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Abstract: Compliant bipedal robots demonstrate a potential for impact resistance and high energy
efficiency through the introduction of compliant elements. However, it also adds to the difficulty of
stable control of the robot. To motivate the control strategies of compliant bipedal robots, this work
presents an improved control strategy for the stable and fast planar jumping of a compliant one-legged
robot designed by the authors, which utilizes the concept of the virtual pendulum. The robot was
modeled as an extended spring-loaded inverted pendulum (SLIP) model with non-negligible torso
inertia, leg inertia, and leg damping. To enable the robot to jump forward stably, a foot placement
method was adopted, where due to the asymmetric feature of the extended SLIP model, a variable
time coefficient and an integral term with respect to the forward speed tracking error were introduced
to the method to accurately track a given forward speed. An energy-based leg rest length regulation
method was used to compensate for the energy dissipation due to leg damping, where an integral
term, regarding jumping height tracking error, was introduced to accurately track a given jumping
height. Numerical simulations were conducted to validate the effectiveness of the proposed control
strategy. Results show that stable and fast jumping of compliant one-legged robots could be achieved,
and the desired forward speed and jumping height could also be accurately tracked. In addition
to that, using the proposed control strategy, the robust jumping performance of the robot could be
observed in the presence of disturbances from state variables or uneven terrain.

Keywords: planar jumping; compliant one-legged robots; control strategy; stable and fast locomotion;
robustness; uneven terrain

1. Introduction

Bipedal robots have shown strong application prospects due to their humanoid charac-
teristics and flexibility of locomotion. In the past two decades, several bipedal robots were
successfully developed, which could achieve high anthropomorphic stable locomotion. For
instance, ASIMO [1], developed by Honda, could perform actions such as going up and
down stairs, jumping, and kicking a ball; HRP-5P [2], developed by AIST, could cooperate
with hands and feet to manipulate a gypsum board; Atlas [3], developed by Boston Dy-
namics, could perform a series of complex actions, such as parkour. Although robots have
exhibited the capability of achieving complex locomotion, they face a huge challenge of
high energy consumption [4]. By introducing passive compliance, bipedal robots exhibit the
potential of impact resistance and high energy efficiency. For example, through introducing
a passive compliant ankle, the cost of the electrical transport of DURUS is much lower than
that of ASIMO and Atlas [5]; through introducing a passive compliant kinematics chain,
the energy consumption of Cassie is closer to that of human [4]. By introducing passive
compliance, the shock tolerance capacity of bipedal robots is also enhanced, and agiler
locomotion can be achieved [6]. However, the passive compliant parts increase the degrees
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of freedom of robot dynamics, adding to the difficulty of stable control of the robots. This
work aims to explore an improved control strategy for stable and fast planar jumping of a
compliant one-legged robot designed by ourselves, as shown in Figure 1, thereby providing
a reference for the control strategy of compliant bipedal robots.

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 19 
 

 

to make full use of the bio-inspired control method for extending the abilities of compliant 

legged robots.  

The main contributions of this work are concluded as follows: 

(1) This work implements the stable forward jumping of a one-legged robot with a non-

negligible torso modeled by the extended SLIP, and the robot’s forward speed and 

jumping height can be adaptively tracked at the same time. 

(2) An improved jumping control strategy, based on the three-part control scheme and 

the concept of the virtual pendulum, was proposed for achieving the stable and fast 

jumping mentioned above. To track the desired forward speed adaptively, we intro-

duced the integral term and the variable time coefficient to improve the speed control 

method for speed regulation; to track the desired jumping height adaptively and ac-

curately, we improved the energy regulation method for the jumping height control 

of the extended SLIP model by introducing a jumping height error-based energy up-

dating method. 

(3) Comparative simulations were conducted to demonstrate the control accuracy for 

jumping speed and jumping height tracking. Additional simulations, regarding dif-

ferent desired forward speeds up to 6.3 km/h, jumping with state perturbations, and 

jumping on uneven terrain, were carried out to further demonstrate the performance 

of the proposed controller. 

The rest of this work is organized as follows. Section II briefly describes the compliant 

one-legged robot designed by ourselves. Section III depicts the dynamic modeling of the 

robot’s jumping, taking the torso inertia, leg inertia, and leg damping into account. Section 

IV introduces the design of the controller that enables the robot to jump stably. Afterward, 

Section V displays the simulation results, including control accuracy and stability analy-

sis, as well as the robot’s stable and fast jumping performance. Lastly, Section VI con-

cludes this work and presents future work. 

 

Figure 1. The compliant one-legged robot which was designed by ourselves. 

2. Brief Description of the Planar Compliant One-Legged Robot 

Figure 2 presents the CAD model of the planar compliant one-legged robot in this 

work, whose leg dimension is based on human leg proportions. The robot mainly consists 

of two parts: a 12 kg torso, with its CoM offset from the hip, and a 6.5kg leg that has two 

actuated motors connected in series, which are a thigh consisting of a compliant linkage 

mechanism using two leaf springs and a point-footed shank. 

The motors M and N are responsible for the swing angle and length adjustment of 

the rest length of the leg, respectively. The leg length can reach around 900 mm under full 

extension and 300 mm under full contraction, while the initial value was set as 700 mm in 

this work. By introducing a compliant six-bar linkage mechanism that includes two leaf 

springs in the thigh, the length of the leg will change when subjected to a force along the 

Figure 1. The compliant one-legged robot which was designed by ourselves.

