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Abstract: This paper addresses the robust Kalman filtering problem for multisensor time-varying
systems with uncertainties of noise variances. Using the minimax robust estimation principle, based
on the worst-case conservative system with the conservative upper bounds of noise variances, the
robust local time-varying Kalman filters are presented. Further, the batch covariance intersection
(BCI) fusion and a fast sequential covariance intersection (SCI) fusion robust time-varying Kalman
filters are presented. They have the robustness that the actual filtering error variances or their traces
are guaranteed to have a minimal upper bound for all admissible uncertainties of noise variances.
Their robustness is proved based on the proposed Lyapunov equations approach. The concepts
of the robust and actual accuracies are presented, and the robust accuracy relations are proved. It
is also proved that the robust accuracies of the BCI and SCI fusers are higher than that of each
local Kalman filter, the robust accuracy of the BCI fuser is higher than that of the SCI fuser, and the
actual accuracies of each robust Kalman filter are higher than its robust accuracy for all admissible
uncertainties of noise variances. The corresponding steady-state robust local and fused Kalman
filters are also presented for multisensor time-invariant systems, and the convergence in a realization
between the local and fused time-varying and steady-state Kalman filters is proved by the dynamic
error system analysis (DESA) method and dynamic variance error system analysis (DVESA) method.
A simulation example is given to verify the robustness and the correctness of the robust accuracy
relations.

Keywords: multisensor data fusion; sequential covariance intersection fusion; robust Kalman filter;
robust accuracy; uncertain noise variance; convergence

1. Introduction

The multisensor information fusion Kalman filtering has wide applications in many
high-technology fields, such as advanced manufacturing systems, mechanical industrial
robots, unmanned aircraft vehicles, tracking, signal processing, remaining useful life
prediction of rolling element bearings [1–3], improved tracking and docking of industrial
mobile robots [4–7], and so on. Rolling bearings are the key components of rotating
machinery, thus, the prediction of remaining useful life (RUL) is vital in condition-based
maintenance (CBM). Reference 1 proposes a new method for RUL predictions of bearings
based on time-varying Kalman filter, which can automatically match different degradation
stages of bearings and effectively realize the prediction of RUL. Industrial mobile robots are
widely used in advanced manufacturing technology systems; ref. [2] used the unscented
Kalman filter to improved tracking and docking of industrial mobile robots vision-based
kinematics calibration.

The basic assumption for classical Kalman filtering is that the model parameters and
noise variances are exactly known, but in many practical applications, such assumption
doesn’t always hold. In the presence of these uncertainties, the Kalman filters may not be
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robust against uncertainties, or may be divergent [8], or the performance of the filters is
degraded. In order to solve the filtering problems for uncertain systems, in recent years
several results have been derived on the design of various robust Kalman filters. The
so-called robust Kalman filtering problem is to find a Kalman filter whose actual filtering
error variances, or their traces, are guaranteed to have a minimal or less-conservative upper
bound for all admissible uncertainties. There are basically two approaches to solve this
problem for the systems with uncertainties of model parameters: one is the Riccati equation
approach [8–11]; the other is the linear matrix inequality (LMI) approach [8,12,13].

The uncertain systems exist widely in control engineering and signal processing. So
far, these robust Kalman approaches are only suitable to the systems with the uncertainty of
model parameters, while the uncertainties of noise variances are seldom considered. Many
results are limited to design the robust Kalman filters for single sensor systems, while the
multisensor fusion robust Kalman filters are seldom proposed [14–17], and the robustness
analysis problem was not solved.

The multisensor data fusion problem is to find a fused state estimator based on the
local sensor measurement information or the local state estimators such that its accuracy
is higher than that of each local state estimator [18–20]. There exist two kinds of fusion
methods, which are called the centralized and distributed fusion methods depending on
whether raw data are used directly for fusion or not [19]. For the centralized fusion method,
all the measurement data from local sensors are carried to the fusion center which can give
the global optimal fusion estimate, but its disadvantage is to require a large computation
burden. The distributed fusion method can give the globally optimal or suboptimal state
estimation by combing the local state estimators [20–22], whose advantages are that it
can reduce the computation burden and can realize fault detection and isolation more
conveniently. Under the unbiased linear minimum variance rule (ULMV), there are three
distributed optimal fusion rules weighted by matrices, diagonal matrices, and scalars,
respectively, which were presented in [20,23].

It is well known that to compute the optimal weights requires knowing the cross-
covariance among the local Kalman filtering errors [20–23]; however, in many practical
applications, the variances and cross-covariances of the local filtering errors are unknown or
uncertain, or the computation of the cross-covariances is very complex and difficult [21,24].
In order to overcome the above limitation, the covariance intersection (CI) fusion method
has been presented in [25–29] and has been widely applied in many fields; for example,
the simultaneous localization and mapping (SLAM) [29], remote sensing [30], rocket track-
ing [31], spacecraft estimation [32], vehicle localization [33] and so on. The CI fuser is
obtained by the convex combination of the local estimators, and it has the advantages
that the fused estimation problems can be solved for multisensor systems with unknown
variances and cross-covariances of local filtering errors, and the computation of the cross-
covariances is completely avoided. However, its disadvantage is that the conservative
upper bounds of the unknown local filtering error variances are assumed to be known, i.e.,
the consistent estimation problem of the unknown local filtering error variances was not
solved.

Based on the batch processing method, the batch covariance intersection (BCI) fusion
Kalman filter with exactly known model parameters and noise variances is presented [22];
this needs to solve the high-dimensional nonlinear optimization problem, so that a larger
computation burden and higher complexity are required. In order to reduce the computa-
tion burden and complexity by the sequential procession method, a sequential covariance
intersection (SCI) fusion Kalman filter is presented in [34] for multisensor systems with
noise variances to be known exactly.

In this paper, we will focus on the covariance intersection (CI) fused robust Kalman
filtering for multisensor systems with uncertainties of noise variances. A robust CI
fusion Kalman filtering theory and methodology are presented. Compared with refer-
ences [22,25–29,34], the main contributions are as follows:
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1. In Sections 2 and 3, a new methodology for designing the robust local and CI fused
Kalman filters is presented for multisensor time-varying systems with uncertain noise
variances, according to the minimax robust estimation rule [35,36]. Its basic principle is
that based on the worst-case conservative system with the conservative upper bound
of noise variances, applying the ULMV optimal estimation rule, the conservative local
and CI fused Kalman filters with unavailable conservative measurements are obtained,
and then replacing the conservative measurements with the actual measurements
yields the robust local and CI fused Kalman filters. The classical optimal Kalman
filtering methodology [22,34] is developed. The disadvantage of the original CI
fusion methodology [25–29] is overcome where the conservative upper bounds of
the local filtering error variances are assumed to be known. Hence the robust local
Kalman filters are presented, which provide the conservative upper bounds of the
local filtering error variances;

2. In Section 3, the robust time-varying BCI and SCI fused Kalman filters with uncertain
noise variances are presented. The steady-state optimal local, BCI and SCI fused
Kalman filters [22,34] with exactly known noise variances are developed;

