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Abstract: With the development of fabrication technology for terahertz rectangular cavity devices,
the fabrication process of integral terahertz waveguide cavities has received much attention because
of its beneficial effect on improving the transmission of terahertz signals. However, smaller feature
sizes, higher dimensional accuracy, and more stringent requirements for cavity surface roughness
and edge radius make it difficult to manufacture terahertz waveguide cavities with a high operating
frequency by using existing micro-manufacturing technology. At the same time, the smaller feature
size also makes it more difficult to realize uniform metallization on the inner surface of a terahertz
waveguide cavity. In this paper, a new and improved combined manufacturing process based on
wire electrochemical micromachining and electrochemical deposition is proposed to realize the
integral fabrication and uniform metallization of the inner surface of a high-frequency terahertz
metal rectangular waveguide cavity. A detailed description and analysis of this combined process are
carried out, together with corresponding experimental investigations. An integral 1.7 THz hollow-
core metal rectangular waveguide cavity with an end-face size of 165.9 µm × 88.3 µm, an edge radius
of less than 10 µm, an internal bottom surface roughness of less than 0.10 µm, and an internal side
surface roughness of less than 0.40 µm was manufactured, and high-quality metallization of its inner
surface was also achieved.

Keywords: terahertz rectangular cavity devices; integral fabrication; uniform metallization; wire
electrochemical micromachining; electrochemical deposition

1. Introduction

A terahertz wave falls between infrared and microwave waves, which is called the gap
in the electromagnetic spectrum [1]. As a prospective, pioneering, and strategic research
field, terahertz technology and its applications have become the priority development
field and commanding heights of science and technology at home and abroad, and its
great significance to modern science and technology, national defense construction, and
the national economy has been widely recognized [2]. Hitherto, terahertz technology has
been applied in wireless communication, radar imaging, biomedical nondestructive testing,
space detection, and many other fields and will continue to promote breakthroughs in these
areas [3,4]. The generation, transmission, reception, detection, and imaging of terahertz
waves require the support of various terahertz devices. The terahertz metal rectangular
waveguide cavity is a typical terahertz microdevice structure, which is characterized by
a rectangular hollow structure with a metal matrix in the outer layer and gold, silver,
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and other metal layers in the center; it is widely used, as it has the advantages of low
transmission loss, good flexibility, and high security [5,6].

Various low-frequency terahertz metal rectangular cavity device structures have been
fabricated through different advanced micromachining technologies. Micromachining
based on deep reactive ion etching (DRIE) is one of the commonly used representative
technologies [7]. Hu et al. fabricated a rectangular cavity structure for a 385 GHz bandpass
filter by gold-sputtering layers onto a rectangular half-cavity with a flat surface obtained
by DRIE and then performing gold–gold bonding [8]. The end-face size of the obtained
rectangular cavity was 0.56 mm × 0.28 mm, the thickness of the gold layer was 5 µm, and
the surface roughness was 0.5 µm. Ultraviolet-Lithographi Galvanoforming Abformung
(UV-LIGA) technology based on SU-8 photoresist is also a representative technology for
fabricating terahertz micro rectangular cavity structures. Shang et al. fabricated rectangular
microstructures on three pieces of SU-8 photoresist with a thickness of 191 µm and then
silver-plated and superimposed the surfaces [9]. Thus, a rectangular cavity structure for a
WR-1.5 (Waveguide Rectangular-1.5) band third-order bandpass filter was fabricated. The
measured side-wall roughness reached 45 nm, with a tolerance range of ±20 µm. Low-
temperature co-fired ceramic (LTCC) technology is a cutting-edge integrated manufacturing
technology that is also used for the fabrication of terahertz rectangular cavity devices.
Tajima et al. used LTCC to prepare a vertical rectangular waveguide cavity and a rectangular
corrugated horn cavity, and then combined them to prepare a stepped corrugated horn
antenna at 300 GHz [10]. The rectangular waveguide cavity structure had a single-layer
thickness of 0.2 mm and a total of 20 layers, and its end-face size was 0.8 mm × 0.4 mm.
The rectangular corrugated horn structure had 27 layers with a thickness of 0.2 mm,
and the size of its bottom was 0.8 mm × 0.4 mm. The rectangular cavity of each layer
was prepared by drilling, and the metal layer on its surface was nickel-coated and gold-
coated. In recent years, three-dimensional (3D) printing technology has been used in
the manufacturing of terahertz devices [11]. Bieren et al. fabricated a terahertz linear
rectangular waveguide cavity for WR-3.4 (Waveguide Rectangular-3.4) in the frequency
band of 220–330 GHz by directly printing the waveguide cavity using stereo lithography
appearance (SLA) technology and metallizing its inner surface by electroplating copper
and sputtering gold [12]. The geometric error of the printed cavity was ±10 µm, and the
thickness of the sputtered gold layer was 100 nm. Makhlouf et al. used 316 L stainless-steel
particles with a size of 45 µm as materials and selective laser melting (SLM) technology
to directly print a metal rectangular waveguide cavity in the WR-3 band with a frequency
band of 230–320 GHz [13].

