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Abstract: This paper presents a type of single-phase double “I” hole phononic crystal (DIH-PnC)
structure, which is formed by vertically intersecting double “I” holes. By using the finite element
method, the complex energy band curve, special point mode shapes, and different delay lines were
calculated. Numerical results showed that DIH-PnC yielded ultra-wide band gaps with strong
attenuation. The formation mechanism is attributed to the Bragg-coupled local resonance mechanism.
The effects of the pore width in DIH-PnC on the band gaps were further explored numerically.
Significantly, as the pore width variable, the position of the local resonance natural frequency
could be modulated, and this enabled the coupling between the local resonance and the Bragg
mechanism. Subsequently, we introduced this DIH-PnC into the thin-film piezoelectric-on-silicon
(TPOS) resonator. The results illustrated that the anchor loss quality factor (Qanc) of the DIH-PnC
resonator was 20,425.1% higher than that of the conventional resonator and 3762.3% higher than
the Qanc of the cross-like holey PnC resonator. In addition, the effect of periodic array numbers on
Qanc was researched. When the Qanc reached 1.12 × 106, the number of the period array in DIH-PnC
only needed to be 1/6 compared with cross-like holey PnC. Adopting the PnC based on the coupling
Bragg and local resonance band gaps had a good effect on improving the Qanc of the resonator.

Keywords: anchor loss; MEMS resonator; phononic crystals; single-phase material; coupling band
gap; quality factor

1. Introduction

With the development of microelectromechanical systems (MEMS) technology, thin-
film piezoelectric-on-silicon (TPOS) is considered by most researchers to be a miniaturized,
preferred choice for high-performance, low-power integrated resonators [1]. Regardless
of the application in sensors, detectors, and small acoustic antennas, TPOS resonators
are required to have a high quality factor (Q) so that higher accuracy can be achieved [2].
At present, scholars have carried out a lot of research on the Q of TPOS resonators [3–6]. The
research shows that one of the main factors affecting the low Q of TPOS resonators is that
when the resonator is working, elastic waves propagate acoustic energy to the resonator
substrate through the anchor point support, resulting in an unavoidable anchor loss [7].

On this basis, some scholars have proposed various methods to reduce anchor point
loss [8–17]: Harrington et al. demonstrated an arc-shaped acoustic reflector in aluminum
nitride on a silicon LVR, enabling the reflection of acoustic energy back to the resonator [8].
Di et al. improved the Q value by using grooves and convex curve pairs at the edge of the
resonator to reduce anchoring losses, increasing the Q of the TPOS resonator by more than
nine times [9]. Another common method to form acoustic reflectors is to rely on the band
gap properties of phononic crystals (PnCs), which can effectively block the propagation of
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acoustic energy within the band gap range [10]. Zhu et al. investigated a two-dimensional
air-hole PnC unit cell in a 143 MHz TPOS resonator which could double the Q [11]. Apart
from air-holes [11], other shapes of the PnC unit cell, such as rings [12], cross-like holes [13],
fractals [14], snowflakes [15], solid discs [16], and spiderweb-like [17], have been also
reported. Among them, the research of Ardito et al. showed that a larger band gap width
is beneficial to confine elastic waves, thereby improving the Q [16]. The above-mentioned
PnC structures are all based on the band gap generated by the Bragg scattering mechanism
(BG). Since the Bragg scattering mechanism is mainly formed by the multiple scattering
of the periodic structure and the interference effect between the structural materials, the
attenuation degree has a strong requirement on the periodicity of the structure [18,19].
Therefore, TPOS resonators made of PnC based on the Bragg mechanism tend to have a
large area occupied by PnC [11–17].