Different modeling methods and control strategies could be found for the stabilization
and fast locomotion of compliant legged robots, whether based on full-order models or
simplified models. Regarding the full-order model, Westervelt et al. [7] proposed virtual
constraints and the hybrid zero dynamics (HZD) method to address the gait generation
problem for underactuated legged robots. Based on these concepts, related research was
further developed and successfully applied to real robots. Da et al. [8] elevated the 2D
underactuated bipedal walking gait to 3D by utilizing virtual constraints and the HZD
method, and then, they combined it with the gait library method to achieve speed switching
within a certain range on ATRIAS. Reher et al. [9] implemented compliant walking on
Cassie, for variable walking speed cases, by combining a Lyapunov function-based real-
time controller, HZD method, and the gait library method. The main advantages of the
full-order model-based control strategies are high control accuracy and mathematically
provable stability; however, they need a certain amount of accurate information about the
dynamic system and are computationally intensive [10,11]. Thus, it is of great significance
to explore simplified modeling and related control strategies for stable and fast locomotion
of compliant robots.

Inspired by human and animal jumping and running, Blickhan et al. [12,13] proposed
the spring-loaded inverted pendulum (SLIP) model as a template model to describe the
locomotion of legged animals and robots. It assumes that the total mass of the robot is
concentrated at a single point in the hip joint and that there are one or two massless linear
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spring-like legs attached under the mass point. It allows for the approximation of the
trajectory of the center of mass (CoM) and the ground reaction force (GRF), of biological
locomotion with different leg configurations, and inspires stable control methods for legged
robots. Raibert [14] introduced the well-known three-part controller and successfully
applied it to Raibet’s Hopper, and this controller greatly inspired the stable control strategies
for the SLIP model. Rezazadeh et al. [15] modeled ATRIAS as a two-leg SLIP model, used
periodic time-based trajectories for the leg rest length regulation, used a discrete PID foot
placement method for horizontal speed control, and implemented the robust walking and
running of ATRIAS in unstructured environments. Xiong et al. introduced an actuated
SLIP model for jumping and walking gait generation, which was successfully implemented
on the legged robot Cassie [16,17]. Some other SLIP model-based robot control strategies
can be seen in [18–21]. However, the SLIP model neglected information about the torso and
legs, such as inertia and damping, which makes it difficult to stabilize the torso and obtain
accurate locomotion.

Noticing this, Maus et al. [22] introduced an extended SLIP model with a rigid torso
and spring legs, and they proposed a posture control method based on the virtual pendulum
concept for the stable control of the upright walking and running of legged robots. Then,
from the perspective of bionics, a virtual pivot concept was further proposed to better
understand and make use of the principle of locomotion in humans and animals [23]. The
extended SLIP model and the virtual pendulum concept were further developed, by other
researchers, for robust control of legged robots hopping and walking [24,25]. However, the
abovementioned control method could not adaptively track the desired forward speed and
jumping height of the robot modeled by the extended SLIP model, and more details about
the limitations of these controllers could be seen in Section 4. To the best knowledge of
the authors, few works except the abovementioned could be found implementing stable
and fast compliant one-legged robot jumping by combining the extended SLIP model and
the concept of the virtual pendulum, which is of great significance to make full use of the
bio-inspired control method for extending the abilities of compliant legged robots.

The main contributions of this work are concluded as follows:

(1) This work implements the stable forward jumping of a one-legged robot with a non-
negligible torso modeled by the extended SLIP, and the robot’s forward speed and
jumping height can be adaptively tracked at the same time.

(2) An improved jumping control strategy, based on the three-part control scheme and
the concept of the virtual pendulum, was proposed for achieving the stable and
fast jumping mentioned above. To track the desired forward speed adaptively, we
introduced the integral term and the variable time coefficient to improve the speed
control method for speed regulation; to track the desired jumping height adaptively
and accurately, we improved the energy regulation method for the jumping height
control of the extended SLIP model by introducing a jumping height error-based
energy updating method.

(3) Comparative simulations were conducted to demonstrate the control accuracy for
jumping speed and jumping height tracking. Additional simulations, regarding dif-
ferent desired forward speeds up to 6.3 km/h, jumping with state perturbations, and
jumping on uneven terrain, were carried out to further demonstrate the performance
of the proposed controller.

The rest of this work is organized as follows. Section 2 briefly describes the compliant
one-legged robot designed by ourselves. Section 3 depicts the dynamic modeling of the
robot’s jumping, taking the torso inertia, leg inertia, and leg damping into account. Section 4
introduces the design of the controller that enables the robot to jump stably. Afterward,
Section 5 displays the simulation results, including control accuracy and stability analysis,
as well as the robot’s stable and fast jumping performance. Lastly, Section 6 concludes this
work and presents future work.
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2. Brief Description of the Planar Compliant One-Legged Robot

Figure 2 presents the CAD model of the planar compliant one-legged robot in this
work, whose leg dimension is based on human leg proportions. The robot mainly consists
of two parts: a 12 kg torso, with its CoM offset from the hip, and a 6.5 kg leg that has two
actuated motors connected in series, which are a thigh consisting of a compliant linkage
mechanism using two leaf springs and a point-footed shank.
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Figure 2. CAD model of our compliant one-legged robot and its related extended SLIP model.

The motors M and N are responsible for the swing angle and length adjustment of
the rest length of the leg, respectively. The leg length can reach around 900 mm under full
extension and 300 mm under full contraction, while the initial value was set as 700 mm
in this work. By introducing a compliant six-bar linkage mechanism that includes two
leaf springs in the thigh, the length of the leg will change when subjected to a force along
the leg, just as with a spring, thus enabling the application of the extended SLIP model.
To simplify the modeling of the leg, the leg was divided into two parts: a rigid part that
refers to the part from the hip joint to the leg CoM, whose length would not change, and
a spring part that refers to the part from the leg CoM to the pointed foot, whose length
would change concerning ground reaction force. Table 1 displays some design parameters
of the simplified robot model shown in Figure 3, and for more details on the robot design,
one can refer to our previously published work [26,27].
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Table 1. Design parameters of our compliant one-legged robot.