However, there are still some problems in the fabrication of high-frequency terahertz
metallic rectangular waveguide cavities. This is because as the characteristic size of these
devices is further reduced, the required technical indicators of the terahertz metal rectangu-
lar cavity structure, such as dimensional accuracy, surface roughness, and rounded corners,
become more stringent [14]. DRIE technology has high manufacturing accuracy, but its
process is complicated and prone to poor consistency of the cavity bonding position. After
stacking a multi-layer rectangular cavity with UV-LIGA and LTCC, there may be problems
of multi-layer alignment and a loose assembly seal. Three-dimensional printing technology
realizes the integral fabrication of terahertz cavity devices, which will have a beneficial
effect on the transmission of terahertz signals. For the combined manufacturing mode of
SLA and surface metallization, the cavity-dimension accuracy and inner-surface roughness
printed by SLA are usually poor, and it is difficult to perform uniform metallization of the
inner surface of the cavity. For the direct printing mode using SLM, although the steps of
surface metallization in the cavity can be reduced, it is difficult to obtain high cavity dimen-
sional accuracy and good inner surface roughness when manufacturing terahertz cavity
devices with high-operating-frequency bands using the existing technology. Therefore,
manufacturing technology that can realize the high-precision manufacturing of terahertz
rectangular cavity devices with a high operating-frequency band and uniform metallization
of its cavity surface are highly anticipated [14].
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Wire electrochemical micromachining (WECMM) uses a micro-scale metal wire as a
tool cathode while controlling the motion trajectory of a wire electrode or metal workpiece
through programmable software to realize the processing of micro slots, micro slots and
other structures, as well as micro 3D structures with complex shapes or high aspect ratios
under the conditions of specific electrolyte and electrical parameters [15]. Micro electro-
chemical deposition is a manufacturing technology in which metal ions are reduced to
atoms under the action of electrochemistry to form metal layers on specific surfaces or
metal microstructures with specific shapes by stacking layers [16,17]. Recently, a processing
technology based on the combination of WECMM, electrochemical deposition, and selec-
tive dissolution has been proposed to realize the integrated manufacturing of 1 THz micro
metal rectangular waveguide cavity devices. Although the overall manufacturing efficiency
is reduced due to the low dissolution efficiency of the pure-nickel rectangular mandrel
of WECMM, this combined manufacturing process provides a research basis for the man-
ufacturing of terahertz metal rectangular cavity devices with high-operating-frequency
bands [18].

In this paper, a new and improved combined manufacturing process based on WECMM
and electrochemical deposition is proposed to manufacture high-frequency terahertz metal
rectangular waveguide cavity. Taking the manufacturing process of a 1.7 THz metal rectan-
gular waveguide cavity as an example, the process of integral manufacturing and uniform
metallization of the inner surface of the waveguide cavity is described in detail.