It is well-known that the local resonance mechanism (LR) of acoustic metamaterial was
proposed by Liu et al. in 2000. Compared with the Bragg mechanism, this local resonance
mechanism has the advantages of a lower band gap, stronger attenuation, and lower
periodicity requirements [20,21]. In recent years, the coupling mechanism between Bragg
and local resonance has attracted the attention of a large number of researchers [18,19,22–27].
Bo Yuan et al. achieved Bragg-coupled local resonance band gaps (LR BGs) by tuning the
local resonant band gap to coincide with the Bragg band gap in multi-materials [18]. A. O.
Krushynska et al. achieved quasi-LR BGs in single-phase materials [19]. LR BGs can not only
widen the band gap but also enhance the attenuation performance of the PnC [18]. Xiangyu
Tian et al. realized LR BGs at low frequencies with perforated PnC [26]. Qiang Wang et al.
obtained LR BGs on a periodic “sandwich” plate type [27]. Currently, only Yinjie Tong et al.
in the field of TPOS resonators proposed multi-material pillar-based phononic crystals that
may be based on coupling mechanisms [28]. However, the preparation and application of
multi-material phononic crystals are limited. Therefore, there is a need for a single-material
coupling mechanism phononic crystal that can be applied to TPOS resonators.

In this paper, a single-phase DIH-PnC structure is proposed, which was formed by
vertically intersecting double “I” holes. In the second part, combined with the complex
energy band curve and the special point mode shape, the band gap mechanism of the
DIH-PnC structure is deeply analyzed and the attenuation degree is analyzed by three
delay line transmission parameters S21 and the normalized displacement field, and finally,
the hole parameter pair is analyzed for the effect of the band gap mechanism. In the third
section, the Q effect on the resonator using the coupled band gap mechanism and the
number of periodic arrays of PnC is analyzed by introducing this single-phase DIH-PnC
structure into the TPOS resonator. Finally, a brief conclusion is arranged.

2. Phononic Crystal Design
2.1. Dispersion Relations

In this study, a double “I” hole (DIH-PnC: double “I” hole phononic crystal) is pro-
posed. The structure consists of vertically intersecting double “I” holes forming the same
four-square masses (as shown in Figure 1a). Figure 1a is the structure of DIH-PnC, and
Figure 1b is the unit cell of the original cross-like holey PnC. The right side of Figure 1 is
the corresponding unit cell model. Both the DIH-PnC structure and the cross-like holey
PnC structures are all square lattices and show a symmetrical form. Therefore, DIH-PnC
is identical to the irreducible Brillouin region of the cruciform PnC structure (as shown
in Figure 1). Among them, the geometric parameters include the lattice constant of the
unit cell a = 24 µm, the height h = 10 µm, the length of the inner hole m = 11 µm and
n = 20 µm, and the width of the inner hole c and d. Different internal mass block sizes and
cross-like holey PnC structures can be achieved by adjusting the parameters of different
internal hole widths c and d. The material used in the DIH-PnC is consistent with the TPOS
resonator substrate material and is made of anisotropic single-crystal silicon that receives
the resonator to exhibit higher power handling capabilities. The default x, y, and z axes of
anisotropic single-crystal silicon is set to (110), (−110), and (001) directions of the standard
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direction (100) for silicon wafers, and the elastic modulus E of anisotropic single-crystal
silicon, shear modulus G, and Poisson’s ratio σ are shown in Table 1.
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Figure 1. DIH-PnC structure: (a) DIH-PnC structure, (b) cross-like holey PnC structure. The right
side is a single cell.

Table 1. Properties of Materials.

Elastic Modulus Shear Modulus Poisson’s Ratio

Ex = 169 GPa Gxy = 50.9 GPa σxy = 0.064
Ey = 169 GPa Gyz = 79.6 GPa σyz = 0.36
Ez = 130 GPa Gzx = 79.6 GPa σzx = 0.28

In order to analyze the band gap properties of the PnC structure, the Bloch–Floquet
theoretical calculation method based on the finite element method was used [29,30]. From
the real wave vector energy band curve and the imaginary wave vector attenuation curve
combined with the band gap boundary displacement field, three aspects were studied. Due
to the Bloch–Floquet theoretical calculation, this method was based on the infinite periodic
structural arrangement of unit cells along the x and y directions, so we only needed to study
the unit cell model shown on the right side of Figure 1. The periodic boundary conditions
applied to the x and y directions of the unit cell structure are expressed as:

p(R + a) = p(R)eiKa, (1)

where R is the direction vector; a is the unit cell lattice constant; K is the wave vector.
The eigenvalue problem was solved by sweeping the wave vector K (real wave vector,

imaginary wave vector) over the boundary of the irreducible Brillouin region of Figure 1.
When the inner hole width is d = 3.5 µm and c = 1 µm, the complex energy band