Term Symbol Value [Units]

Torso mass mT 12 [kg]
Torso’s moment of inertia IT 1.0 [kg·m2]

Distance from hip to torso CoM rT 0.2 [m]
Leg mass mL 6.5 [kg]

Leg’s moment of inertia IL 0.188 [kg·m2]
Distance from hip to leg CoM rL 0.25 [m]

Initial leg rest length rL + Lr0 0.7 [m]
Leg stiffness k 6000 [N/m]
Leg damping c 60 [N/ (m·s−1)]
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3. Modeling of the Designed Robot

Figure 3 presents the extended SLIP model with a non-negligible torso and leg mass
for the planar jumping of the compliant one-legged robot. As described above, the motor N,
which is responsible for leg rest length adjustment, will inject or release energy for different
jumping targets, such as a certain jumping height or a certain forward speed, while motor M
will provide active hip torque τ for the swing angles between the leg and torso.

Regarding the definition of the world coordinate for the robot’s jumping, the x-direction,
and the z-direction were defined as the forward and hopping directions, respectively.
xT , zT , θT denote translational displacement in the x-direction and the z-direction and
rotation angle concerning the y-direction of the torso, respectively; γ denotes the rotation
angle of the leg from the axis along the torso to the leg, i.e., swing angle of the leg; Lr, L
denote the leg rest length and leg length due to the spring-like deformation; θF denotes the
foot angle and was named as the angle of attack at the moment the foot touches the ground.
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The jumping dynamics of the robot could be divided into three successive processes:
the flight phase in the air, the stance phase on the ground, and the transition process
between these two phases. The dynamics modeling of these processes will be described, in
detail, in the following subsections. It is worth noting that the former two phases can be
described by continuous dynamics equations.

3.1. Continuous Dynamics
3.1.1. Flight Phase

During the flight phase, the foot of the robot does not touch the ground. Therefore, the
extended SLIP model for the flight phase features four degrees of freedom (DoFs), and here,
we selected q f = (xT ; zT ; θT ; γ) as the generalized variables. The dynamics equations for
the flight phase can be expressed as:

M f

(
q f

) ..
q f + C f

(
q f ,

.
q f

) .
q f + G f

(
q f

)
= B f u f (1)

where q f ∈ Q f and Q f represents the configuration space of the flight phase dynamics,
M f ∈ R4×4, C f ∈ R4×4, G f ∈ R4 represent the inertia matrix, Coriolis and centrifugal
matrix, and gravity vector, respectively, B f = I4×4 represents the coefficient matrix of
generalized forces, and u f = (0; 0; 0; τ) represents the vector of generalized forces.

3.1.2. Stance Phase

During the stance phase, the foot of the robot is in contact with the ground, and
under the assumption that it does not slip against the ground, the foot plays the role of a
pivot joint. Due to the spring-like compliance property of the leg, the leg length L would
change passively under the ground reaction force (GRF). Therefore, the extended SLIP
model for the stance phase features three degrees of freedom (DoFs), and here, we selected
qs = (θT ; γ; L) as the generalized variables. Thus, the dynamics equations for the stance
phase can be expressed as:

Ms(qs)
..
qs + Cs

(
qs,

.
qs
) .
qs + Gs(qs) = Bsus (2)

where qs ∈ Qs and Qs represents the configuration space of the stance phase dynamics,
Ms ∈ R3×3, Cs ∈ R3×3, Gs ∈ R3 represent the inertia matrix, Coriolis and centrifugal
matrix, and gravity vector in stance phase, respectively, Bs = I3×3 represents the coefficient
matrix of generalized torques, us = (0; τ; Fs) represents the vector of generalized torques,
and Fs = −k(L− Lr)− c

.
L represents the passive spring and damping force.

According to the two equations above, the state space expressions of the continuous
dynamics for the extended SLIP model can be described as:

.
xi =

d
dt

[
qi.
qi

]
=

[ .
qi

−M−1
i (qi)

(
Ci
(
qi,

.
qi
)
+ Gi(qi)

)]+ [ 0
M−1

i (qi)Bi

]
ui (3)

where i = { f , s} represents one of the different continuous phases mentioned above,
xi =

(
q;

.
q
)
∈ TQi represents the state vector, and TQi represents the related state space.

3.2. Transit Maps

As seen in Equations (1) and (2), different DoFs and generalized variables could
be observed between the flight phase and the stance phase, and therefore, transit maps
between the state variables regarding different phases are needed. The transit maps consist
of two sub-maps, the touchdown map, and the lift-off map.

3.2.1. Touchdown Map

The touchdown map refers to the map in which the state variables in the flight phase
are transformed into the state variables in the stance phase. The touchdown event occurs
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when the foot of the robot touches the ground, characterized by the displacements of the
foot in the x-direction and z-direction reducing to zero. Two issues need to be addressed: the
transient change of state variables due to the impact on the ground and the transformation
of the different state variables regarding the two phases.

Regarding the impact with the ground, it is considered to occur at the moment of
touchdown and to be a completely inelastic collision, which could be taken as an impulse
that brought the velocity of the foot to zero instantaneously [7]. Moreover, due to our
compliant leg design and that we only consider the mass above the spring-like leg, the
impulse force along the leg will be zero, acting only in the direction perpendicular to
the leg. To address the dynamic feature at the impact moment, adding the impact force
δλ ∈ R into Equation (1), the equations for the constrained dynamics, in this process, can
be expressed as:

M f

(
q f

) ..
q f + C f

(
q f ,

.
q f

) .
q f + G f

(
q f

)
+ AT

(
q f

)
δλ = B f u f (4)

where A ∈ R4×1 represents the constraint matrix, and δλ ∈ R1 represents the impulse force
vector during impact. Integrating both sides of Equation (4), the touchdown map can be
expressed as:

M f

( .
q+f −

.
q−f
)
+ ATλ = 0 (5)

where λ ∈ R1 represents the intensity of the impulse force, and
.
q−f ,

.
q+f represent the

generalized velocities of the robot before and after the impact. The orientation of the leg is
in parallel with the straight line passing through the hip joint and the contact point during
impact, making the leg confined to a holonomic constraint expressed as follows:

h = tan
(

θF

(
q f

))
−

yhip

(
q f

)
− ycon

xhip

(
q f

)
− xcon

= 0 (6)

where
(

xhip, yhip

)
and (xcon, ycon) represent the coordinate of the hip joint and the contact

point of the robot in the world coordinate.
The relative velocity constraint equation can be expressed as:

.
h
(

q f

)
=

∂h
∂q f

.
q f = A

(
q f

) .
q f = 0 (7)

Combining Equations (5) and (7), the impulse intensity and the generalized velocities
after impact can be derived as:

λ =
(

AM−1
f AT

)−1
A

.
q−f (8)

.
q+f =

.
q−f −M−1

f ATλ = ∆imp
.
q−f (9)

Regarding the transformation of the different state variables between the flight phase
and the stance phase, the following expression can be used:

xs0 = ∆ f→s

(
x+f
)

(10)

where xs0 =
(
qs0;

.
qs0
)
∈ TQs denotes the initial states of the stance phase; x+f =

(
q+f ;

.
q+f
)
∈

TQ f , represents the flight states after impact; ∆ f→s : TQ f → TQs represents the reset map
from flight to stance.
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3.2.2. Lift-Off Map

The lift-off map refers to the map in which the state variables in the stance phase are
transformed into those in the flight phase. The lift-off event occurs when the leg force Fs
tends to be less than 0 N. No impact would occur since the ground cannot impose pull
force on the robot, and thus, we only need to address the reset map of state variables from
the stance phase to the flight phase:

x f 0 = ∆s→ f
(
x−s
)

(11)

where x f 0 =
(

qf0;
.
qf0

)
∈ TQ f denotes the initial state variables in the flight phase;

x−s =
(

q−s ;
.
q−s
)
∈ TQs, denotes ending states of the stance phase; ∆s→ f : TQs → TQ f

denotes the reset map from flight to stance.

4. Control Design
4.1. Control Strategy

Figure 4 presents the block diagram of the control strategy for the stable and fast planar
jumping of the compliant one-legged robot. The flight dynamics and stance dynamics
blocks represent the dynamics of the flight phase and stance phase of the jumping, respec-
tively. The bold black lines between flight dynamics and stance dynamics represent all state
information of the jumping of the extended SLIP model (e.g., the state variables xs and x f ,
ground reaction force Fc, and system energy E). The state information with k means that it
was observed at a certain discrete event during the kth jumping, such as xTap(k) represents
the forward displacement of the torso CoM measured at the kth apex, and Tst(k) represents
the stance period of the kth jumping; while others are observed continuously, such as the
system energy E, the spring-like leg deformation rate

.
L, etc. The control strategy consists

of three parts: posture stable control, jumping height control, and forward speed control.
In the stance phase, posture stable control based on the virtual pendulum concept keeps
the torso from tripping over, and jumping height control makes the legged robot track the
desired jumping height accurately through energy injection or releasing. In the flight phase,
forward speed control makes the robot track the desired forward speed

.
xTdes . The thin lines

and corresponding texts represent the input and output signals of three control parts. With
this control scheme, stable and fast jumping of the compliant one-legged robot could be
achieved. The details of the three control parts were presented in the following subsections.
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4.1.1. Posture Stable Control

Regarding the stance phase, as depicted in Figure 5, a simple and robust controller,
called approximate virtual pendulum posture control with fixed point (approximate-VPPC-
FP) [24], was adopted. In [23], this controller was validated by experimental results of
biological legged locomotion systems, such as walking humans and running chickens, etc.
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As shown, the ground reaction force (GRF) Fc is the combining force of two orthogonal
directions: along the leg and perpendicular to the leg. The force Fs along the leg is the
passive force produced by the deformation of the leg spring and damping, and it is defined
as Fs = −k(L− Lr)− c

.
L, while the force which is perpendicular to the leg Fτ is produced

by the hip torque τ from motor M and influenced by the dynamics of the leg and torso. Via
regulating the hip torque τ, it is expected that Fc is directed to a point P located above the
total CoM of the robot, which is called the virtual pivot point (VPP). When the point P is
fixed to a constant distance above the total CoM, it can be seen that the total CoM rotates
around the point P such as how a physical pendulum would, which is a naturally stable
system. Thus, it is said that the point P and the total CoM form a virtual pendulum [24].

In this work, to simplify the control strategy, we leave the VPP located at the point
P1, which is on the axis of the torso, at a distance of rv from the torso CoM, where rv is
positive when the point is on the right and negative when on the left. It is reasonable for this
simplification because the point P1 and the torso CoM also form a virtual pendulum, which
can also stabilize the torso. The value of rv needs to be chosen carefully, and when the
leg mass was neglected, Fτ arises entirely from the hip torque τ, according to the moment
balance of the leg. Then, the approximate hip torque τ yields:

τ = −Fτ = −Fs(rL + L)
(rT + rv) sin(γ)

rL + L + (rT + rv) cos(γ)
(12)

It is important to note that, when rv = 0, the posture stable control could still be
achieved because the P point was still located above the total CoM due to the existence of
leg mass.
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4.1.2. Forward Speed Control

