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Abstract: Currently, severe electromagnetic circumstances pose a serious threat to electronic systems.
In this paper, the damage effects of a high-power electromagnetic pulse (EMP) on the GaN high-
electron-mobility transistor (HEMT) were investigated in detail. The mechanism is presented by
analyzing the variation in the internal distribution of multiple physical quantities in the device. The
results reveal that the device damage was dominated by different thermal accumulation effects such as
self-heating, avalanche breakdown and hot carrier emission during the action of the high-power EMP.
Furthermore, a multi-scale protection design for the GaN HEMT against high-power electromagnetic
interference (EMI) is presented and verified by a simulation study. The device structure optimization
results demonstrate that the symmetrical structure, with the same distance from the gate to drain
(Lgd) and gate to source (Lgs), possesses a higher damage threshold compared to the asymmetrical
structure, and that a proper passivation layer, which enhances the breakdown characteristics, can
improve the anti-EMI capability. The circuit optimization results present the influences of external
components on the damage progress. The findings show that the resistive components which are in
series at the source and gate will strengthen the capability of the device to withstand high-power
EMP damage. All of the above conclusions are important for device reliability design using gallium
nitride materials, especially when the device operates under severe electromagnetic circumstances.

Keywords: GaN HEMT; damage effect; protection design; high-power electromagnetic pulse

1. Introduction

The GaN high-electron-mobility transistor (HEMT) is a representative of wide-bandgap
power semiconductor devices, which has great potential in high-frequency, high-power
and high-temperature applications. This is because of the excellent properties of the GaN
material [1], such as its higher electron mobility, saturation electron velocity and breakdown
electric field, compared with Si and SiC [2–8]. The applications of GaN HEMT devices in
harsh environments such as high-power microwave (HPM), high-power electromagnetic
pulse (EMP) and particle irradiation make the reliability issues increasingly prominent.

Electromagnetic interference (EMI) is a typical reliability issue when an electronic
system operates in a complex electromagnetic environment, which can easily access the
system by the means of front-door (antenna) and back-door (microstrip line or power
cable) coupling [9–11]. For a low-noise amplifier, the HEMT at the very front is the most
vulnerable part when under an EMP injection [12,13]. Therefore, the study of EMI-induced
damage effects on the GaN HEMT is of great significance.

In the past several years, a great deal of research projects have focused on dam-
age effects induced by EMI on bipolar devices [14,15], CMOS inverters [16] and GaAs
HEMTs [12,17], which have proposed a series of theoretical failure mechanisms and harden-
ing designs. Kyechong K et al. [18] carried out a series of experimental studies of EMI effects
and analyzed the mechanism on CMOS inverters induced by HPM. Chahine et al. [19]
established a standard experimental device for measuring the interference threshold of IC
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with RF injection. Ma et al. [20] studied the damage mechanism and the relationship be-
tween energy and the pulse width of bipolar transistors under strong electromagnetic pulse
injection. Yu et al. [21] analyzed the sensitivity to temperature and frequency induced by
the latch effect of a CMOS inverter, as well as the failure mechanism of an AlGaAs/InGaAs
HEMT under HPM injection. Qin et al. [22] studied the failure mechanism of enhanced and
depleted AlGaN/GaN HEMTs under the action of HPM. Above all, it can be found that the
damage effects and protection of GaN HEMTs under high-power EMP were rarely reported.

In this study, the underlying physical failure mechanism of the GaN HEMT under
the injection of EMP is presented. Additionally, a series of protection studies were car-
ried out with the help of the semiconductor simulation software TCAD (Sentaurus2013,
Synopsys, CA, USA). First, we built a simulation model consisting of three parts: device
structure, numerical model and circuit model. Following this, we conducted in-depth
analysis on the failure mechanism of the GaN HEMT by extracting the variation in the
internal electric field distribution, current density distribution and temperature distribution
during the action of the high-power EMP. Finally, we put forward protective measures
against the failure mechanism so as to improve the device reliability when operating under
harsh environments.