2. Materials and Methods
2.1. Materials

In this study, a workpiece of pure aluminum (Goodfellow Ltd., Huntingdon, UK) with
a thickness of 90 µm was ultrasonically cleaned before the WECMM, a 20 µm-diameter
tungsten wire (Goodfellow Ltd., Huntingdon, UK) was adopted as the cathode, and the
electrolytes were prepared from analytical-grade NaNO3 and NaCl using deionized water.
The composition of the solution for gold electroplating and copper electroforming, which
was obtained through repeated experimental testing [14], is listed in Tables 1 and 2. In
the selective chemical dissolution of the rectangular mandrel step, the electrolytes were
prepared from analytical-grade KOH and deionized water.

Table 1. Composition of the solution for gold electroplating.

Component Value

Solvent YC-408 electroplated open-cylinder liquid
Main salt Gold potassium citrate (3–6 g/L)

Table 2. Composition of the solution for copper electroforming.

Component Value (g/L)

Copper sulfate pentahydrate 160–180
Sulfuric acid 80–100
Deionized water

2.2. Methods

The combined machining process includes WECMM, gold sputtering, gold electro-
plating, copper electroforming, and selective chemical dissolution, and the steps are carried
out in sequence. First, a metal material that can easily be chemically dissolved by itself is
processed by WECMM to obtain a rectangular mandrel, as shown in Figure 1a,b. Second,
a gold layer is sputtered onto the outer surface of the rectangular mandrel, as shown in
Figure 1c. Then, gold electroplating is performed on the surface of the sputtering layer,
as shown in Figure 1d. After gold electroplating is completed, copper electroforming is
performed on the surface of the gold electroplating layer, as shown in Figure 1e. Finally,
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the waveguide cavity is obtained by rapidly chemically dissolving the rectangular mandrel,
as shown in Figure 1f.
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Figure 1. Schematic of the machining process. Figure 1. Schematic of the machining process.

According to the description of the combination process, the specific end size of the
waveguide cavity will be consistent with the rectangular mandrel. Because a rectangular
mandrel with an end-face size of hundreds of microns or even tens of microns can be
machined through WECMM, the manufacturing of a terahertz micro-metal rectangular
waveguide cavity with an end-face size of hundreds of microns or even tens of microns
can be realized through this combined manufacturing process; an end-face size of this
scale corresponds to that of a terahertz micro-rectangular waveguide cavity in a high-
frequency band. In addition, a rectangular mandrel with good dimensional accuracy,
surface roughness, and edge radius can be obtained through WECMM. The gold sputtering
layer can prevent local oxidation on the surface of the rectangular mandrel, so that it is more
uniform and easier to gold-electroplate. When the rectangular mandrel is rapidly chemically
dissolved, a waveguide cavity with better dimensional accuracy, inner surface roughness,
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and edge radius will be obtained, which meets the requirements of high-frequency terahertz
waveguide cavities for high-quality machining indicators.

In this study, the metallization of the inner surface of the waveguide cavity is achieved
by electrochemical deposition transfer technology, which comprises two aspects: one is
that the metallization of the inner surface of the waveguide cavity is transferred to the
electrochemical deposition on the outer surface of the rectangular mandrel, and the other
is that the growth surface of the metal after the metallization of the inner surface of the
waveguide cavity is transferred to the non-growth surface in contact with the rectangular
mandrel. The high-frequency terahertz metal rectangular waveguide cavity has a small end-
face size, and it is difficult to implement metallization inside the cavity after 3D printing.
The transfer of metallization inside the cavity to the outer surface of the rectangular mandrel
reduces the difficulty of metallization inside the waveguide cavity with a small end-face size
and improves uniformity, as shown in Figure 2. After the waveguide cavity manufactured
by 3D printing is metallized, the working surface in contact with the terahertz wave
inside the cavity is the growth surface of the metal layer. Due to the small size and large
length-to-diameter ratio of the end-face of the waveguide cavity, it is difficult to control
the quality of the growth surface of the metal layer when the surface of the waveguide
cavity is metallized. In this paper, the outer surface morphology of the rectangular mandrel
can be replicated by the inner surface of the gold layer. When the rectangular mandrel is
chemically dissolved, the gold layer in contact with the outer surface of the rectangular
mandrel will be transferred to the working surface of the gold layer inside the waveguide
cavity, as shown in Figure 3.
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3. Experimental