diagram of the DIH-PnC structure is shown in Figure 2a. For the convenience of viewing,
the complex energy band within 20–26 MHz is partially enlarged. The solid blue line and
the red dotted line represent the real wave vector energy band curve and the imaginary
wave vector attenuation curve of the wave vector K, respectively. The right side of Figure 2a
shows the mode shape diagram of the special point of the first band gap boundary, and
the left side of Figure 2a shows the mode shape diagram of the special point of the second
band gap boundary. It can be seen from the complex energy band curve in Figure 2a that
there were two complete band gaps in the frequency range of 0–160 MHz, of which the first
band gap was at 22.9−24.9 MHz and the second was at 77.6–125.1 MHz. It is worth noting
that there was a flat band in the two band gap ranges and a third flat band appeared at
131.5 MHz. The special point mode shape of the flat band is shown in Figure 2b. When the
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structure is known to be at the natural frequency of the local resonance, the virtual wave
vector decay curve exhibits obvious sharp features [31]. Combining with the attenuation
curve of the virtual wave vector where the flat band is located in Figure 2, it could be known
that the flat band is caused by the first natural frequency, the second natural frequency, and
the third natural frequency of the four mass blocks. It can be seen from the special point
mode shapes of A/B in Figure 2 that the first band gap boundary mode shapes all show
the torsional local resonance mode of the diagonal mass block, and opening the first band
gap was the local resonance band gap: 22.9−24.9 MHz.
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Figure 2. DIH-PnC structure, (a) is the complex energy band curve in the range of 0–160 MHz, the
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second band gap special point mode shape. The blue solid line represents the real wave vector
energy band curve, and the red dotted line represents the imaginary wave vector attenuation curve.
(b) Is the 0–160 MHz inside flat band with special point mode shape.

In order to further analyze the second band gap mechanism of the DIH-PnC structure,
the band gap mechanism of the cross-like holey PnC structure formed by comparing
internal pore width parameters c = m = 11 µm and d = n = 20 µm was examined. The
complex energy band curve is shown in Figure 3, and the right side of Figure 3 is the mode
shape diagram of the special point of the boundary of the band gap. It can be seen from the
complex energy band curve in Figure 3 that there was a complete band gap of 101–128 MHz
in the cross-like holey PnC structure in the range of 0–160 MHz, and the virtual wave vector
attenuation curve showed a continuous and stable change in the range of the band gap.
The mode shape diagram on the right side of Figure 3 shows that the outer frame of the
band gap boundary showed a symmetrical mode. Therefore, the band gap 101–128 MHz
of the cross-like holey PnC structure is the Bragg band gap mechanism. In Figure 2a, the
mode shape of the C/D point is different from that of A/B in Figure 3; the mode shape of C
in Figure 2 point shows the interaction between the torsional mode shape of the inner mass
and the symmetrical mode shape of the outer frame. D in Figure 2 point mode shapes show
the interaction of the outer frame antisymmetric mode shapes with a small number of inner
mass torsional modes. Meanwhile, in Figure 2a, the attenuation curve of the virtual wave
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vector in the second band gap is stronger than that of the virtual wave vector in the band
gap in Figure 3. Therefore, the second band gap is formed by Bragg and the local resonance.
Compared with the 27 MHz band gap width of the cross-like holey PnC, the second band
gap of the DIH-PnC structure reached 47.5 MHz, and the band gap was widened by 175%.
At the same time, the DIH-PnC structure had a stronger attenuation ability in the second
band gap than the attenuation ability in the cross-like holey PnC band gap. The results
showed that the coupling mechanism based on Bragg and local resonance could widen the
band gap and improve the attenuation capability.
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2.2. Transmission Spectrum

In order to verify the stopband effect of the coupling mechanism DIH-PnC structure
under finite arrays, we used different delay line models for comparative analysis and used
the transmission parameter (i.e., S21) to measure the degree of stop band. Specifically, the
delay line model was established as shown in Figure 4; Figure 4a is the solid structure
comparison delay line model; Figure 4b is the cross-like holey PnC structure comparison
delay line model; Figure 4c is the DIH-PnC structure delay line model; among them, the
PnC adopted a 2-row × 5-column array. As shown in Figure 4, an x-direction displacement
excitation is applied at the input probe, and the displacement result is picked up using the
output probe. Furthermore, in order to reduce the interference of elastic wave reflection
on the S21, perfect matching layers (PMLs) are set at both ends of the model, imposing
periodic boundary conditions on both sides of the delay line.