2. Simulation Model
2.1. Structure Model

Figure 1 shows the two-dimensional structure of the GaN HEMT studied in this paper,
which consists of a 50 nm SiN passivation layer, a 25 nm AlGaN barrier layer, a 3 µm GaN
buffer layer and a 5 µm Si substrate layer from top to bottom. The distance between the
source and gate is referred to as Lgs, while that between the gate and drain is referred to as
Lgd. The lengths of the drain, gate and source electrodes are 0.1 µm, 1.3 µm and 0.1 µm,
respectively. The mole fraction x of AlxGa1-xN in the proposed device is fixed at 0.2. The
AlGaN barrier is uniformly doped with an N-type doping with a density of 1 × 1017 cm−3

impurities, forming a Schottky barrier with the gate metal. In order to form an ohmic
contact, an N-type doping with a density of 1 × 1020 cm−3 is carried out under the drain
electrode and source electrode. Bulk GaN exhibits slight N-type doping characteristics due
to the formation of some oxygen or nitrogen vacancies during GaN epitaxial growth [23].
An N-type concentration of 2 × 1016 cm−3 is employed in the GaN buffer layer so as to
make it equivalent to the actual situation. The thermal electrode is located at the bottom of
the device in which the temperature is fixed at 300 K. The above two-dimensional model
was verified in our previous work [22]. In this paper, the electrical characteristics of the
device will no longer be discussed.
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2.2. Numerical Model

With the help of TCAD, the burnout process of the GaN HEMT under a high-power
EMP injection was simulated. The thermodynamic model (T-D) [24] dependent on temper-
ature was activated to describe the carrier transport progress. In the T-D model, the Poisson
equation, carrier continuity equations and heat flow equations were all solved in order to
study the heating effect inside the device. In addition to Shockley–Read–Hall and Auger
recombination dependent on temperature, mobility dependent on a high-field saturation
model was also adopted [25,26]. Especially in AlGaN/GaN HEMTs, a high concentration
of a two-dimensional electron gas already exists at the interface of the heterojunction in
the absence of external stress, which is attributable to the spontaneous polarization and
piezoelectric polarization [27]. The spontaneous polarization derives from the asymmetry
of the hexagonal wurtzite structure of the GaN material, while the piezoelectric polarization
derives from lattice mismatch during the growth of AlGaN on GaN [28]. The spontaneous
and piezoelectric polarizations were taken into account using a built-in self-consistent
polarization model [27] in TCAD. In the polarization model, the Poisson equation was
modified by adding polarization charge to the right-hand side of the equation.

2.3. Circuit Model

The circuit model is shown in Figure 2. To simulate the damage effect of a GaN
HEMT induced by a high-power EMP, a step voltage pulse was selected as the signal
model, which has been proven to be equivalent to an EMP [29]. In this paper, the rising
time and the amplitude of the step voltage pulse were set as 1 ns and 150 V to achieve
high-power performance. The step voltage pulse was injected into the gate of the GaN
HEMT. Meanwhile, the drain electrode was biased at 10 V, and the source electrode was
grounded. The damage criterion was set as a lattice temperature of 1973 K during the
simulation, which is in accordance with the melting point of the GaN material.
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3. Results and Discussion
3.1. The Damage Effect and Mechanism Analysis

To analyze the damage effects of the GaN HEMT due to the high-power EMP injection,
the internal heating process of the device under the action of the EMP is discussed by taking
the device structure when Lgs is 1 µm and Lgd is 3 µm. Figure 3 shows the temperature
rise process inside the device. It can be clearly seen that the heating process of the device
is divided into three stages, and the rate of temperature rise shows a “slow-sharp-fast”
trend. At the beginning of the time, the temperature rises slowly, and this is defined as
stage I (O–A segment); then, the temperature rises sharply, which is defined as stage II
(A–B segment); in the last time period, the temperature rises fast, which is defined as
stage III (B–C segment). This phenomenon can be explained by analyzing the variation
in the internal distribution of multiple physical quantities in the device during the heat-
ing process.
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Figure 3. Variation in the maximum temperature (Tmax) inside the GaN HEMT with injection time. 

Figures 4 and 5 show the internal electric field distribution and current density dis-
tribution of the GaN HEMT at the high-power injection times of 0 ns, 0.1 ns, 0.5 ns and 2 
ns, which stand for the initial state, stage I, stage II and stage III. Before the EMP injection, 
the GaN HEMT was set at the work point of the source voltage (0 V), the gate voltage (0 
V) and the drain voltage (10 V). This is the initial state of the GaN HEMT. As a depletion-
type device, the channel is turned on, most of the carriers are concentrated in the two-
dimensional electron gas (2DEG) layer and the voltage drop locates at the drain to gate 
and the drain to source. The electric field mainly distributes at the AlGaN layer and the 
corner from the gate to drain; the current density distribution mainly distributes at the chan-
nel layer, which is consistent with the results shown in Figures 4a and 5a. 
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Figure 3. Variation in the maximum temperature (Tmax) inside the GaN HEMT with injection time.