As shown in Figure 6, the trajectory of the hip is not symmetric because the axis along
the leg does not pass the total CoM, and few works could be found discussing the forward
jumping or running strategy for the asymmetric extended SLIP model. In [22], a control
method was proposed based on the concept of the virtual pendulum for the compliant
bipedal robot, where the robot was modeled with a rigid torso and spring legs without
mass, and limit cycles were searched with the angle of attack θF being fixed to a certain
value. However, this method could not adaptively tune the angle of attack to autonomously
track the desired forward speed. In [28,29], a velocity-based leg adjustment method (VBLA),
which regulated the angle of attack adaptively according to the real-time feedback velocity
of the CoM, was introduced for the walking and running of the SLIP model, as well as for
robust hopping of the Trunk-SLIP (TSLIP) model [24]. However, in [24], stable forward
jumping could not be achieved for the extended SLIP model because the desired forward
speed was not considered in the control method. Raibert [14] presented a method to adjust
the angle of attack for an asymmetric model where the leg mass was concentrated under
the spring leg, which was different from the model in this work. To implement stable
and accurate forward speed control of the compliant one-legged robot, we propose a foot
placement method, which could adaptively regulate the angle of attack of the robot.
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In [14], based on symmetry analysis, Raibert provided a foot placement method for
the forward speed control of a one-legged robot model whose torso CoM coincides with
the hip joint; however, it is inapplicable for the extended SLIP because the foot angles when
the robot lifts off and touches down are not symmetrical anymore. Here, we improved the
method by introducing an integral term to compensate for the forward speed tracking error
introduced by the asymmetric characteristic of the extended SLIP model. The improved
method was expressed as:

xTD(k + 1) = kTTst(k)
.
xTap(k) + kv

( .
xTap(k)−

.
xTdes

)
+kI

k
∑

i=0

( .
xTap(k)−

.
xTdes

) (13)

θFdes(k + 1) = arcsin
(

xTD(k + 1)
Lr

)
(14)
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where xTD(k + 1), represents the point foot displacement, with respect to the hip joint in the
x-direction, for the touchdown event of k + 1th jumping, Tst(k),

.
xTap(k) represent the stance

period and the forward speed of the torso at the apex in kth jumping, and kT , kv represent
the time coefficient and speed error coefficient;

.
xTdes represents the desired forward speed,

the last term in the right hand of Equation (13) represents the integral of the tracking error
of the forward speed, and θFdes(k + 1) represents the desired angle of attack for the next
touchdown event.

To avoid disturbance due to inaccurate evaluation of the stance period Tst, it is updated
using the last stance period Tst(k). It is worth noting that the time coefficient kT did not
need to be set to 1/2, which is different from Raibert’s method as well [14]. The introduced
integral term could eliminate the steady-state tracking error and implement an accurate
forward speed tracking performance.

Noting that the desired angle of attack could not be controlled directly, we controlled
it indirectly through the servo control of the desired leg swing angle γdes. The relationship
between these two angles is γdes = −θT + θFdes, where θT could be measured by IMU. A
PD control strategy is adopted to track the desired leg swing angle τ = kp(γ− γdes) + kd

.
γ,

where kp and kd are PD control parameters that need to be chosen carefully. Furthermore,
it is worth mentioning that, due to the maximum output ability of the motor M, τ needs to
be restricted to a certain range [−τm, τm].

4.1.3. Jumping Height Control

Publications could be found on the leg rest length regulation methods for tracking
the hopping and running height of compliant legged robots. In [24], a deadbeat control
strategy, which was based on the analytical solution of a simple vertical jumping model,
was utilized for hopping height tracking control; however, it does not apply to the planar
jumping described in this work. In [30], an energy-based leg rest length regulation method
was proposed by Ioannis et al. for an energy-stabilized SLIP model, which is also different
from the model described in this work. To make full use of the passive compliance of
the spring-like leg and achieve accurate jumping height tracking for the extended SLIP
model, an improved leg rest length regulation method, based on the one presented in [30],
was introduced.

We assume that γ has already been controlled to the desired position (i.e., there is
no relative motion between the torso and leg) before the robot reaches the jumping apex,
which is practically possible when the servo control for γ is good enough. Moreover, to
maintain a stable posture in the flight phase, the angular velocity of the total robot should
be sufficiently small. Under the above two conditions, it can be seen that the total rotation
kinetic energy at the jumping apex is close to zero. Under the condition that the forward
speed was accurately tracked to the desired value, the jumping height could be determined
by the total system energy of the robot. Considering this, we adopted the energy-based leg
rest length regulation law to control the jumping height in the stance phase:{ .

Lr = 0,
.
L < 0

.
Lr = −kLr

.
L(E− Etar),

.
L ≥ 0

(15)

where kLr represents the tuning coefficient of leg rest length, and E and Etar represent
the feedback system energy and the target system energy for jumping height control,
respectively. Leg rest length would be restricted to the range of Lrmin < Lr < Lrmax due
to the structure dimension limitation. The constraint condition

.
L ≥ 0 was added to the

regulation method, which is different from the method in [30], meaning that the leg rest
length would be regulated only after the spring-like leg is compressed to the bottom in the
stance phase, which makes the impact energy absorb sufficiently by the passive component
of the robot and gradually injects or releases energy to track the desired total energy for
jumping height control.
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In a certain limit cycle of the one-legged robot, the system energy E, in the flight phase,
is constant when neglecting air resistance and joint damping. If one wants to track the
desired jumping height, it is necessary to accurately determine the target system energy
Etar. However, not all states of a limit cycle of the robot with the proposed control strategy
could be known previously as the states of the simple SLIP model, which means that the
accurate target system energy could not be known previously. Thus, the method proposed
in [30] would fail to accurately track the desired jumping height for the extended SLIP
model. Here, an updating method of the target system energy was introduced, in which
the target system energy was initiated by using the initial states of the robot, and iteratively
updated based on jumping height error:

Etar0 = mT gHdes + mLg(Hdes − rT − L1) +
1
2
(mT + mL)

.
x2

Tdes
(16)

Etar(k + 1) = Etar(k) + kE
(
zTap(k)− Hdes

)
(17)

where Hdes,
.
xTdes , Etar0 represent the desired jumping height, desired forward speed of

the torso at the apex, and the estimated initial target system energy for a stable jump-
ing; Etar(k), zTap(k) represent the updated target system energy and feedback jumping
height in the kth jumping; kE represents the energy updating coefficient based on jumping
height error.

