measurements of the accelerations normal to the swing direction of the
foot. Stable operation voltages were provided by a constant current adapter (CT5204) for
the accelerometer sensor. The generated voltages were measured with a digital storage
oscilloscope (GDS-1104R).
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Figure 5. Experimental setup: (a) measuring principle of the induced output voltages and the
accelerations; (b) assembled harvester inserted into a shoe; (c) tester wearing the harvester walking
(running) on a treadmill; (d) LED lighted up by the harvester at 3 km/h.

Figure 6 plots the acceleration waveforms and the induced open-circuit RMS voltages
at different walking speeds. The initial separating distance between the top surface of the
stopper and the bottom surface of the movable magnet ring is d = 5 mm. As can be seen in
Figure 6, the acceleration waveforms exhibit multiple peaks due to the multiple foot strikes
in the given interval of 0–5 s. The peak absolute value of the acceleration exceeds 5 g at
3 km/h and that exceeds 8 g at 6 km/h in the interval of 0–5 s. The RMS of the acceleration
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is 0.4056 g at the walking speed of 3 km/h (the corresponding walking frequency is about
1 Hz), and the RMS acceleration increases to 0.7594 g when the walking speed is increased
to 6 km/h (the corresponding walking frequency increases to about 1.27 Hz). The RMS of
the acceleration at 6 km/h is greater than that at 3 km/h due to the stronger foot strikes.
The induced RMS voltage is 8.65 V at 3 km/h, and the voltage increases to 10.31 V at the
faster walking speed of 6 km/h. Here, the RMS values of the accelerations and the induced
voltages are calculated using the sample points in the interval of 0–5 s, which are given by

aRMS =

√√√√ 1
ka

ka

∑
i=1

a2
i , (17)

VRMS =

√√√√ 1
kV

kV

∑
i=1

V2
i , (18)

where kais the total sample points of the acceleration (ka = 10,000), kVis the total sample
points of the voltages, ka = kV, and ai and Vi are, respectively, the acceleration and the
voltage of the given sample point i.
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Figure 7 shows the induced open-circuit RMS voltage of the piezoelectric heterostruc-
ture at different human walking (running) speeds. The initial separating distance d = 5 mm.
It can be seen from Figure 7 that the induced RMS voltage shows a monotonous increase
from 8.65 V to 10.61 V when the speed increases from 3 km/h to 7 km/h. The monotonous
increase of the voltage is attributed to the increasing acceleration and striking frequency
when the speed increases. It should be noted that the induced RMS voltages might be
different for different testers as gaits, heights, and weights vary from person to person.
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Figure 8 plots the RMS voltage and the corresponding average power as a function of
load resistance RL under human foot strikes. As can be seen in Figure 8a, the load voltage
increases with the load resistance. The voltage increases from 2.8 V to 8.2 V when the load
resistance is increased from 1 MΩ to 7 MΩ (∆RL = 1 MΩ) at 3 km/h, while the voltage
rises from 3.6 V (across 1 MΩ resistive load) to 10.1 V (across 7 MΩ resistive load) at a
higher walking speed of 6 km/h. The load voltages across the 7 MΩ resistive load (8.2 V
for 3 km/h and 10.1 V for 6 km/h) are close to the open-circuit voltages (8.65 V for 3 km/h
and 10.31 V for 6 km/h, respectively). The average powers are calculated based on the
following equation:

P =
V2

RMS
RL

, (19)