Figures 4 and 5 show the internal electric field distribution and current density distri-
bution of the GaN HEMT at the high-power injection times of 0 ns, 0.1 ns, 0.5 ns and 2 ns,
which stand for the initial state, stage I, stage II and stage III. Before the EMP injection, the
GaN HEMT was set at the work point of the source voltage (0 V), the gate voltage (0 V) and
the drain voltage (10 V). This is the initial state of the GaN HEMT. As a depletion-type de-
vice, the channel is turned on, most of the carriers are concentrated in the two-dimensional
electron gas (2DEG) layer and the voltage drop locates at the drain to gate and the drain to
source. The electric field mainly distributes at the AlGaN layer and the corner from the
gate to drain; the current density distribution mainly distributes at the channel layer, which
is consistent with the results shown in Figures 4a and 5a.
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At the beginning of the step voltage pulse injection into the gate electrode, such as at
the injection time of 0.1 ns, the Schottky junction is forward-biased and the electric field
peaks are located at the left side of the gate, near the source, due to the fact that Lgd (3 µm)
is larger than Lgs (1 µm), resulting in a current path appearing between the gate and the
channel layer. The relevant results are displayed in Figures 4b and 5b. As known, the Joule
thermal power density P can be calculated by multiplying the electric field intensity E by
the time current density J. Thus, the rise in temperature is determined by the electric field
intensity and the current density distribution of the device. At the injection time of 0.1 ns
in stage I, the electric field and the current are not much larger than the initial state; the
rise in temperature occurs slowly, which may be attributed to the self-heating effect of the
GaN HEMT.

With the increase in the injection time, once the increased injection voltage exceeds a
certain value, the enhanced electric field strength will trigger avalanche breakdown and
result in the current increasing rapidly. As shown in Figures 4c and 5c, at the injection
time of 0.5 ns in stage II, the electric field between the gate and source increases rapidly,
and the current mainly flows to the source end through the two-dimensional electron
gas channel at the AlGaN/GaN interface due to the electric field change. The enhanced
electric field strength and current density resulting from the avalanche breakdown cause
the temperature to rise sharply.

In stage III, with the increase in the pulse action time over 1 ns, the injection step
voltage pulse reaches the voltage peak, and the electric field strength changes slightly.
With the increase in the injection time, the thermal accumulation effect will cause the hot
carrier emitter to appear and reach velocity saturation rapidly, due to the strong electric
field. As shown in Figures 4d and 5d, at the injection time of 2 ns in stage III, the slightly
changed electric field strength, together with the velocity-saturated hot carrier, makes the
temperature rise more slowly than in stage II. However, the temperature still rises very
quickly due to the large electric field strength and current density.

Figure 6 shows the internal electric field intensity, current density and thermal distri-
bution of the GaN HEMT at the moment of burnout. In Figure 6a,b, it can be seen that the
maximum area of the electric field intensity is located at the gate corner near the source
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end, and that of the current density at the cylinder near the source end. These results reveal
that the cylindrical surface of the gate corner near the source is the most vulnerable part
due to the thermal accumulation effect which is consistent with the hot spot location of the
device shown in Figure 6c. Similar results in a GaAs-based HEMT have been observed in
our previous experimental study [12,17].
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3.2. Multi-Scale Protection Design

According to the damage process analysis of the GaN HEMT by the high-power EMP
injection, it can be found that the device damage is dominated by the different thermal
accumulation effects during the action of the high-power EMP. Furthermore, the differences
in the temperature rise process at various stages are associated with the different Joule
thermal power densities P of the different thermal accumulation effects, where the thermal
power density P is determined by the electric field intensity E and current density J. Thus,
to achieve the protection design of the GaN HEMT against high-power EMP interference,
the fundamental approach is to reduce the electric field intensity E and current density J
inside the device so as to lower the thermal accumulation effect. Based on this principle, a
series of multi-scale protection designs are proposed.