3. In the process of proving Theorems 1 and 3, a Lyapunov equation method for the
robustness analysis is presented by which the robustness of the local and CI fused
Kalman filters is proved. Its basic principle is that the problem of proving the robust-
ness is converted into that of deciding the positive-definiteness of the solution of a
Lyapunov equation;

4. In Section 4, the concept of robust accuracy with respect to uncertainties of noise
variances is presented, and the robust accuracy relations among the local, BCI and
SCI fused Kalman filters with exactly known noised variances [22,34] are extended.
The concept of robustness with respect to uncertain noise variances is presented, and
the concept of consistency [25,26] is extended;

5. In Section 5, for the multisensor time-invariant system with uncertain noise variances,
the robust steady-state local, BCI and SCI fusion Kalman filters are also presented
by replacing time-varying gains, variances and cross-covariances with their limits,
respectively;

6. Using lemma 1–3, in Theorem 7, the convergence in a realization of the local and
fused time-varying and steady-state robust Kalman filters is proved by the dynamic
error system analysis (DESA) method and the dynamic variance error system analysis
(DVESA) method. To the best of our knowledge, it is presented for the first time;

7. In Section 7, simulation 1 gives the geometric interpretation of the robust accuracy
relations based on the variance ellipses and a Monte Carlo simulation example shows
the correctness of the proposed robust accuracy relations and gives the sensitivity
analysis of the robust SCI fuser.

The remainder of this paper is organized as follows: In Section 2, we derive the local
robust time-varying Kalman filter and prove its robustness. Section 3 gives the BCI and SCI
fusion robust time-varying Kalman filters and the proof of their robustness. The accuracy
analysis of the local and fused Kalman filters is presented in Section 4. Section 5 gives the
robust local and fused steady-state Kalman filters and their convergence. The sensitivity
problem is given in Section 6. Section 7 gives a Monte Carlo simulation example. The
conclusions are given in Section 8. The frequently used notations in the paper are shown in
Table 1.

Table 1. The frequently used notations.

Name Summary

t the discrete time
φ(t) the state transition matrix
Γ(t) the input transition matrix
Hi(t) the measurement transition matrix.
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Table 1. Cont.

Name Summary

‖ A ‖ the norm of matrix A.
k the discrete time
E the mathematical expectation operator
AT transpose of matrix A
δij the Kronecker δ function, δii = 1, δij = 0(i 6= j)
trA the trace of a matrix A
s “steady-state”
“i.a.r” the convergence in a realization

2. Local Robust Time-Varying Kalman Filters

Consider the following multisensor uncertain time-varying system with uncertainties
of noise variances

x(t + 1) = φ(t)x(t) + Γ(t)w(t) (1)

yi(t) = Hi(t)x(t) + vi(t), i = 1, · · · , L (2)

where x(t) ∈ Rn is the state, L is the number of sensors, yi(t) ∈ Rmi is the measurement of
the ith subsystem, w(t) ∈ Rr is the input noise and vi(t) ∈ Rmi is the measurement noise
of the ith sensor. φ(t), Γ(t) and Hi(t) are known time-varying matrices with appropriate
dimensions.

Assumption 1. w(t) and vi(t) are uncorrelated white noises with zeros mean and unknown
uncertain true variances Q(t) and Ri(t), respectively.

E
[(

w(t)
vi(t)

)(
w(k) vj(k)

)T
]
=

[
Q(t) 0

0 Ri(t)δij

]
δtk (3)

Assumption 2. Q(t) and Ri(t) are known conservative upper bounds of Q(t) and Ri(t),
respectively, i.e.,

Q(t) ≤ Q(t), Ri(t) ≤ Ri(t), ∀t, i = 1, · · · , L (4)

Assumption 3. The initial state x(0) is independent of w(t) and vi(t), and has mean value µ and
unknown uncertain true variance P(0|0) which satisfies

P(0|0) ≤ P(0|0) (5)

where P(0|0) is a known conservative upper bound of P(0|0).

Based on the ith sensor, for the worst-case conservative multisensor system (1) and
(2) with the known conservative upper bounds Q(t) and Ri(t) of noise variances, the
conservative local optimal time-varying Kalman filters are given by [20]

x̂i(t|t) = Ψi(t)x̂i(t− 1|t− 1) + Ki(t)yi(t), i = 1, · · · , L (6)

Ψi(t) = [In − Ki(t)Hi(t)]φ(t) (7)

Ki(t) = Pi(t|t− 1)HT
i (t)Q

−1
εi (t) (8)

Qεi(t) = Hi(t)Pi(t|t− 1)HT
i (t) + Ri(t) (9)

Pi(t|t− 1) = φ(t− 1)Pi(t− 1|t− 1)φT(t− 1) + Γ(t− 1)Q(t− 1)ΓT(t− 1) (10)

Pi(t|t) = [In − Ki(t)Hi(t)]Pi(t|t− 1) (11)

Pij(t|t) = Ψi(t)Pij(t− 1|t− 1)ΨT
j (t) + [In − Ki(t)Hi(t)]

× Γ(t− 1)Q(t− 1)ΓT(t− 1)
[
In − Kj(t)Hj(t)

]T
+ Ki(t)Rij(t)KT

j (t)δij
(12)
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Pi(t|t) = E
[

x̃i(t|t)x̃T
i (t|t)

]
, Pij(t|t) = E

[
x̃i(t|t)x̃T

j (t|t)
]

(13)

x̃i(t|t) = x(t)− x̂i(t|t) (14)

From (1) and (6), the actual filtering errors are

x̃i(t|t) = Ψi(t)x̃(t− 1|t− 1) + (In − Ki(t)Hi(t))Γ(t)w(t− 1)− Ki(t)vi(t) (15)

From (15), according to Assumptions 1–3, and noting that w(t) and vi(t) are uncorre-
lated with x̃i(t|t), the actual filtering error variance and cross-covariances are given by the
Lyapunov equations

Pij(t|t) = Ψi(t)Pij(t− 1|t− 1)ΨT
j (t) + [In − Ki(t)Hi(t)]

× Γ(t− 1)Q(t− 1)ΓT(t− 1)
[
In − Kj(t)Hj(t)

]T
+ Ki(t)Rij(t)KT

j (t)δij
(16)

with the initial values Pij(0|0) = P(0|0) and Pii(t|t) = Pi(t|t).

Theorem 1. For multisensor uncertain system (1) and (2) with Assumptions 1–3, the actual local
Kalman filters (6) is robust in the sense that for all admissible variances Q(t) and Ri(t) satisfying
(4) and P(0|0) ≤ P(0|0) for arbitrary time t, we have

Pi(t|t) ≤ Pi(t|t), i = 1, · · · , L (17)

and Pi(t|t) are the minimal upper bounds of Pi(t|t). Hence, they are called the robust local Kalman
filters.