The leg rest length could not be regulated using the dynamics control method in the
flight phase because the foot mass was not taken into account. Therefore, a kinematic
interpolation method was utilized to make the leg rest length retract to the initial value to
prepare for the next touchdown event:

.
Lr = (Lr0 − Lre)

2π

Tm
sin(

2π

Tm
t), t ∈ [0,

Tm

4
] (18)

where Lre represents the end state of leg rest length in the stance phase; Tm represents
the period of the sine function, and it needs to be chosen properly to make sure the foot
would not touch the ground during the leg swing process, as well as to make sure the leg
rest length retracts to the initial value before touchdown. Figure 7 shows one of the leg
rest length variations in stable jumping. The black dotted curve, which has two different
values, was added to indicate the different phases in stable jumping, with the low value
indicating the stance phase and the high value indicating the flight phase. The blue curve
is a simulation result indicating the leg rest length variation over time. Specifically, from
point A to A1, the blue curve indicates the leg rest length variations over time in a jumping
period. From A to B, the leg rest length does not change, indicating the pure compression
process of the passive compliant leg in the stance phase; from B to C, the leg stretches to
inject energy for jumping height control in the stance phase; from C to D, the leg retracts
after the legged robot lifts off and then waits for the next touchdown event.
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To implement the stable and fast jumping of the robot, the desired forward speed and
the jumping height, which were the control target values, were given first. We selected the
jumping apex as the initial position of the extended SLIP model. By giving the initial states
of the extended SLIP model properly, and tuning the control parameters well, stable and fast
jumping could be achieved, and the given control target values could be tracked accurately.

4.2. Stability Analysis

The linearized Poincare map, which has been widely used to analyze the asymptotical
stability of the limit cycles of legged robots [31,32], was adopted to analyze the stability
of the jumping limit cycle of the legged robot. A brief introduction to using the linearized
Poincare map for the jumping limit cycle in this work was described as follows.

The Poincare surface of the jumping dynamics is selected as S = {xs| xs ∈ Qs, xs(6) =.
L = 0}, namely the moment of maximum compression of the spring leg in the stance
phase. Since the leg rest length was not changed during the compression phase, it does
not need be taken into account. The Poincare map could be expressed as P : S→ S , where
xs(k + 1) = P(xs(k)). The fixed point about a limit cycle was expressed as

x∗s =
[
θ∗T ; γ∗; L∗;

.
θ
∗
T ;

.
γ
∗;

.
L
∗
= 0

]
, which satisfied x∗s = P(x∗s ). The Poincare map has

only five independent arguments since
.
L = 0 is constant.

The Poincare map could be linearized about the fixed point, with respect to the five
independent arguments, as xs(k + 1)− x∗s = JP(xs(k)− x∗s ), where JP is the Jacobian of the
Poincare map and could be computed as follows:

JP = [JP1, JP2, . . . , JP5]5×5 (19)

JPi =
P(x∗ + δxs,i)− P(x∗ + δxs,i)

2δxs,i
, i = 1, 2, . . . , 5, (20)

and δxs,i = [0; 0; . . . ; δxs,i; . . . ; 0]5×1, i = 1, 2, . . . , 5, δxs,i > 0. The fixed point x∗s of the
Poincare map is locally exponentially stable if and only if the eigenvalues of JP have
magnitude strictly less than 1, i.e., |λP|max < 1.

5. Simulations and Results

This section aimed at validating the effectiveness of the proposed control strategy
through numerical simulations. The jumping simulations of the compliant one-legged
robot were conducted using MATLAB 2019b, and the dynamics functions were solved
by the ODE45 solver. According to the real robot data, the restriction of hip torque and
leg rest length was set as τm = 60 Nm, −

.
Lmin =

.
Lmax = 1 m/s, respectively. The model

parameters of the extended SLIP model could be seen in Table 1. From Equations (12)–(18),
control parameters need to be selected carefully to implement stable jumping, namely the
stable posture control parameter rv in stance phase, the angle of attack control parameters
kT , kv, kI and the hip servo control parameters kp, kd in flight phase, the jumping height
control parameters kLr , kE, and the leg retraction coefficient Tm. To simplify the parameter
tuning process, we fixed some of them as rv = 0 m, kv = 0.01 s−1, kI = 0.01 s−1,
kp = 900 Nm·rad−1,kd = 22 Nm·rad−1·s, kE = −50 J·m−1, Tm = 0.4 s, Tst0 = 0.2 s, and
then, there remain only two parameters kT , kLr that need to be tuned. The simulation
results shown below demonstrated the effectiveness of these settings.

To find the stable limit cycle of the robot with different control target values, the initial
states of the robot were set as x f =

(
0; Hdes; 0; 0;

.
xTdes ; 0; 0; 0

)
, which means the control

target variables were initiated to the control target values, and other state variables were set
to zero. Tuning the control parameters kT , kLr well, the jumping of the legged robot would
converge, to a certain limit cycle, from the initial states with a relatively fast convergence
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rate. An optimal method was utilized for auto-tuning the two control parameters described
as follows:

min
(kT ; kL)

F =
N=50

∑
k=1

k2

N2 ×
[( .

xTap(k)− vdes

)2
+
(

zTap(k)− Hdes

)2
]

(21)

s. t.
{

Given initial condition
Robot dynamics with the proposed controller

(22)

where F represents the evaluation function value, and N represents the maximum preset
jumping step. The evaluation function value is the weighted average of the tracking error at
apexes, and the weight of the tracking error increases with the jumping steps; the weights
are selected to make the jumping converge fast. If the robot falls before N step, a relatively
large number, such as 100, would be added into F as punishment to make sure the robot
converges to a stable jumping value. This optimal method was solved by the FMINCON
function of MATLAB 2019b.