3.2.1. The Device Structure Optimization Design

In order to regulate the electric field intensity E and current density J inside the GaN
HEMT under the high-power EMP injection, one simple method is to change the size of
the device. In this paper, we fixed the length of the drain, gate and source electrodes to
0.1 µm, 1.3 µm and 0.1 µm, respectively, and changed the source-to-gate distance Lgs and
gate-to-drain distance Lgd to range from 1 µm to 3 µm in accordance with the total length of
the device, which remained unchanged at 5.5 µm. Furthermore, five device structures were
proposed, and their damage experiments were conducted in the TCAD simulation soft-
ware. These device structures are (a) Lgs:Lgd = 3:1, (b) Lgs:Lgd = 2.5:1.5, (c) Lgs:Lgd = 2:2,
(d) Lgs:Lgd = 1.5:2.5 and (e) Lgs:Lgd = 1:3.

Figure 7 shows the variation in the maximum temperature (Tmax) inside the GaN
HEMT with the injection time. Figures 8 and 9 present the electric field and thermal
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distribution of the GaN HEMT at the moment of burnout for the above device structures. It
can be seen that the heating processes of the different device structures are all divided into
three stages, indicating the same damage mechanism, as discussed above. However, the
burnout time, electric field distribution and thermal distribution change with the varied
device structures. For structures (a) and (e), the burnout times are shorter than those of other
structures, which can be attributed to them having the shortest Lgs or Lgd, resulting in a
larger electric field intensity E than the other structures, as shown in Figure 8. Furthermore,
the burnout time of structure (a) is longer than that of structure (e). This is because the
voltage drop between the gate and source of structure (e) is larger than that between the
gate and the drain of structure (a) due to the setting of the work point for the GaN HEMT
during the high-power EMP injection, as discussed above. For structures (a) and (e), the
maximum electric field strength is located on the left side of the gate near the drain and
the right side of the gate near the source, respectively, which is consistent with the hot
point distribution of the device shown in Figure 9. A similar phenomenon can also be
found for structures (b) and (d). Furthermore, the symmetrical structure (c) with the same
distance of the gate to drain (Lgd) and gate to source (Lgs) shows the longest burnout time,
indicating a higher damage threshold than other asymmetrical structures. This is because
the symmetrical structure (c) possesses a larger Lgd or Lgs compared to the asymmetrical
structures, resulting in the minimum electric field strength under the same high-power
EMP injection. In addition, the output and transfer characteristics of the GaN HEMT for
the above five device structures were simulated, as shown in Figure 10. For the output
characteristic ID-VDS shown in Figure 10a–c, it can be seen that the saturated drain current
(ID) changes with the different device structures, but the variation is only about 10% to
20% at a given gate voltage between the symmetrical structure and asymmetrical structure.
Meanwhile, for the transfer characteristic ID-VGS shown in Figure 10d, it can be seen that
the threshold voltage of the GaN HEMT remains almost unchanged for the different device
structures. These results can be attributed to the gates having the same length in the above
device structures. Thus, the slightly changed output and transfer characteristics and the
higher damage threshold of the device in a symmetrical structure make it a simple method
of achieving the protection of the GaN HEMT against high-power EMP interference.
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Figure 9. The thermal distribution of the GaN HEMT at the moment of burnout for different
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To further enhance the anti-EMI capability of the symmetrically structured GaN
HEMT, we can reduce the current density J, in addition to the reduction in the electric field
intensity E. Based on the damage mechanism discussed above, we selected the symmetrical
structure (c) and varied the passivation layer of SiN, SiO2 and Al2O3, which is compatible
with the fabrication process, to reduce the gate–source and gate–drain currents which
dominate the thermal accumulation in stage III during the damage process. A series of
damage experiments were conducted in the TCAD simulation software. Figure 11 shows
the variation in the maximum temperature (Tmax) inside the GaN HEMT with the injection
time. Figures 12 and 13 present the current density and thermal distribution of the GaN
HEMT at the moment of burnout for the above device structures with different passivation
layers. The similar temperature rise process and hot spot distribution demonstrate the
same damage mechanism as discussed above. Furthermore, in Figure 11, it can be seen
that the burnout times are about 20 ns, 50 ns and 80 ns for the devices with a passivation
layer of SiO2, SiN and Al2O3, respectively, indicating the higher damage threshold of the
device with the Al2O3 passivation layer than those with the SiO2 and SiN passivation
layers. This can be explained as follows. As known, the thickness of the passivation layer
and the permittivity of the passivation material dominate the breakdown performance of
the GaN HEMT. In this work, the thickness of the passivation layer was fixed, whereas
the permittivity k of the passivation material was varied for SiO2 at 3.9, SiN at 7 and
Al2O3 at 9 [30]. The enhanced permittivity of the insulator will smoothen the electric
field distributions along the barrier layer due to the uniform voltage drop across the
high-k insulator [31]. Thus, the higher the k of the passivation material, the stronger the
breakdown performance. That is to say, the devices with SiN or Al2O3 passivation layers
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possess improved breakdown performance, compared to that with a SiO2 passivation
layer, due to the higher k of the passivation material. Based on the damage mechanism
discussed before, the enhanced breakdown characteristics for the GaN HEMT will result
in a reduction in the gate–source and gate–drain currents during the high-power EMP
injection. These deductions are in accordance with the current density distribution shown in
Figure 12. Therefore, the proper passivation layer choice can reduce the current density and
the heat accumulation in the process of the high-power EMP injection, in turn improving
the anti-EMI capability of the GaN HEMT.
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3.2.2. The External Circuit Optimization Design