Proof. Defining ∆Pi(t|t) = Pi(t|t)− Pi(t|t), subtracting (16) from (12) yields the Lyapunov
equations

∆Pi(t|t) = Ψi(t)∆Pi(t− 1|t− 1)ΨT
i (t) + Ui(t) (18)

Ui(t) = [In − Ki(t)Hi(t)]Γ(t− 1)
(
Q(t− 1)−Q(t− 1)

)
ΓT(t− 1)[In − Ki(t)Hi(t)]

T

+ Ki(t)
(

Ri(t)− Ri(t)
)
KT

i (t)
(19)

Applying (4) yields that Ui(t) ≥ 0. From (5), we have ∆Pi(0|0) = P(0|0)− P(0|0) ≥ 0.
Hence from (18), we have ∆Pi(1|1) ≥ 0. Applying the mathematical induction method
yields ∆Pi(t|t) ≥ 0, for all time t, i.e., the inequalities (17) hold. If P∗i (t|t) is another upper
bound, then for all admissible Q(t) ≤ Q(t) and Ri(t) ≤ Ri(t), we have Pi(t|t) ≤ P∗i (t|t).
Taking Q(t) = Q(t), Ri(t) = Ri(t), from (12) and (16), we have Pi(t|t) = Pi(t|t) ≤ P∗i (t|t).
This means that Pi(t|t) is the minimal upper bounds of Pi(t|t). The proof is completed. �

Remark 1. The robustness (17) is different from the consistency or non-divergent estimation [23].
The robustness means that the inequality (17) holds for all admissible uncertain Q(t) and Ri(t)
satisfying (4), while the consistency means that for a fixed Q(t) and Ri(t), the inequality (17) holds.

3. The CI Fusion Robust Time-Varying Kalman Filter
3.1. The BCI Fusion Robust Time-Varying Kalman Filter

For the two-sensor uncertain systems with the Assumptions 1–3, applying the CI fused
algorithm [20–23], the actual CI fusion time-varying Kalman filter with the conservative
upper bounds Q(t) and Ri(t) of noise variances is presented as following

x̂CI(t|t) = PCI(t|t)
[
ω(t)P−1

1 (t|t)x̂1(t|t) + (1−ω(t))P−1
2 (t|t)x̂2(t|t)

]
(20)

PCI(t|t) =
[
ω(t)P−1

1 (t|t) + (1−ω(t))P−1
2 (t|t)

]−1
, ω(t) ∈ [0, 1] (21)
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where x̂i(t|t) are the robust local Kalman filters given in Theorem 1. The weight ω(t)
minimizes the cost function J as

minJ = min
ω(t)∈[0,1]

trPCI(t|t) = min
ω(t)∈[0,1]

tr
{[

ω(t)P−1
1 (t|t) + (1−ω(t))P−1

2 (t|t)
]−1
}

(22)

When the number of the sensors is larger than two, i.e., L ≥ 3. The actual batch covari-
ance intersection (BCI) fusion Kalman filter is presented by the convex combination [26,35]
as

x̂BCI(t|t) = PBCI(t|t)
L

∑
i=1

ωi(t)P−1
i (t|t)x̂i(t|t) (23)

PBCI(t|t) =
[

L

∑
i=1

ωi(t)P−1
i (t|t)

]−1

,
L

∑
i=1

ωi(t) = 1, 0 ≤ ωi(t) ≤ 1 (24)

where x̂i(t|t) are the robust local Kalman filters, the weights ωi(t) are determined by
minimizing the performance index J = trPBCI(t|t) as

minJ = min
ωi(t)

trPBCI(t|t) = min
ωi(t) ∈ [0, 1]
ω1(t) + · · ·+ ωL(t) = 1

tr


[

L

∑
i=1

ωi(t)P−1
i (t|t)

]−1
 (25)

which can be obtained by “fimincon” function in Matlab. This needs to solve a L-dimensional
nonlinear convex optimization problem, so that the larger computation burden and higher
complexity are required.

Theorem 2. The actual BCI fusion filtering error variance is given by

PBCI(t|t) = PBCI(t|t)
[

L

∑
i=1

L

∑
j=1

ωi(t)P−1
i (t|t)Pij(t|t)P−1

j (t|t)ωj(t)

]
PBCI(t|t) (26)

where Pij(t|t) are computed by (16).

Proof. From (24), we have

x(t) = PBCI(t|t)
[

L

∑
i=1

ωi(t)P−1
i (t|t)

]
x(t) (27)

Subtracting (27) from (23), we easily obtain the actual BCI fused filtering error

x̃BCI(t|t) = PBCI(t|t)
L

∑
i=1

ωi(t)P−1
i (t|t)x̃i(t|t) (28)

which yields the formula (26). The proof is completed. �

Theorem 3. For multisensor uncertain system (1) and (2) with Assumptions 1–3, the actual BCI
fusion time-varying Kalman filter (23)–(25) is robust in the sense that for all admissible uncertainties
of noise variances Q(t) and Ri(t) satisfying (4), we have

PBCI(t|t) ≤ PBCI(t|t) (29)

and trPBCI(t|t) is the minimal upper bound of trPBCI(t|t). We call (23) as the robust BCI fusion
Kalman filter.
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Proof. In order to prove (29), we only need to prove

PBCI(t|t)− PBCI(t|t) ≥ 0 (30)

Pre-multiplying and post-multiplying (30) by P−1
BCI , respectively, we have

P−1
BCI(t|t)− P−1

BCI(t|t)PBCI(t|t)P−1
BCI(t|t) ≥ 0 (31)

Substituting (24) and (26) into (31), we only need to prove

L

∑
i=1

ωi(t)P−1
i (t|t)−

L

∑
i=1

L

∑
j=1

ωi(t)P−1
i (t|t)Pij(t|t)P−1

j (t|t)ωj(t) ≥ 0 (32)

From (17) for all admissible Q(t) and Ri(t) satisfying (4), we have

Pi(t|t)− Pi(t|t) ≥ 0 (33)

Pre-multiplying and post-multiplying (33) by P−1
i , respectively, we have

P−1
i (t|t)− P−1

i (t|t)Pi(t|t)P−1
i (t|t) ≥ 0 (34)

From (32) and (34), we only need to prove

L

∑
i=1

ωi(t)P−1
i (t|t)Pi(t|t)P−1

i (t|t)−
L

∑
i=1

L

∑
j=1

ωi(t)P−1
i (t|t)Pij(t|t)P−1

j (t|t)ωj(t) ≥ 0 (35)

Applying the constraint
L
∑

i=1
ωi(t) = 1 yields that

L

∑
i=1

ωi(t)P−1
i (t|t)Pi(t|t)P−1

i (t|t) =
L

∑
i=1

L

∑
j=1

ωi(t)ωj(t)P−1
i (t|t)Pi(t|t)P−1

i (t|t) (36)

Hence, we only need to prove

∆ =
L

∑
i=1

L

∑
j=1

ωi(t)ωj(t)(P−1
i (t|t)Pi(t|t)P−1

i (t|t)− P−1
i (t|t)Pij(t|t)P−1

j (t|t)) ≥ 0 (37)

Exchanging the subscript symbol i with j in (37) yields

∆ =
L

∑
j=1

L

∑
i=1

ωj(t)ωi(t)(P−1
j (t|t)Pj(t|t)P−1

j (t|t)− P−1
j (t|t)Pji(t|t)P−1

i (t|t)) ≥ 0 (38)

Adding (37) to (38) yields

2∆ =
L
∑

i=1

L
∑

j=1
ωi(t)ωj(t)