The S21 is measured in decibels from the input probe to the output probe and is
expressed as:

S21(dB) = 10log10

(
S0

S1

)
, (2)

Among them, S0 represents the output displacement and S1 represents the input
displacement.

The result of delay line S21, as shown in Figure 5, in the band gap frequency range,
was that the delay line composed of PnC had a larger drop than the solid contrast delay
line. When the frequency was in the range of 24–27 MHz, the S21 of the DIH-PnC delay
line had a relatively obvious attenuation and exhibited a sharp characteristic, which is
consistent with the analysis in Section 2.1, due to the local resonance band gap. When the
frequency was 75–125 MHz, although the S21 of the cross-like holey PnC delay line and
the S21 of the DIH-PnC delay line had obvious attenuation, the overall attenuation of the
DIH-PnC delay line was more obvious than that of the cross-like holey PnC delay line.
When the frequency was at 128 MHz, the transmission coefficient S21 of the cross-like holey
PnC delay line reached the maximum attenuation of −62 dB. When the frequency was at
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120 MHz, the transmission coefficient S21 of the DIH-PnC delay line reached the maximum
attenuation of −100 dB. It can be seen that the maximum attenuation of the DIH-PnC delay
line was 1.6 times that of the cross-like holey PnC delay line. The attenuation effect of the
DIH-PnC delay line was weakened at 110 MHz, which was caused by the second flat band
in the second band gap of the DIH-PnC structure.
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To further analyze the stop band situation within 75–125 MHz, the normalized dis-
placement field of different delay lines at the same frequency of 108 MHz is plotted using a
heat map (as shown in Figure 6); red indicates maximum displacement, white indicates
no movement, and arrows indicate the direction of displacement at each point. Figure 6a
shows the normalized displacement field of the solid contrast delay line, Figure 6b is the
normalized displacement field of the cross-like holey PnC delay line, and Figure 6c is the
normalized displacement field of the delay line of the DIH-PnC structure. It can be seen
from the figure that when the frequency was at 108 MHz, the normalized displacement field
of the cross-like holey PnC delay line gradually weakened as the elastic wave propagated
in the x-direction. When the frequency was at 108 MHz, the DIH-PnC structure delay line
not only had the normalized displacement field but gradually weakened as the elastic wave
propagated in the x-direction. At the same time, a large number of elastic waves were
blocked on the left side of the first column of DIH-PnC unit cells due to the local resonance
of the internal mass. It was further verified that the second band gap of the DIH-PnC
structure is based on the coupling mechanism of Bragg and local resonance.
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Figure 6. Normalized displacement field of the delay line model at 108 MHz. (a) Solid contrast delay
line, (b) cross-shaped delay line, (c) DIH-PnC delay line.

2.3. Influence of Hole c Parameter

To analyze the effect of pore width on the proposed single-phase band gap mechanism,
by keeping other parameters unchanged, the complex energy band curve was studied
when only the hole width c was changed (as shown in Figure 7). Figure 7a–c shows the real
wave vector energy band curves when c = 1 µm , c = 3 µm , and c = 5 µm .

It can be seen from Figure 7 that when c = 1 µm, the second band gap of the DIH-PnC
structure was 77.6–125.1 MHz. When c = 3 µm, the second band gap of the DIH-PnC



Micromachines 2022, 13, 1217 8 of 13

structure: 85.3–125.0 MHz. When c = 5 µm, the second band gap of the DIH-PnC structure:
94.1–128 MHz.
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As shown in Figure 7a, when c = 1 µm, there were three flat bands caused by the
third-order natural frequencies ( f1, f2, and f3) in the range of 0–150 MHz. The second flat
band was located in the second band gap, the third flat band was located at the boundary
of the second band gap, and the second band gap mechanism was a strong coupling
mechanism. The virtual wave vector decay curve in the second band gap had the largest
absolute value at 102.3 MHz (|Im(q)|). As shown in Figure 7b, when c = 3 µm, only two
flat bands appeared in 0–150 MHz, and the third flat band disappeared in 0–150 MHz. The
second flat band (generated by the second natural frequency f2) moved to the boundary
of the second band gap, and the second band gap mechanism was the coupled band gap
mechanism. The absolute value of the virtual wave vector attenuation curve in the second
band gap was larger at 107.4 MHz (|Im(q)|). It is particularly noteworthy that when the
second flat band moved to the second boundary, it interacted with the original band gap
boundary energy band, so the second flat energy band exhibited a bending phenomenon.
As shown in Figure 7c, when c = 5 µm, only one flat band remained in 0–150 MHz. At
this time, the flat band produced by the third-order natural frequency was far from the
boundary of the second-order band gap. The second band gap mechanism reverted to the
Bragg gap. The absolute value of the virtual wave vector decay curve in the second band
gap was smaller at 114.7 MHz (|Im(q)|).