5.1. Control Precision and Stability

In this subsection, the desired jumping height and forward speed (i.e., control tar-
get values) were set as Hdes = 1 m,

.
xTdes = 1 m·s−1, and the initial states were set as

x f =
(
0; 1 m; 0; 0; 1 m·s−1; 0; 0; 0

)
, which means the one-legged robot was raised to 0.1 m

above the ground and then allowed to fall freely with an initial forward speed of 1 m·s−1.
The control parameters were optimized to obtain the minimum evaluation function value
of Equation (21).

Figure 8 presents the stable and accurate tracking results of the jumping height and
the forward speed. In Figure 8a, the blue curves represent the real-time trajectories of the
torso, the red horizontal lines represent the desired jumping height and desired forward
speed, respectively, and the green vertical lines in the two enlarged subplots represent the
moment, while the torso is arriving at the apexes, in which

.
yT = 0. It could be seen that the

jumping height and the desired forward speed were tracked accurately at the apex after
about 8 s, validating the accurateness of the proposed control strategy. Figure 8b shows the
phase graph of four of the state variables, and it could be seen that a stable limit cycle was
formed with the proposed control strategy.
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Figure 8. One of the stable and accurate control results: (a) The stable and accurate control target
tracking results with steady states scaled up; (b) The phase graph of two state variables of the
compliant one-legged robot in a stable jump, which could be seen to form a limit cycle.
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The stability of the limit cycle above was discussed using the linearized Poincare map.
The fixed point of the limit cycle on the Poincare surface was found as
x∗ = −0.1140; 0.1448; 0.3429; 0.8498;−2.749, and the eigenvalue vector of the Jacobian ma-
trix of the Poincare map was found as λP = 0.354 + 0.853i; 0.354 + 0.853i;
−0.0036 + 0.125i;−0.0036 + 0.125i; 0.488, where |λP|max = 0.923 < 1, meaning that the
limit cycle is exponentially stable; thus, the jumping of the robot is also stable.

In order to show the advantages of the proposed control strategy for the extended SLIP
model, two other comparative simulations with different control strategies were conducted.
To make the posture stabilized, two comparative simulations were conducted using the
VPP control method mentioned in Section 4.1.1. The differences between these control
strategies are the control method of the forward speed and the jumping height, which were
described, in detail, as follows.

Comparative simulation 1 (C1): For the control of the forward speed, Raibert’s method,
based on symmetric analysis, without the integral term was adopted, and the initial
estimated stance period Tst0 was not updated during the total simulation process; for
the control of jumping height, the energy-based leg rest length regulation with constant
estimated energy expressed in Equation (16) was adopted. This control strategy could be
seen as a simple combination of the related method in [14,30]. The control parameters were
tuned well to achieve stable jumping, which could be seen in Table 2. The initial conditions
and remaining parameters were the same as the proposed strategy.

Table 2. The value of the control parameters of different control strategies.

Method kT kL kv kI kE

C1 0.5 0.04 0.003 0 0
C2 0.5 0.1 0.015 0.01 0

Proposed 0.45 0.062 0.01 0.01 −50

Comparative simulation 2 (C2): The proposed forward speed control method with the
integral term was adopted for the forward speed control, and the energy-based leg rest
length regulation, with constant estimated energy expressed in Equation (16), was adopted
for the jumping height control. This control strategy was set to compare the effectiveness
of the energy updating method for the accurate control of jumping height. The control
parameters were tuned well to achieve stable jumping, which could be seen in Table 2. The
remaining parameters were the same as the proposed strategy.

Figure 9 depicted the variations of the control target variables, i.e., jumping height
and forward speed at the apex, with different control strategies. The three control strategies
could lead to a stable jumping for the extended SLIP model; however, the control accuracy
was different from each other. The result of C1 indicates that neither the desired jumping
height, nor the desired forward speed, could be tracked accurately, which means that
the simple combination of the existing methods in [14,30] could not achieve the desired
jumping for the extended SLIP model. Comparing C2 to C1, the desired forward speed
could be tracked accurately by introducing the integral term of the jumping speed, though
the jumping height could not be tracked accurately, which is due to the inaccurately
estimated system energy in a stable limit cycle. Comparing the proposed method to C2, by
introducing the system energy updating method, both the desired forward speed and the
desired jumping height could be tracked accurately, demonstrating the effectiveness of the
proposed control strategy for accurate jumping height and forward speed tracking for the
extended SLIP model.
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Figure 9. Comparative simulations with different control strategies.

5.2. Fast and Robust Jumping

Generally, we care about the jumping speed of the robot more than the jumping
height. To further test the ability of the one-legged robot with the proposed control strategy
toward fast jumping, different forward speed tracking simulations were conducted. In the
following simulations, the forward speed was selected as the main control target, and the
desired jumping height was fixed as Hdes= 1 m.

Table 3 shows the optimal jumping results with different desired forward speeds.
The optimal time coefficient kT needs not to be 0.5, which is considered to be due to the
asymmetric properties of the extended SLIP model, and it played a role in the optimization
of the jumping performance. With the proposed controller, and without the restriction of the
ground fraction cone, the robot could be seen implementing different forward speeds, from
zero to a fast speed of 1.75 m/s (6.3 km/h), which demonstrated the good performance
of the proposed controller for fast stable jumping of the extended SLIP model. On the
other hand, it could be seen that the control parameters, evaluation function values F, and
the eigenvalues λP of the Jacobian matrixes do not exhibit strong regularity with respect
to desired forward speeds, which was considered to be due to the similar but different
initial conditions.

Table 3. The optimal control parameters and results with different desired forward speeds.