[
P−1

i (t|t)Pi(t|t)P−1
i (t|t) + P−1

j (t|t)Pj(t|t)P−1
j (t|t)

−P−1
i (t|t)Pij(t|t)P−1

j (t|t)− P−1
j (t|t)Pji(t|t)P−1

i (t|t)
]

=
L
∑

i=1

L
∑

j=1
ωi(t)ωj(t)E

[(
P−1

i (t|t)x̃i(t|t)− P−1
j (t|t)x̃j(t|t)

)
×
(

P−1
i (t|t)x̃i(t|t)− P−1

j (t|t)x̃j(t|t)
)T
]
≥ 0

(39)



Micromachines 2022, 13, 1216 8 of 25

which yields ∆ ≥ 0, i.e., (29) holds. Taking the trace operation for (29) yields trPBCI(t|t) ≤
trPBCI(t|t). Applying (25) yields that trPBCI(t|t) is minimal for all admissible PBCI(t|t)
given in (24). The proof is completed. �

Remark 2. The proof of Theorem 3 is completely different from the proof in reference [20], where the
noise variances are assumed to be exactly known, and the consistency is proved by the mathematical
induction. The proof is also different from that in reference [36], where the consistency of the
BCI fuser was only proved with the assumption that the local estimates are consistent, while the
robustness problem was not proved.

3.2. The SCI Fusion Robust Time-Varying Kalman Filter

In order to reduce the complexity and computational burden, the sequential covariance
intersection (SCI) robust time-varying Kalman fuser is presented based on the L− 1 two-
sensor CI fused robust Kalman filters, and it can be realized by a recursive two-sensor CI
fusers [34]. Its structure is shown in Figure 1, and the comparison of the computational
loads of the BCI filter and the SCI filter are shown in Table 2.
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Figure 1. The structure of the SCI fusion robust Kalman filter.

Table 2. The comparison of the computational loads.

robust BCI filter PBCI(t|t) ((N + 1)n)3

robust SCI filter PSCI(t|t) n3N

Based on the two-sensor CI fused algorithm, the actual SCI fusion time-varying
Kalman filter with the conservative error variances Q(t) and Ri(t) is presented as follows

x̂CIi(t|t) = PCIi(t|t)
[
ωi(t)P−1

CI(i−1)(t|t)x̂CI(i−1)(t|t) + (1−ωi(t))P−1
i+1(t|t)x̂i+1(t|t)

]
(40)

PCIi(t|t) =
[
ωi(t)P−1

CI(i−1)(t|t) + (1−ωi(t))P−1
i+1(t|t)

]−1
, i = 1, · · · , L− 1 (41)

x̂SCI(t|t) = x̂CI(L−1)(t|t), PSCI(t|t) = PCI(L−1)(t|t) (42)

x̂CI(0)(t|t) = x̂1(t|t), P−1
SCI(0|0) = P−1

1 (0|0) (43)
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where x̂i(t|t) are the robust local Kalman filters, and the parameters ωi(t) is determined by
minimizing the performance index J as

J = min
ωi(t)

trPCIi(t|t) = min
ωi(t)∈[0,1]

tr
{[

ωi(t)P−1
CI(i−1)(t|t) + (1−ωi(t))P−1

i+1(t|t)
]−1
}

, i = 1, · · · , L− 1 (44)

The optimization problem (44) is equivalent to the L− 1 one-dimensional optimization
problems (22).

Remark 3. When the noise variances are exactly known, the optimal steady-state SCI fuser was
presented in [34]. However, for multisensor systems with uncertain noise variances, the local and
SCI fusion robust time-varying Kalman filters were not presented in [34].

Theorem 4. For the multisensor uncertain system (1) and (2) with Assumptions 1–3, the actual
SCI fused filter x̂SCI(t|t) and its actual error variance PSCI can be rewritten as batch representation

x̂SCI(t|t) = PSCI(t|t)
L

∑
i=1

θ
(L)
i (t)P−1

i (t|t)x̂i(t|t) (45)

PSCI(t|t) =
[

L

∑
i=1

θ
(L)
i (t)P−1

i (t|t)
]−1

,
L

∑
i=1

θ
(L)
i (t) = 1, θ

(L)
i (t) ≥ 0 (46)

PSCI(t|t) = PSCI(t|t)
[

L

∑
i=1

L

∑
j=1

θ
(L)
i (t)P−1

i (t|t)Pij(t|t)P−1
j (t|t)θ(L)

j (t)

]
PSCI(t|t) (47)

where the weighting coefficients θ
(r)
i (t) can be computed recursively by

θ
(r)
i (t) = ωr−1(t)θ

(r−1)
i (t), i = 1, · · · , r− 1 (48)

θ
(r)
r (t) = 1−ωr−1(t), r = 2, · · · , L (49)

θ
(2)
1 (t) = ω1(t), θ

(2)
2 (t) = 1−ω1(t) (50)

where the coefficients ωi(t) are obtained by (44).

Proof. By the mathematical induction (45), (46), (48)–(50) can be proved in [32].
From (46) we have

x(t) = PSCI(t|t)
[

L

∑
i=1

θ
(L)
i (t)P−1

i (t|t)
]

x(t) (51)

Subtracting (45) from (51), we get

x̃SCI(t|t) = PSCI(t|t)
L

∑
i=1

θ
(L)
i (t)P−1

i (t|t)x̃i(t|t) (52)

Substituting (52) into PSCI(t|t) = E
[
x̃SCI(t|t)x̃T

SCI(t|t)
]

yields the formula (47). The
proof is completed. �

Theorem 5. For multisensor uncertain system (1) and (2) with Assumptions 1–3, the actual SCI
fusion time-varying Kalman filter (40)–(44) is robust in the sense that for all admissible uncertainties
of noise variances Q(t) and Ri(t) satisfying (4), we have

PSCI(t|t) ≤ PSCI(t|t) (53)

we call (45) as the robust SCI fusion Kalman filter.
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Proof. Applying Theorem 4, the SCI Kalman filter can be expressed as the equivalent BCI
Kalman filter form. According to Theorem 3, the BCI time-varying fuser is robust, so that
the SCI time-varying fuser is also robust. The proof is completed. �

Remark 4. The proof of Theorem 5 is different from that in [34] by the consistency of the two-sensor
CI fuser. We can also prove Theorem 5 based on robustness of the two-sensor CI fuser.

4. Accuracy Analysis

From (53), we can see that PSCI(t|t) is the upper bound of the unknown actual fused
variances PSCI(t|t) for all possible Pi(t|t) and all admissible unknown Pij(t|t) satisfying
(16), so that PSCI(t|t) can be viewed as the global accuracy of the SCI fuser. From (46), we
see that PSCI(t|t) is independent of actual variances Pi(t|t) and cross-covariances Pij(t|t).
So that the global accuracy of the SCI fuser has the robustness with respect to uncertain
Pi(t|t) and Pij(t|t). From (16), we see that the uncertainties of Pi(t|t) and Pij(t|t) are
yielded by the uncertainties of Q(t) and Ri(t) satisfying (4).

Definition 1. The robustness with respect to uncertainties of noise variances of a Kalman filter is
defined as its actual filtering error variances or their traces yielded by all admissible uncertainties of
noise variances, which are guaranteed to have a minimal or less-conservative upper bound and this
upper bound is independent of uncertainties of noise variances. The Kalman filter with robustness is
called to be robust.