Therefore, by adjusting the pore width parameter c, the position of the local resonance
band gap generated by the natural frequency could be adjusted, and the coupling between
the local resonance mechanism and the Bragg mechanism could be adjusted.

3. Resonators Design
3.1. Resonator Model

The resonators designed in this paper are all TPOS resonators. A simplified model of
a conventional resonator for TPOS is shown in Figure 8, where the silicon dioxide layer of
the silicon-on-insulator substrate and the anchor substrate are omitted.
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Figure 8. Simplified model of a conventional resonator for TPOS.

The width extension (WE) vibration mode expression of the TPOS resonator is [32]:

fr =
nv

2Wr
(3)

In Equation (3), v represents the speed of sound in the resonator, Wr is the width of the
rectangular resonator, and n represents that the resonator has a harmonic mode of n order.
In this paper, the rectangular resonator n was of 5th order. Design resonant frequency
fr = 107.6 MHz, resonator width Wr = 197 µm, resonator length Lr = 592 µm, support
beam length Lx = 59.2 µm, and support beam width Wx = 20 µm. The thickness of the
base silicon was 10 µm, and the thickness of the electrodes and the piezoelectric layer was
0.5 µm. The power is input through the electrodes Al at the upper and lower ends of
the resonator in Figure 8, and the piezoelectric layer AlN performs forward and reverse
piezoelectric effects to drive the vibration of the base plate. Finally, the middle electrode of
the resonator is used for output power. A perfectly matched layer (LPML = 3× λ) is used
on the outside of the resonator to completely absorb the reflection of the acoustic wave and
avoid the reflected wave from affecting the TPOS resonator.

In order to verify the effect of the DIH-PnC resonator on anchor loss, we established a
comparative analysis of different types of resonators. A conventional resonator is shown in
Figure 9a, Figure 9b is a resonator using the cross-like holey PnC shown in Figure 3, and
Figure 9c is a resonator using the DIH-PnC shown in Figure 2. Among them, a PnC array
with six rows and two columns was used on the substrate.
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Figure 9. Simplified model for resonator simulation. (a) Model of a conventional TPOS resonator,
shown as 1/2 the size of a conventional resonator. (b) 1/4 of the cross-like holey PnC resonator,
(c) 1/4 of the DIH-PnC resonator. Among them, the PnC adopted an array of 6 rows × 2 columns.
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The effect of the coupling mechanism DIH-PnC applied on the TPOS resonator to
prevent sonic flooding can be verified by the anchor loss quality factor (Qanc) [33,34]. The
Qanc of the TPOS resonator in the WE vibration mode can be calculated by the finite element
calculation method. Qanc can be expressed as [35]:

Qanc =
Re(ω)

2lm(ω)
(4)

where Re(ω) represents the real part of the resonant angular frequency of the resonator,
and lm(ω) represents the imaginary part of the resonant angular frequency of the resonator.

Figure 10 shows the mode shapes and Qanc of the three types of resonators at the
resonant frequency. Figure 10a Qanc = 60,565 for conventional resonator, Figure 10b
Qanc = 321,850 for cross-like holey PnC resonator, and Figure 10c Qanc = 12,431,000 for
DIH-PnC resonator. It can be seen from this that the Qanc of the DIH-PnC resonator was
20,425.1% higher than that of the conventional resonator and 3762.3% higher than the Qanc
of the cross-like holey PnC resonator. Therefore, under the same PnC array, the DIH-PnC
structure with coupled band gap mechanism could achieve higher Qanc.
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conventional resonator. (b) 1/4 of the cross-like holey PnC resonator, (c) with DIH-PnC resonance 1/4 of
the device. f0 represents the resonant frequency and Qanc represents the anchor loss quality factor.