The experimental system for the WECMM of the rectangular mandrel is shown in
Figure 4. This system comprised an X-Y-Z motion stage, a nanosecond pulse genera-
tor (Agilent, Santa Clara, CA, USA), an oscilloscope (Tektronix, USA), a PC controller,
a computer-controlled digital camera, and an ultrasonic oscillator, which could realize
the function of intermittent ultrasonic vibration. The experimental setup for the gold
electroplating and copper electroforming is shown in Figure 5. This system comprised a
support platform, an electromotor, a direct current (DC) power supply (ITECH, China),
and a thermostatic magnetic stirrer. In this study, an ultrasonic cleaner was used to perform
selective chemical dissolution of the rectangular mandrel.
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According to a previous study by Bi et al. [19], an optimal combination of parameters
was selected for the WECMM of a pure-aluminum rectangular mandrel, as shown in Table 3.
Before the experiment, the workpiece was cleaned with anhydrous ethanol and deionized
water in turn, dried after cleaning, and quickly installed in the workpiece fixture and placed
in an electrobath filled with electrolyte to prevent oxidation on the surface.
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Table 3. The selected parameter combination for WECMM of pure aluminum rectangular mandrel.

Parameter Value

Electrolyte 0.025 mol/L NaNO3 and 0.0125 mol/L NaCl
Ultrasonic oscillation frequency 40 kHz
Ultrasonic oscillation power 40 W
Ultrasonic oscillation durations 1 s
Ultrasonic oscillation intervals 30 s
Wire vibration amplitude 150 µm
Wire vibration frequency 2 Hz
Applied voltage 5 V
Feed rate 0.15 µm/s
Pulse width and period 50 ns, 5 µs

Referring to the work of Bi et al. [14], the vertical rotating electrochemical deposition
method was used for gold plating, and the selected parameter combination is shown in
Table 4. In this study, the time of gold plating was controlled at approximately 2 h. After
the gold plating was completed, the workpiece was cleaned with deionized water and
absolute ethanol.

Table 4. The selected parameter combination for gold electroplating.

Parameters Value

Solution temperature 55 ◦C
pH 3.8–4.2
Current density 0.5 A/dm2

Distance between anode and cathode 10 cm

Referring to the work of Bi et al. [14], the vertical rotating electrochemical deposition
method was used. The selected parameter combination is shown in Table 5. The time of
copper electroforming was adjusted based on 24 h.

Table 5. The selected parameter combination for copper electroforming.

Parameters Value

Solution temperature 30 ◦C
Current density 0.5 A/dm2

Distance between anode and cathode 10 cm

In this study, a KOH solution with a concentration of 1 mol/L was used for chemical
dissolution of the pure-aluminum rectangular mandrel. During the dissolution process, the
workpiece was ultrasonically vibrated for 60 s every 0.5 h to accelerate the diffusion of the
dissolved products. Every 1 h of dissolution, the workpiece was taken out to observe the
end-surface topography and determine whether the aluminum rectangular mandrel was
completely dissolved. After 6 h of the experiment, the pure-aluminum rectangular mandrel
was completely dissolved. A 0.1 mol/L HCl solution was used to clean the workpiece for
approximately 60 s to neutralize the KOH solution on the surface.