Definition 2. The robust accuracy of a robust Kalman filter is defined as the trace of a minimal
or less-conservative upper bound of its actual filtering error variances, while its actual accuracy is
defined as the trace of its actual filtering error variance.

Theorem 6. For multisensor uncertain system (1) and (2) with Assumptions 1–3, the actual
and robust accuracies of the local, BCI and SCI fused time-varying Kalman filters have the
relations

trPi(t|t) ≤ trPi(t|t), i = 1, · · · , L (54)

trPBCI(t|t) ≤ trPBCI(t|t), trPSCI(t|t) ≤ trPSCI(t|t) (55)

trPBCI(t|t) ≤ trPi(t|t), i = 1, · · · , L (56)

trPBCI(t|t) ≤ trPSCI(t|t) (57)

trPSCI(t|t) ≤ trPi(t|t), i = 1, · · · , L (58)

Proof. Taking the trace operations for (17), (29) and (53) yields (54) and (55). In (25), taking
ωi(t) = 1 and ωj(t) = 0(j 6= i) yields trPBCI(t|t) = trPi(t|t), Hence, minimizing trPBCI(t|t)
with constraints 0 ≤ ωi(t) ≤ 1, ω1(t) + · · ·+ ωL(t) = 1, we have trPBCI(t|t) ≤ trPi(t|t),
i = 1, · · · , L, i.e., (56) holds. From (45) and (46), the SCI fuser is equivalent to a BCI fuser
with ωi(t) = θ

(L)
i (t), applying (25) yields (57).

The robust accuracy relation (58) can be proved by mathematical induction. For i = 2,
from (40)–(44) we have

x̂CI1(t|t) = PCI1(t|t)
[
ω1(t)P−1

1 (t|t)x̂1(t|t) + (1−ω1(t))P−1
2 (t|t)x̂2(t|t)

]
(59)



Micromachines 2022, 13, 1216 11 of 25

PCI1(t|t) =
[
ω1(t)P−1

1 (t|t) + (1−ω1(t))P−1
2 (t|t)

]−1
, ω(t) ∈ [0, 1] (60)

where x̂i(t|t) are the actual local Kalman filters, the weight ω minimizes the cost function J
as

minJ1 = min
ω(t)∈[0,1]

trPCI1(t|t) = min
ω∈[0,1]

tr
{[

ω1(t)P−1
1 (t|t) + (1−ω1(t))P−1

2 (t|t)
]−1
}

(61)

Taking ω1(t) = 0, we have J1 = trP2(t|t), and taking ω1(t) = 1, we have J1 = trP1(t|t),
hence for ω(t) ∈ [0, 1] yields

trPCI1(t|t) ≤ trPi(t|t), i = 1, 2 (62)

Similarly, for i = 3, from (40)–(44) we have

trPCI2(t|t) ≤ trPCI1(t|t), trPCI2(t|t) ≤ trP3(t|t) (63)

From (62) and (63), one can obtain

trPCI2(t|t) ≤ trPi(t|t), i = 1, 2, 3 (64)

By the mathematical induction method, assume that for i = L − 2, the following
inequality holds

trPCI(L−2)(t|t) ≤ trPi(t|t), i = 1, · · · , L− 1 (65)

For i = L− 1, from (44), we have

trPCI(L−1)(t|t) ≤ trPL(t|t), trPCI(L−1)(t|t) ≤ trPCI(L−2)(t|t) (66)

From (65) and (66) yields

trPCI(L−1)(t|t) ≤ trPi(t|t), i = 1, · · · , L (67)

Noting that PSCI(t|t) = PCI(L−1)(t|t), which yields the inequality (58). The proof is
completed. �

Remark 5. The accuracy relations (54) and (55) mean that for all admissible uncertainties of
variances satisfying (4) and (5), the actual accuracies trPθ(t|t), θ = 1, · · · , L, BCI, SCI of the
local or fused time-varying Kalman filter are globally controlled by trPθ(t|t), therefore the robust
accuracy trPθ(t|t) is also called the global accuracy of a robust Kalman filter. The robustness of
the local and fused filters means that the robust accuracy trPθ(t|t) is independent of arbitrarily
variances satisfying (4) and (5).

Remark 6. From the definition 2, the smaller trPθ(t|t) (or trPθ(t|t)) means the higher robust (or
actual) accuracy. From (54)–(58), we conclude that the robust accuracy of the robust SCI fuser is
higher than that of each local robust Kalman filter, and the robust accuracy of the BCI fuser is higher
than that of the SCI fuser. The actual accuracies of a robust Kalman filter are higher than its robust
accuracy for all admissible uncertainties.

Remark 7. Theorem 1 shows that Pi(t|t) is the minimal upper bound of Pi(t|t) in the matrix
inequality sense. Theorem 3 shows that trPBCI(t|t) is the minimal upper bound of trPBCI(t|t) in the
trace inequality sense. From (55), (57) and (58) yields that trPSCI(t|t) ≤ trPSCI(t|t) ≤ trPi(t|t),
i = 1, · · · , L so that trPSCI(t|t) is a less-conservative upper bound of trPSCI(t|t).
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5. Robust Local and Fused Steady-State Kalman Filters

Now we investigate the asymptotic properties of the local and fused robust time-
varying Kalman filters, we shall present the corresponding steady-state robust Kalman
filters. We shall also rigorously prove the convergence in a realization between the ro-
bust time-varying and steady-state Kalman filters, by the DESA method and DVESA
method [37,38].

Lemma 1 [39]. Consider the following Lyapunov equation with F being a symmetric matrix

P = ΨPΨT + F (68)

where P, Ψ and F are the n× n matrices, Ψ is a stable matrix (i.e., all its eigenvalues are inside the
unit circle). If F ≥ 0, then P is symmetric and unique, and P ≥ 0.

Lemma 2 [38]. Consider the time-varying Lyapunov equation

P(t) = F1(t)P(t− 1)F2
T(t) + U(t) (69)

where t ≥ 0, the output P(t) and the input U(t) are the n× n matrices, and the n× n matrices
F1(t) and F2(t) are uniformly asymptotically stable, i.e., there exist constants 0 < ρj < 1 and
cj > 0 such that

‖Fj(t, i)‖ ≤ cjρ
t−i
j , ∀t ≥ i ≥ 0, j = 1, 2 (70)

If U(t) is bounded, then P(t) is bounded. If U(t)→ 0 , then P(t)→ 0 , as t→ ∞ . Notice
that U(t) is called to be bounded, if ‖U(t)‖ ≤ c (constant), for arbitrary t ≥ 0.

Lemma 3 [37]. Consider a dynamic error system

δ(t) = F(t)δ(t− 1) + u(t) (71)

where δ(t) ∈ Rn, u(t) ∈ Rn, and F(t) is uniformly asymptotically stable. If u(t) is bounded, then
δ(t) is bounded. If u(t)→ 0 , then δ(t)→ 0 , as t→ ∞ .