3.2. Optimization of Phononic Crystals Array

In order to further analyze the influence of PnC array layout on Qanc, different array
parameters were investigated. A full parametric scan was performed using an m-row
n-column PnC array layout. Specifically, it took values two, four, and six for m rows and
two, three, and four for n columns. The results of Qanc are shown in Figure 11, and the
specific data are shown in Table 2.
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Table 2. Qanc values under different arrays.

Row × Column Conventional TPOS
Resonator

Cross-like Holey
PnC Resonator DIH-PnC Resonator

2 × 2 60,565 130,280 1,840,000
4 × 2 60,565 134,540 5,844,600
6 × 2 60,565 321,850 12,431,000
2 × 3 60,565 144,380 2,039,300
4 × 3 60,565 204,110 7,182,600
6 × 3 60,565 746,100 11,480,000
2 × 4 60,565 140,070 1,706,900
4 × 4 60,565 235,890 5,689,000
6 × 4 60,565 1,116,700 6,278,300

It can be seen from Figure 11 that the Qanc of the DIH-PnC resonator was much
higher than that of the conventional resonator and the cross-like holey PnC resonator. For
DIH-PnC resonators, Qanc did not increase with the number of periodic arrays. When the
PnC array was in six rows × two columns, the Qanc of the DIH-PnC resonator reached
a maximum value of 1.24 × 107. For the cross-like holey PnC resonator, Qanc gradually
increased with the increase in the number of periodic arrays. When the PnC array was
six rows × four columns, the Qanc of the cross-hole PnC resonator reached the maximum
value of 1.12 × 106. However, if the Qanc of the resonator reached 1.12 × 106, the DIH-PnC
resonator only needed to use a two rows × two columns PnC periodic array, and the
periodic array number was only 1/6 compared with the cross-like holey PnC.

Therefore, when the DIH-PnC resonator based on the coupling mechanism reached
a higher value of Qanc, the number of periodic arrays was less, thereby reducing the area
occupied by the PnC in the substrate.

4. Conclusions

In this paper, a DIH-PnC structure composed of vertically intersecting duplex holes
was investigated, and the inter-coupling band gap of the Bragg mechanism and the local
resonance mechanism was obtained in a single-phase material. Through the analysis of the
complex energy band and different delay lines, it was known that the DIH-PnC structure
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could achieve an ultra-wide band gap: 77.6–125.1 MHz, which was 175% wider than the
cross-like holey PnC band gap. Through the wave field analysis of the special point mode
shape and delay line at 108 MHz, it was concluded that the ultra-wide band gap of the
DIH-PnC structure was generated by the mutual coupling of Bragg and local resonance.
Moreover, the maximum attenuation of the DIH-PnC delay line was 1.6 times that of the
cross-like holey PnC delay line. The evolution of the band gap mechanism with the change
of the hole width c was studied, and the second band gap mechanism transformed from the
Bragg–local resonance coupled mechanism to a separate Bragg mechanism as c increased. The
Qanc of the TPOS resonator in the WE vibration mode could be calculated by the finite element
calculation method. When the number of PnC periodic arrays was six rows × two columns,
the Qanc of the DIH-PnC resonator could reach 1.24 × 107, which was 20,425.1% higher
than that of the conventional resonator and 3762.3% higher than that of the cross-like holey
PnC resonator. In addition, the effect of different PnC periodic array numbers on Qanc was
studied. When the Qanc of the cross-like holey PnC resonator reached the maximum value
of 1.12 × 106, six rows × four columns of the periodic array number were needed, while
for the DIH-PNC resonator, as Qanc was 1.12 × 106, the periodic array number was only
1/6 compared with the cross-like holey PnC.

Therefore, DIH-PnC using a coupling-based mechanism had an ultra-wide band gap,
strong attenuation capability, and low periodic dependence and was fabricated from a
single material. Moreover, when applied to the TPOS resonator, the Qanc value could be
guaranteed to be high, and the number of periodic arrays reaching PnC was small, thereby
reducing the area occupied by PnC in the substrate of the TPOS resonators.
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