The overall and local topographies of the experimental samples were studied using
a scanning electron microscope (SEM, Quanta 200, FEI, USA) and a digital microscope
(DVM5000; Leica, Germany). The widths of the rectangular mandrels were measured
using the digital microscope. An atomic force microscope (AFM, Dimension Edge; Bruker,
Germany) was used to measure the surface roughness of the machined rectangular mandrel
and the waveguide half-cavity. A measuring field of 50 µm × 50 µm was adopted in each
measurement. The edge radius of the machined rectangular mandrel and the waveguide
half-cavity were also measured using the same digital microscope. During the measurement
of the waveguide cavity, three workpieces were randomly selected, and five positions of
each workpiece were randomly selected in the direction of the end-face width and end-face
height for measurement.
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4. Results
4.1. Machining Process of the Integral Waveguide Cavity

The end-face size of the 1.7 THz metal rectangular waveguide cavity was approxi-
mately 83 µm × 165 µm, so double-sided polished aluminum foil with a thickness of 90 µm
was used to ensure the end-face thickness of the aluminum rectangular mandrel, and the
end-face width of the mandrel was controlled by the tool trajectory and the side gap of
WECMM. In this study, the length of the machined pure-aluminum rectangular mandrel
was close to 5 mm. Morphological observations of the mandrel are shown in Figure 6, and
the width and thickness, machined surface roughness, non-machined surface roughness,
and edge radius of the mandrel are shown in Table 6. These data were obtained by random
measurements in the length direction per millimeter. According to the measurement results
in Table 6, the average end-face size of the mandrel was 86.9 µm × 165.7 µm, the average
non-machined surface roughness was 0.0438 µm, the average machined surface rough-
ness was 0.259 µm, and the average machined edge radius of pure-aluminum rectangular
mandrel was 7.01 µm.
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Table 6. Measurement results of machining indicators of the pure aluminum rectangular mandrel.

Parameter Value

Measurement position 1 2 3 4 5
Thickness (µm) 86.9 87.1 86.5 87.3 86.8

Width (µm) 166.2 165.7 165.1 165.6 165.9
Machined surface roughness Ra (µm) 0.262 0.273 0.225 0.317 0.216

Non-machined surface roughness Ra (µm) 0.0433 0.0552 0.0376 0.0491 0.0339
Machined edge radius (µm) 6.531 7.032 7.392 6.973 7.118

Due to the surface oxidation of the rectangular mandrel caused by the active chemical
properties of the aluminum material, the mandrel was partially unable to be electrode-
posited. To solve this problem, the step of gold sputtering on the surface of an aluminum
sacrificial mandrel was added before gold electroplating [20,21]. In this study, the gold
sputtering was performed four times on the four surfaces of the rectangular mandrel.
After the gold sputtering on each surface was completed, the gold sputtering on the next
surface was performed by flipping the rectangular mandrel 90 degrees. The thickness of the
gold layer was usually tens of nanometers. Morphological observations of the rectangular
mandrel before and after gold sputtering are shown in Figure 7.
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After the gold sputtering was completed, gold electroplating was carried out on the
surface of the gold sputtered layer. The morphological observation results are shown in
Figure 8. The gold layer on the surface of the aluminum sacrificial mandrel was dense, and
the gold layer surface was free of defects such as pores and nodules. After the gold plating,
a copper electroforming experiment was carried out on the surface of the gold layer. The
morphological observation results are shown in Figure 9.
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After the copper electroforming was completed, the excess metal layer on the front
end face of the workpiece was removed by grinding, and the other end of the workpiece
was cut off from the workpiece matrix. The two end faces were precisely ground to
expose the rectangular mandrel and obtain a better end-face morphology. The step of
chemical dissolution of the pure-aluminum rectangular mandrel was carried out. The final
morphological observation results are shown in Figure 10. Because the electrochemical
deposition process on the outer surface of the rectangular mandrel is easy to implement and
control, the gold layer transfer technology reduces the difficulty of surface metallization in
the waveguide cavity compared with a traditional waveguide cavity after forming. Because
a rectangular mandrel with a smaller end-face size and higher machining quality can be
manufactured, the integral fabrication of a terahertz rectangular cavity device structure
with a higher-operating-frequency band and uniform metallization of its cavity surface can
be realized by using this proposed combined manufacturing process [18].
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4.2. Measurement of Machining Indicators of the Waveguide Cavity

In this study, the measured machining parameters mainly include the end-face size of
the waveguide cavity, the surface roughness of the waveguide cavity and the edge radius
of the waveguide cavity.