Theorem 7. For multisensor uncertain time-invariant system (1) and (2) with Assumptions 1–2,
where φ(t) = φ, Γ(t) = Γ, Hi(t) = Hi, Q(t) = Q, Ri(t) = Ri, Q(t) = Q and Ri(t) = Ri
are all the constant matrices. If each subsystem with conservative noise variances Q and Ri is
completely observable and completely controllable, then the actual local steady-state Kalman filters
are given as

x̂s
i (t|t) = Ψi x̂s

i (t− 1|t− 1) + Kiyi(t), i = 1, · · · , L (72)

Ψi = [In − Ki Hi]φ, Ki = Σi HT
i

(
HiΣi HT

i + Ri

)−1
(73)

Pi = [In − Ki Hi]Σi (74)

where yi(t) are the actual measurements, and the initial value x̂s
i (0|0) can arbitrarily be selected.

Σi satisfies the steady-state Riccati equations

Σi = φ

[
Σi − Σi HT

i

(
HiΣi HT

i + Ri

)−1
HiΣi

]
φT + ΓQΓT (75)

and the conservative cross-covariances Pij and the actual cross-covariances Pij satisfy the steady-state
Lyapunov equations

Pij = ΨiPijΨ
T
j + [In − Ki Hi]ΓQΓT[In − Kj Hj

]T
+ KiRiKT

j δij, i, j = 1, · · · , L (76)

Pij = ΨiPijΨ
T
j + [In − Ki Hi]ΓQΓT[In − Kj Hj

]T
+ KiRiKT

j δij, i, j = 1, · · · , L (77)
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with the definition Pi = Pii, Pi = Pii, and we have

Pij(t|t)→ Pij , as t→ ∞ , i, j = 1, · · · , L (78)

Pij(t|t)→ Pij , as t→ ∞ , i, j = 1, · · · , L (79)

The actual local steady-state Kalman filters (72) are robust in the sense that for all admissible
uncertainties of Q and Ri satisfying Q ≤ Q, Ri ≤ Ri, then

Pi ≤ Pi, i = 1, · · · , L (80)

and Pi is the minimal upper bound of Pi. They are called the robust local steady-state Kalman filters.

Proof. According to the complete observability and complete controllability of each sub-
system, we have [40]

Pi(t|t− 1)→ Σi , ast→ ∞ , i = 1, · · · , L (81)

Then from (7), (8) and (11), we have

Ψi(t)→ Ψi , Ki(t)→ Ki , Pi(t|t)→ Pi , as t→ ∞ , i = 1, · · · , L (82)

where Ψi are stable matrices [40], and Ψi(t) are uniformly asymptotically stable [40]. When
t→ ∞ , taking the limit operations for (6)–(11), (12) and (16), we obtain (72)–(77). From
Ki(t)→ Ki , the gains Ki(t) are bounded, which yields the boundedness of the input of
the Lyapunov Equation (12). Hence, applying Lemma 2 to (12) yields that Pij(t|t) are
bounded. Setting Ψi(t) = Ψi + ∆Ψi(t) with ∆Ψi(t)→ 0 , and subtracting (76) from (12) with
Hi(t) = Hi, Γ(t) = Γ, Q(t) = Q and Ri(t) = Ri, and defining ∆ij(t) = Pij(t|t)− Pij, yields
the Lyapunov equations

∆ij(t) = Ψi∆i(t− 1)ΨT
j + Uij(t) (83)

Uij(t) = [In − Ki(t)Hi]ΓQΓT[In − Kj(t)Hj
]T

+ Ki(t)RiKT
j (t)δij

− [In − Ki Hi]ΓQΓT[In − Kj Hj
]
− KiRiKT

j δij + ΨiPij(t− 1|t− 1)∆ΨT
j (t)

+ ∆Ψi(t)Pij(t− 1|t− 1)Ψj + ∆Ψi(t)∆ΨT
j (t)

(84)

Applying Ki(t)→ Ki , the boundedness of Pij(t|t), and ∆Ψi(t)→ 0 yields that
Uij(t)→ 0 . Applying Lemma 2 to (83) yields ∆ij(t)→ 0 , as t→ ∞ , i.e., (78) holds. Simi-
larly, we can prove (79). Taking the limit operation for (17), as t→ ∞ , and applying (78)
and (79) yields (80). Taking Q = Q, Ri = Ri, subtracting (77) from (76), and applying
Lemma 1 yields Pi = Pi, if P∗i is arbitrary other upper bound of Pi for all admissible Q
and Ri satisfying Q ≤ Q, Ri ≤ Ri, then we have Pi = Pi ≤ P∗i , which yields that Pi is the
minimal. The proof is completed. �

Theorem 8. For multisensor uncertain time-invariant system (1) and (2) with Assumptions 1–2, if
each subsystem with conservative noise variances Q and Ri is completely observable and completely
controllable, then the actual steady-state BCI fusion Kalman filter is given as

x̂s
BCI(t|t) = PBCI

L

∑
i=1

ωiP−1
i x̂s

i (t|t) (85)

PBCI =

[
L

∑
i=1

ωiP−1
i

]−1

(86)
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where x̂s
i (t|t) are given in Theorem 7, and the optimal weighting coefficients ωi are obtained by

minimizing the performance index J = trPBCI as

minJ = min
ωi

trPBCI = min
ωi ∈ [0, 1]
ω1 + · · ·+ ωL = 1

tr


[

L

∑
i=1

ωiP−1
i

]−1
 (87)

It has the robustness in the sense that for all admissible uncertainties of Q and Ri satisfying
Q ≤ Q, Ri ≤ Ri, we have

PBCI ≤ PBCI (88)

where the actual fused steady-state filtering error covariance is given as

PBCI = PBCI

[
L

∑
i=1

L

∑
j=1

ωiP−1
i PijP−1

j ωj

]
PBCI (89)

and trPBCI is the minimal upper bound of trPBCI . It is called the robust steady-state BCI fusion
Kalman filter.

Proof. As t→ ∞ , taking the limit operations for (23)–(26) yields (85)–(87). Taking the limit
operations for (24) and (26) and applying (78) and (79) yields that
PSCI(t|t)→ PSCI , PSCI(t|t)→ PSCI , so that taking the limit operations for (26) and (29)
yields (88) and (89). The proof is completed. �

Theorem 9. For multisensor uncertain time-invariant system (1) and (2) with Assumptions 1–2, if
each subsystem with conservative noise variances Q and Ri is completely observable and completely
controllable, the actual steady-state SCI fusion Kalman filter is given as

x̂s
SCI(t|t) = PSCI

L

∑
i=1

θ
(L)
i P−1

i x̂s
i (t|t) (90)

PSCI =

[
L

∑
i=1

θ
(L)
i P−1

i

]−1

,
L

∑
i=1

θ
(L)
i = 1, θ

(L)
i ≥ 0 (91)

PSCI = PSCI

[
L

∑
i=1

L

∑
j=1

θ
(L)
i P−1

i PijP−1
j θ

(L)
j

]
PSCI (92)

where the weighting coefficients θ
(r)
i can be computed recursively by

θ
(r)
i = ωr−1θ

(r−1)
i , i = 1, · · · , r− 1 (93)

θ
(r)
r = 1−ωr−1, r = 2, · · · , L (94)

θ
(2)
1 = ω1, θ

(2)
2 = 1−ω1 (95)

and it is robust in the sense that for all admissible uncertainties Q and Ri satisfying Q ≤ Q, Ri ≤
Ri, we have

PSCI ≤ PSCI (96)

It is called the robust steady-state SCI fusion Kalman filter.