In addition to the device structure optimization design, it is also possible to add some
external components to the circuit to achieve the protection design of the GaN HEMT
against high-power EMP interference. Figure 14 shows the simulation circuit with an
external resistance RG at the gate, RD at the drain and RS at the source. A series of damage
experiments were conducted using the TCAD simulation software, with the following
settings: RG 1 kΩ, RD and RS 0.1 Ω, and vice versa.
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Figure 14. The simulation circuit with an external resistance RG at the gate, RD at the drain and RS at
the source.

Figure 15 shows the variation in the maximum temperature (Tmax) inside the GaN
HEMT with the injection time, and Figure 16 presents the thermal distribution of the
GaN HEMT at the moment of burnout for the symmetrical structure GaN HEMT with a
SiN passivation layer in different external circuits. The similar temperature rise process
and hot spot distribution demonstrate the same damage mechanism as discussed above.
Furthermore, from Figure 15, it can be seen that the burnout time of the GaN HEMT
under the same high-power EMP injection increases at varying degrees in different external
circuits. This can be attributed to the reduction in the electric field intensity E and current
density J inside the device when the external resistance is plugged in. Furthermore, the
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resistive component in series at the source exhibits a longer burnout time than that in series
at the drain. This is because the GaN HEMT device is set at the work point of the source
voltage (0 V), the gate voltage (0 V) and the drain voltage (10 V), before the high-power
EMP injection, and the resistive component in series at the source will reduce the current
density much more than that in series at the drain during the high-power EMP injection. In
addition, the resistive component in series at the gate exhibits a longer burnout time than
the others. This can be attributed to the direct thermal dissipation of the gate resistance
during the high-power EMP injection into the device through the gate. Above all, these
circuit optimization results illustrate that the resistive components which are in series at
the source and gate will strengthen the capability of the device to withstand high-power
EMP damage. Similar results in a GaAs-based HEMT have been observed in our previous
study [29].
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4. Conclusions

In this paper, a numerical simulation model was used to study the damage effect and
failure mechanism of the GaN HEMT with a high-power EMP. The failure mechanism
was presented by analyzing the variation in the internal distribution of multiple physical
quantities in the device. The results reveal that the device damage was dominated by
different thermal accumulation effects such as self-heating, avalanche breakdown and
hot carrier emission during the action of the high-power EMP. As a result, to achieve the
protection design of the GaN HEMT against high-power EMP interference, the fundamental
approach is to reduce the electric field intensity E and current density J inside the device so
as to lower the thermal accumulation effect. Based on this principle, a series of multi-scale
protection designs were proposed and verified by a simulation study. The device structure
optimization results demonstrate that the symmetrical structure possesses a higher damage
threshold compared to the asymmetrical structure, and that the Al2O3 passivation layer,
which enhances the breakdown characteristics, can improve the anti-EMI capability. The
circuit optimization results demonstrate that the resistive components, which are in series
at the source and gate, will strengthen the capability of the device to withstand high-
power EMP damage. All of the above conclusions are important for device reliability
design using gallium nitride materials, especially when the device operates under severe
electromagnetic circumstances.
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