The measuring principle of the end-face size of the waveguide cavity is shown in
Figure 11. A measurement example is shown in Figure 12. Equations (1) and (2) were used
to calculate the width and height of the end face. According to the measured results, the
average end width and average end height of the waveguide cavity were 165.9 µm and
88.3 µm, respectively.
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In order to measure the inner surface roughness and the edge radius of the waveguide
cavity, an open-type waveguide half-cavity was prepared. The manufacturing process is
shown in Figure 13 [18]. The process parameters used in the fabrication of the open-type
waveguide half-cavity were consistent with those used in the fabrication of the waveguide
cavity. The machined open-type waveguide half-cavity is shown in Figure 14.

In the length direction, a region per millimeter was randomly selected to measure
the edge radius of the open waveguide half cavity. The final result of the edge radius
was obtained by taking the average value. Similarly, a random region per millimeter in
the length direction was selected to measure the internal surface roughness of the open
waveguide half-cavity, and the final surface roughness result was obtained by averaging.
The local amplification morphology of the open-type waveguide half-cavity is shown
in Figure 15a, and the internal edge radius is shown in Figure 15b. The internal side
and bottom morphology was observed via AFM, as shown in Figure 15c,d. The specific
measurement results of the edge radius and surface roughness of the open waveguide
cavity are shown in Table 7.

According to the measurement results, the average surface roughness of the inner
side of the open-type waveguide cavity was 0.293 µm, which corresponded to the surface
roughness of the rectangular mandrel of WECMM. The average surface roughness of the
inner bottom of the open waveguide cavity was 0.0809 µm, which corresponded to the
non-machined surface of the rectangular mandrel. The average edge radius inside the
open-type waveguide cavity was 8.717 µm, which corresponded to the edge radius of the
rectangular mandrel. Thus, the measurement results met the technical requirements of a
1.7 THz hollow-core metal rectangular waveguide cavity.
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Figure 15. The morphology observation of the open-type waveguide half-cavity: (a) SEM example of
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Table 7. Measurement results of machining indicators of the open waveguide cavity.

Parameter Value

Measurement position 1 2 3 4 5
Side surface roughness Ra (µm) 0.238 0.311 0.272 0.305 0.339

Bottom surface roughness Ra (µm) 0.0706 0.0903 0.0819 0.0822 0.0793
Edge radius (µm) 8.093 8.971 9.023 9.165 8.334

5. Conclusions

A new and improved combined manufacturing process based on WECMM and elec-
trochemical deposition was proposed to manufacture high-frequency terahertz metal rect-
angular cavity devices. The following conclusions were made:

An integral 1.7 THz hollow-core metal rectangular waveguide cavity with an end-
face size of 165.9 µm × 88.3 µm, an edge radius of less than 10 µm, an internal bottom
surface roughness of less than 0.10 µm, and an internal side surface roughness of less than
0.40 µm was obtained. These experimental results show that this proposed manufacturing
process makes it possible for the integral fabrication of terahertz rectangular cavity device
structures with a high operating-frequency band.

Comparing the morphology observation results and machining measurement results
of the rectangular mandrel and the waveguide cavity, the external surface morphology of
the former was replicated precisely by the internal surface morphology of the latter, which
indicated that the gold layer transfer technology realized the transfer of the gold layer of
electrochemical deposition from the growth surface to the non-growth surface.
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