Proof. As t→ ∞ , taking the limit operations for (45)–(47), and (53) yields (90)–(92), and
(96). From (48)–(50), we have (93)–(95). The proof is completed. �
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Theorem 10. Under the conditions of Theorem 7, if the measurement data of yi(t) are bounded,
then the robust local time-varying and steady-state Kalman filters x̂i(t|t) and x̂s

i (t|t) given by (6)
and (72) have each other the convergence in a realization, such that

[x̂i(t|t)− x̂s
i (t|t)]→ 0, as, i.a.r (97)

Proof. Setting Ψi(t) = Ψi + ∆Ψi(t), Ki(t) = Ki + ∆Ki(t) in (6), applying (82) yields
∆Ψi(t)→ 0 , ∆Ki(t)→ 0 , as t→ ∞ . Subtracting (72) from (6), and defining δi(t) =
x̂i(t|t)− x̂s

i (t|t), we have
δi(t) = Ψiδi(t− 1) + ui(t) (98)

with ui(t) = ∆Ψi(t)x̂i(t− 1|t− 1) + ∆Ki(t)yi(t). Noting that Ψi(t) is uniformly asymptoti-
cally stable, and ∆Ki(t)yi(t) is bounded, applying Lemma 3 to (6) yields the boundedness
of x̂i(t|t). Hence, we have ui(t)→ 0 . Applying Lemma 3 to (98), noting that Ψi is a stable
matrix, so it is also uniformly asymptotically stable, hence δi(t)→ 0 , i.e., the convergence
(97) holds. The proof is completed. �

Theorem 11. Under the conditions of Theorem 10, the robust time-varying and steady-state SCI
fusers x̂SCI(t|t) and x̂s

SCI(t|t) have each other the convergence in a realization, such that

[x̂SCI(t|t)− x̂s
SCI(t|t)]→ 0 , as t→ ∞, i.a.r (99)

Proof. From (87), the minimal value point (ω1, · · · , ωL) ∈ RL of J = trPBCI is obtained by
solving nonlinear equations

∂J
∂ω1

= 0, · · · ,
∂J

∂ωL
= 0 (100)

According to the existence theorem [36] of implicit function, in a sufficiently small
neighborhood of the point (Pks

i , i = 1, · · · , L, , s = 1, · · · , n) ∈ RLn2
with the definition

Pi = (Pks
i ), k, s = 1, · · · , n, ωi can be represented by a Ln2-dimension continuous function

of all elements of Pi(i = 1, · · · , L) as

ωi = fi(P1, · · · , PL), i = 1, · · · , L (101)

Applying (78) with i = j yields Pi(t|t)→ Pi , as t→ ∞ . Hence for sufficiently larger t,
we have

ωi(t) = fi(P1(t|t), · · · , PL(t|t)) , i = 1, · · · , L (102)

where ωi(t) are defined in (25). According to the continuity of fi, if follows

ωi(t)→ ωi , as t→ ∞ , i = 1, · · · , L (103)

and applying (48)–(50) and (93)–(95) yields

θ
(L)
i (t)→ θL

i , as t→ ∞ , i = 1, · · · , L (104)

Defining

Ωi = PSCIθ
(L)
i P−1

i , Ωi(t) = PSCI(t|t)θ
(L)
i (t)P−1

i (t|t) = Ωi + ∆Ωi(t) (105)

Applying (78) with i = j, (46), (91) and (104) yields Ωi(t)→ Ωi , as t→ ∞ , which
yields ∆Ωi(t)→ 0 .

Subtracting (85) from (45) and applying (105) yields

x̂SCI(t|t)− x̂s
SCI(t|t) =

L

∑
i=1

Ωi(x̂i(t|t)− x̂s
i (t|t)) +

L

∑
i=1

∆Ωi(t)x̂i(t|t) (106)
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Applying (82) yields the boundedness of Ki(t), and applying the boundedness of yi(t)
yields that Ki(t)yi(t) is bounded. Noting that Ψi(t) is uniformly asymptotically stable [40].
Applying Lemma 3 to (6) yields that x̂i(t|t) is bounded. Hence applying (97), (106) and
∆Ωi(t)→ 0 yields (99). The proof is completed. �

Theorem 12. Under the conditions of Theorem 10, the robust accuracy comparison of the local and
the fused robust steady-state Kalman filters is given by

trPi ≤ trPi, i = 1, · · · , L, trPBCI ≤ trPBCI , trPSCI ≤ trPSCI (107)

trPBCI ≤ trPi, i = 1, · · · , L (108)

trPBCI ≤ trPSCI (109)

trPSCI ≤ trPi, i = 1, · · · , L (110)

Proof. Applying (78), (79), (103) and (104) yields that Pi(t|t)→ Pi, PBCI(t|t)→ PBCI ,
PSCI(t|t)→ PSCI . As t→ ∞ , taking the limit operations for (54)–(58) yields Theorem 12.
The proof is completed. �

6. Sensitivity Problem

For the SCI fusion robust Kalman filter, the fused schemes are different with respect to
different orders of sensors. For example, in the case where there are three fused structures
as shown in Figure 2, the problem is that whether the SCI fused robust accuracy is sensitive
with respect to the fused orders of sensors. The following two sensor simulation examples
will show that the robust accuracy of the SCI fuser is not very sensitive with respect to the
orders of the sensors.
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7. Simulation Examples

Example 1. Consider a 3-sensor tracking system with uncertain noise variances

x(t + 1) = φx(t) + Γw(t) (111)

yi(t) = Hix(t) + vi(t), i = 1, 2, 3 (112)

φ =

[
1 T0
0 1

]
, Γ =

[
0.5T2

0
T0

]
, H1 =

[
1 0

]
, H2 = I2, H3 =

[
1 0

]
(113)

where T0 = 0.25 is the sampled period, x(t) = [x1(t), x2(t)]
T is the state, x1(t) and x2(t) are

the position and velocity of target at time tT0. yi(t) is the measurement, w(t) and vi(t) are
independent Gaussion white noises with zero mean and unknown variances Q and Ri, respectively,
Q and Ri are conservative upper bounds of Q and Ri satisfying Q ≤ Q, Ri ≤ Ri. In the
simulation, we take Q = 1, R1 = 0.8, R2 = diag(8, 0.36), R3 = 0.5,Q = 0.8, R1 = 0.65,
R2 = diag(6, 0.25),R3 = 0.45.

The traces of the conservative and actual local robust filtering error variances are
compared in Figure 3. For Figure 3, we see that the traces of the local and fused robust
time-varying Kalman filters quickly converge to these of the corresponding steady-state
Kalman filters, which verify the robust accuracy relations (54)–(58), and their steady-state
robust and actual accuracy relations (107)–(110).