where VRMS is the load RMS voltage across load resistance RL. The average powers are
calculated based on the experimental results in Figure 8a, which are plotted in Figure 8b.
From Figure 8b, it can be seen that the average power first increases with the load resistance
and then decreases with further increases in the load resistance. The maximal average
power in two conditions (3 km/h and 6 km/h) is, respectively 13.506 µW and 20.115 µW
(the load voltage across the matching load resistance of 4 MΩ is 7.35 V at 3 km/h and that
at 6 km/h increases to 8.97 V). The maximal average power at 6 km/h is ~1.49 times larger
than that at 3 km/h, indicating that more mechanical energy resulting from foot strikes can
be harvested at the higher speed of 6 km/h.
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The tip displacement of the base beam is a key parameter for power generation that
is relevant to the initial separating distance between the bottom surface of the movable
magnet ring and the top surface of the fixed magnet ring dm (d = dm − ds, ds is the height of
the stopper). Figure 9 shows the generated maximum average power (across the matching
load resistance) for different initial separating distances at 6 km/h. In Figure 9, the initial
distance between the impact block and the base beam is kept the same by using impact
blocks of different sizes. It can be seen in Figure 9 that the maximum average power
increases with the initial separating distance, which rises from 18.45 µW to 36.26 µW as
the distance d is increased from 4 mm to 9 mm. The monotonous increase with the initial
separating distance d in Figure 9 is attributed to the increasing tip displacement. Greater
maximum average power can be generated using the piezoelectric elements with a higher
d31 (e.g., piezoelectric single crystal PMN-PT), increasing the number of the piezoelectric
unimorph cantilevers and adopting the d15 working mode of the piezoelectric elements.
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Figure 10 plots the maximum average power at different motion speeds when d = 7 mm.
As expected, the maximum average power increases with the motion speed, which increases
from 19.1 µW to 33.61 µW as the speed is increased from 3 km/h to 7 km/h. By considering
the instantaneous powers, the peak power reaches 1586 µW at 7 km/h (d = 7 mm), and
the corresponding power density is ~11.8 µW/cm3 (peak) when the maximum occupied
volume of the device is considered and is ~13.767 mW/cm3 (peak) when only the volumes
of piezoelectric elements are considered. The output performances of the devices for energy
harvesting from human foot strikes are listed in Table 1. The feasibility of the proposed
device with the merits of the magnetic springs is validated for harvesting mechanical
energy from foot strikes. Several design implications of the piezoelectric heterostructure
can be summarized to improve the output powers: (1) The RMS voltage increases with
the piezoelectric constant. Therefore, higher output voltages can be obtained by using
piezoelectric materials with a higher d31, such as piezoelectric single crystal PMN-PT. (2) For
the total capacitance of the heterostructure, Ct = nC (when connected in parallel). Here,
n is the number of piezoelectric unimorph cantilevers, and C is the capacitance of each
piezoelectric element. More output power can be obtained by increasing the number of
piezoelectric unimorph cantilevers. (3) The working mode of the piezoelectric elements
is also an important factor for power generation. More output power can be obtained
when adopting the d15 working mode, which can be realized by polarizing the piezoelectric
element along the length [28,29]. (4) The maximum tip displacement of the piezoelectric
unimorph cantilever is relevant to the initial separating distance d. It is feasible to increase
d to achieve large tip displacement of the piezoelectric unimorph cantilever (within the
allowed impact load) for each gait cycle.
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Table 1. Comparison of devices for energy harvesting from human foot strikes.

Reference Mechanism Size Power or Power Density

Hou et al. [21] triboelectric 27 × 9 × 0.3 cm3 1.4 mW (maximum)

Haque et al. [22] triboelectric 133 × 0.2 cm3 250 µW

Xie et al. [23] piezoelectric - 0.41 mW/cm3

Zhao et al. [24] piezoelectric 8 × 5 cm2 (area of PVDF) ~1000 µW

Fan et al. [25] piezoelectric 4.5 × 3 × 2.4 cm3 0.35 mW

Proposed piezoelectric 8 × 4 × 4.2 cm3 1586 µW (peak) and
33.61 µW (average)

4. Conclusions

In summary, a piezoelectric heterostructure employing magnetic springs for harvest-
ing mechanical energy from human foot strikes is presented. The proposed device is based
on the impact of a moving block on the tips of the piezoelectric unimorph cantilevers. The
piezoelectric elements of the cantilevers then deform in the d31 mode, which generate volt-
age output. The use of the magnetic springs makes the device suitable for high-amplitude
movements induced by human foot strikes. Two piezoelectric unimorph cantilevers were
adopted to enhance the total capacitance of the heterostructure. The working principle of
the heterostructure was stated, and the feasibility under human foot strikes was validated.
A prototype of the harvester was characterized experimentally. The experimental results
show that the induced open-circuit RMS voltage exhibits a monotonous increase with the
walking (running) speed. An average power of 20.115 µW is generated across a matching
load resistance of 4 MΩ with an initial separating distance of 5 mm at the walking speed
of 6 km/h. Further optimization of the impact harvester is possible. The output average
power can be improved by optimizing the materials, the structural parameters, and the
working mode of the piezoelectric elements.

Funding: This work is supported by the National Natural Science Foundation of China (Grant
No. 61761001).

Data Availability Statement: The data used to support the findings of this study are included within
the article.
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