Item 0.00 m/s 1 0.25 m/s 0.50 m/s 0.75 m/s 1.00 m/s 1.25 m/s 1.50 m/s 1.75 m/s

kT 0.3600 0.3636 0.3769 0.4200 0.4533 0.4368 0.4237 0.4400
kL 0.1000 0.1023 0.1189 0.0320 0.0620 0.0221 0.0196 0.0150
F — 0.0535 0.0628 0.0555 0.0483 0.0612 0.1711 4.0591

λP 0.978 0.963 0.953 0.983 0.923 0.907 0.852 0.872
1 Jumping with the desired speed of 0 m/s and the initial conditions above, kT and kL could be set as attributable
values, to make it stable with disturbance, we used the parameters as those of the stable jumping with the desired
forward speed of 0.25 m/s.

The robustness of stable limit cycles with different forward speeds was explored as
well. In this work, the robustness was indicated by the admitted single-state perturbation
ranges of the state variables in limit cycles, within which the jumping would still converge
to the limit cycle. The initial conditions of the legged robot were set as the apex states of
the limit cycles, with different desired forward speeds in previous simulations, but the
control parameters remained the same as those in the related limit cycles. It is worth noting
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that the event-based variables and the integral term in Equations (13) and (17) should be
initiated by those in related limit cycles as well because they also influence the locomotion
of the robot. Then, the perturbation would be added to one of the state variables at the apex
of the robot in a single simulation, and we found the maximum and minimum admitted
perturbations in which the robot could recover to the stable jumping. To simplify the
simulation process, the four typical state variables

(
zT ; θT ;

.
xT ;

.
θT

)
would be selected to be

tested. The perturbations of xT would not influent the stability of the jumping, and the
perturbations of

(
γ;

.
γ
)

could be transferred to those of
(

θT ;
.
θT

)
because the target angle of

attack is always constant during the flight down phase.
Figure 10 shows the admitted single-state perturbation ranges of the four different

state variables, with respect to different desired forward speeds. The black dotted lines
represent the zero perturbations of the related stable limit cycle with different desired
forward speeds, and the red and blue curves represent the upper and the lower boundary
of the admitted perturbations in which the robot could remain stable jumping. It could
be seen that the robot could recover to a stable jumping state with relatively large single-
state perturbations. Figure 10a depicted the admitted single-state perturbation ranges of
the jumping height zTap . It could be seen that the robot could withstand large positive
perturbations of jumping height almost above two times the net jumping height, i.e.,
0.1 m. However, the admitted negative perturbation ranges are relatively low and increase
slightly as the desired forward speed. Figure 10b depicted that the robot could withstand
about 20-degree positive perturbations of the torso orientation at the apex. Specifically,
it is remarkable that the admitted perturbation of the limit cycle with the 0 m/s desired
forward speed is about ±90◦, which is considered to inherit the advantages of the VPP
controller for the vertical hopping presented in [24]. Figure 10c,d depicted the admitted
single-state perturbation ranges of the forward speed and the torso angular velocity, which
are nearly 1 m/s and 50 deg/s, and both are relatively large. The analysis above validates
the robustness of the stable jumping.
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Figure 10. Admitted single-state perturbation ranges of four different state variables of the torso
at the apex, with respect to different desired forward speeds: (a) Admitted perturbation ranges of
the jumping height; (b) Admitted perturbation ranges of the orientation of the torso; (c) Admitted
perturbation ranges of the forward speed of the torso; (d) Admitted perturbation ranges of the
angular velocity of the torso.
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To further test the robustness, we tested the robot jumping on uneven terrain with a
one-step disturbance of ground height, as shown in Figure 11a. The initial conditions of
the legged robot were set as apex states of the limit cycle with different desired forward
speeds in previous simulations. In this part, we assumed that the foot would not collide
with the edge of the uneven terrain, the jumping height of the torso was set as 1 m, which
means the net jump height of the torso is 0.1 m. Figure 11a shows the snapshot of jumping
on uneven terrain with one-step ground height disturbance ∆h.
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Figure 11. The robustness of jumping on uneven terrain: (a) A snapshot of the robot jumping on
one-step uneven terrain; (b) The admitted ranges of ground height disturbances where jumping
remains stable, with respect to different desired forward speeds.

Figure 11b shows the admitted disturbance ranges of the ground height with respect
to different desired forward speeds within which the robot maintains stable jumping. The
red curve denotes the maximum admitted positive disturbances of ground height, and the
blue curve denotes the minimum admitted negative disturbances of ground height. The
stable jumping could be maintained with a certain range of ground height disturbance,
where the higher the forward speed, the larger the upper boundary of the admittance
disturbance and the smaller the lower boundary of the admittance disturbance. The stable
jumping could withstand the negative ground height disturbance above 100% of the net
jumping height of the torso (0.1 m), which is larger than the positive one. The simulation
result demonstrates the robustness of the robot jumping on uneven terrain.

6. Conclusions and Future Work

This work proposed an improved control strategy for the stable and fast planar
jumping of a designed compliant one-legged robot. The robot was modeled as an extended
spring-loaded inverted pendulum (SLIP) with non-negligible torso inertia, leg inertia, and
leg damping. The posture stable control was achieved by introducing the approximate
VPPC-FP method. An improved foot placement method with variable time coefficient and
integral term of the forward speed tracking error was introduced to accurately track the
forward speed. A modified energy-based leg rest length regulation law was adopted, in
which the integral term of jumping tracking error was also introduced to accurately track
the jumping height. A practical stability criterion was introduced for the judgment of the
jumping stability.

Numerical simulations were conducted to validate the effectiveness of the proposed
control strategy. Results show that stable and fast planar jumping of the compliant one-
legged robot could be implemented based on the extended SLIP model and the proposed
control strategy. The jumping height and forward speed of the torso at the apex could be
tracked accurately. The robot could recover to stable jumping from certain disturbances of
state variables or uneven terrains.

In the next step, experiments will be conducted on our compliant one-legged robot for
validating the effectiveness of the proposed control strategy in practice. In the long term,
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we will build a biped robot with passive compliance and extend the control strategy to a
stable and fast bipedal robot’s jumping and running.
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