The robust and actual accuracy comparisons are shown in Tables 3 and 4. From
Tables 3 and 4, we see that the SCI fused robust accuracy trPSCI123, trPSCI132 and trPSCI321
are close or equal to the BCI fused robust accuracy trPBCI , and the accuracy of the SCI
fuser is not very sensitive with respect to the orders of sensor. We also see that the actual
accuracy of the SCI fuser, and trPSCI123, trPSCI132 and trPSCI321 are close to or equal to the
actual accuracy of the BCI fuser trPBCI ; they are all higher than the robust accuracy of each
local filter, which verify the accuracy relations (54)–(58) and their steady-state robust and
actual accuracy relations (107)–(110).

Table 3. The accuracy comparison of local and fused robust time-varying Kalman filters at t = 10.

trP1 trP2 trP3 trPBCI trPSCI123 trPSCI132 trPSCI231

0.6289 0.6972 0.4784 0.3839 0.4318 0.3888 0.3888

trP1 trP2 trP3 trPBCI trPSCI123 trPSCI132 trPSCI231

0.5147 0.5719 0.4132 0.1813 0.1818 0.1905 0.1905
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Figure 3. The robust accuracy relations of the local and fused robust Kalman filters.

Table 4. The robust accuracy comparison of local and fused steady-state Kalman filters.

trP1 trP2 trP3 trPBCI trPSCI123 trPSCI132 trPSCI231

0.5538 0.5245 0.4390 0.3602 0.3971 0.3648 0.3648

trP1 trP2 trP3 trPBCI trPSCI123 trPSCI132 trPSCI231

0.4465 0.3815 0.3723 0.1717 0.1759 0.1795 0.1795

In order to give a geometric interpretation of the accuracy relations, The covariance
ellipses of the robust time-varying Kalman filters at time t = 10 and robust steady-state
Kalman filters are shown in Figures 4–9.

From Figures 4–9, we see that the ellipses of the actual variances Pi(i = 1, 2, 3) are all
enclosed in that of the conservative variances Pi, respectively, which verify the robustness
(17). The ellipses of actual BCI and SCI fused variances PBCI and PSCIijk (ijk = 123, 132, 231)
are respectively enclosed in those of PBCI and PSCIijk, which verifies the robustness (29)
and (53). Moreover, we see that the ellipse of PBCI is close to or equal to that of PSCIijk, the
ellipse of PBCI is close to or equal to that of PSCIijk, which means that the robust accuracies
of the SCI fusers with different orders of sensors are close to those of the BCI fusers, and the
robust and actual accuracies of the SCI fusers are not very sensitive to the orders of sensors.

In order to verify the above theoretical accuracy relations, taking N = 200 runs, the
mean square error (MSE) value at time t of the local and fused robust Kalman filters are
shown in Figure 10. From Figure 10, we see that when t is sufficiently large, we have the
accuracy relations

MSEθ(t) ≤ trPθ , θ = 1, 2, 3, BCI, SCI (114)

and the curves of MSEθ(t) are close to the straight lines corresponding to trPθ , which verify
the robust accuracy relations (107) and the robust accuracy relations in Table 3.
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Figure 5. The ellipses of the actual and conservative steady-state filtering error variances of the order
SCI123.
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Figure 6. The ellipses of the actual and conservative time-varying filtering error variances of the
order SCI132 at t = 10.
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Figure 8. The ellipses of the actual and conservative time-varying filtering error variances of the
order SCI231 at t = 10.
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Figure 10. The comparison of MSEi(t) and trPi, i = 1, 2, 3, SCI123, SCI132, SCI231, BCI.

Example 2. In order to show the sensitivity of the actual and robust accuracies for the SCI fuser
with respect to the orders of sensors, consider a 4-sensor tracking system with uncertainties of noise
variances

x(t + 1) = φx(t) + Γw(t) (115)

yi(t) = Hix(t) + vi(t), i = 1, 2, 3, 4 (116)

φ =

[
1 T0
0 1

]
, Γ =

[
0.5T2

0
T0

]
, H1 =

[
1 0

]
, H2 = I2, H3 =

[
1 0

]
, H4 = I2 (117)

In the simulation,

T0 = 0.25, Q = 1, R1 = 0.8, R2 = diag(8, 0.36), R3 = 0.5, R4 = diag(0.25, 10), Q = 0.8,
R1 = 0.65, R2 = diag(6, 0.25), R3 = 0.45, R4 = diag(0.2, 9).

.

Similar to Figure 3, for the sensor number L = 4, there are 12 fused orders as follows:

SCI1234, SCI1243, SCI1324, SCI1342, SCI1423, SCI1432,
SCI2314, SCI2341, SCI2413, SCI2431, SCI3412, SCI3421

Table 5 shows the sensitivity of the actual and robust accuracies for the SCI fuser with
respect to the orders of sensors
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Table 5. The sensitivity of the actual and robust accuracies for the SCI fuser with respect to the orders
of sensors.

trP1 trP1 trP2 trP2 trP3 trP3 trP4 trP4 trPBCI trPBCI
0.5538 0.4465 0.5245 0.3815 0.4390 0.3723 0.4786 0.4026 0.3312 0.1231

trPSCI1234 trPSCI1234 trPSCI1243 trPSCI1243 trPSCI1324 trPSCI1324 trPSCI1342 trPSCI1342 trPSCI1423 trPSCI1423
0.3622 0.1207 0.3675 0.1407 0.3547 0.1325 0.3312 0.1611 0.3639 0.1482

trPSCI1432 trPSCI1432 trPSCI2314 trPSCI2314 trPSCI2341 trPSCI2341 trPSCI2413 trPSCI2413 trPSCI2431 trPSCI2431
0.3639 0.1482 0.3547 0.1395 0.3547 0.1325 0.3639 0.1482 0.3312 0.1611

trPSCI3412 trPSCI3412 trPSCI3421 trPSCI3421
0.3312 0.1611 0.3312 0.1611

From Table 5, we see that all values of trPSCIijkr or trPSCIijkr are close to these of trPBCI

or trPBCI , respectively. This means that the robust or actual accuracies of the SCI fusers are
not very sensitive to the orders of sensors.

8. Conclusions

Sequential covariance intersection fusion robust time-varying Kalman filters are pre-
sented for the multi-sensor systems with uncertainties of noise variances, the main contri-
butions of this paper are as follows:

A minimax robust estimation approach of designing the robust local, BCI and SCI
fused Kalman filters has been presented for the multisensor system with uncertain noise
variances. For the multisensor time-invariant systems with uncertain noise variances,
the convergence problem of the robust local and fused time-varying Kalman filters has
been solved. The robust local, BCI and SCI fused steady-state Kalman filters have been
presented by replacing the time-varying gains, variances and cross-covariances with their
limits, respectively. The convergence in a realization of the local and fused time-varying
and steady-state Kalman filters was proved by the dynamic error system analysis (DESA)
method [39] and the dynamic variance error system analysis (DVESA) method [40].

The proposed results can be applied to some simulation application research, includ-
ing target tracking systems, uninterruptible power supply systems, mass spring random
vibration systems, and so on. The proposed results are limited to multisensor systems
with uncertainties of noise variances. The extensions of the proposed results to multisen-
sor systems with uncertainties of both model parameters and noise variances are under
investigation.
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