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Abstract: This article presents a novel wideband bandpass filter based on the integration of a substrate
integrated waveguide (SIW) and a spoof surface plasmon polariton (SSPP). An SIW cavity with
periodic arrays of meander-slot units is etched on the top metallic layer to achieve the characteristics
of a multi-order filter with good performance. The passbands can be flexibly selected by varying the
geometric parameters of the SIW and SSPP to adjust the lower and upper sidebands independently.
Using a redistribution layer (RDL) process, a novel 3D capacitive interconnection called a through-
dielectric capacitor (TDC) is proposed and collaboratively designed with an interdigital capacitor
to achieve capacitive source-load cross-coupling. The proposed filter has a center frequency of
60 GHz, with a wide 3-dB fractional bandwidth of about 45.8%. The improved simulated sideband
suppression has a 30 dB rejection at 40 GHz and 75.4 GHz, corresponding to a 30-dB rectangular
coefficient of 1.28.

Keywords: substrate integrated waveguide (SIW); spoof surface plasmon polaritons (SSPPs);
integrated passive device; through-dielectric capacitor (TDC)

1. Introduction

With the availability of 60 GHz unlicensed frequency bands and millimeter-wave
spectrum for fast data transmission, wireless systems are increasingly operating at higher
frequencies. Meanwhile, filters are key front-end components in communication systems,
and higher transmission rates must be supported by wider bandwidths and higher fre-
quencies. High-quality and compact BPFs are essential for the improvement of the overall
performance of an RF receiver [1]. Acoustic-wave resonators (AWR) such as surface acous-
tic wave (SAW) [2] and film bulk acoustic resonators (FBAR) [3] exhibit remarkable features
in the field of integrated circuit design, with excellent quality factor (Q) and compact size.
However, the confined electromechanical coupling coefficient of piezoelectric material
limits their bandwidth and center frequency expansion, and starting from C-band, the
performance of SAW/FBAR decreases sharply in broadband and high frequency [4–6],
making it unsuitable for high frequency bands.

The substrate integrated waveguide (SIW) is popular, with high-pass characteristics,
and it exhibits many advantages, such as low insertion loss, high quality factor, and ease of
integration. However, its applications in mmW frequency are limited by the harmonics in
stopband and bulk size. Frequency selectivity can be improved by introducing transmission
zeros (TZs) into the SIW filter. The filter in [7] employs a source-load coupling to improve
the slope of the sideband. The conventional folded coupling configuration in [8] introduces
a TZ on each side of the passband. An SIW filter with higher-order mode resonators is
proposed in order to achieve modal bypass coupling [9]. Multi-order filters with couplings
require complicated coupling structures that are larger in size and create some inevitable
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losses. Miniaturization is not possible because cascaded multiple resonators prohibit full
miniaturization. The use of 3D-stacked structures to achieve miniaturization has also
become a popular method in recent years [10–16]; however, it introduces additional losses.

To avoid the deficiencies mentioned above, a new design structure to implement a
quasi-elliptic SIW filter is proposed. Coplanar waveguides (CPW) [17] and complementary
split-ring resonators (CSRR) [18–20] have been embedded in the SIW cavities to achieve
miniaturization, but they result in bad insertion loss. The spoof surface plasmon polariton
(SSPP) waveguides that support the surface wave transmission on thin, planar corrugated
metals [21,22] have attracted the interest of researchers due to their exceptional properties,
such as high confinement [23], low loss [24], potential for solving severe on-chip signal
integrity and interference issues [25], as well as the possibility for minimizing the circuit
area [26,27]. By embedding the SSPP directly in the SIW, it has been proven to further
minimize the filter and improve the transmission performance [28,29]. However, only the
upper sideband is improved, due to the characteristics of the SSPPs.

This article proposes a novel SIW-based bandpass filter with periodic arrays of
meander-slot etching on the top metallic layer. In [30], an advanced RDL (redistribu-
tion layer) process was adopted to design passive components, and it proved to be feasible.
In this article, we design the filter using a silicon substrate with 4 RDLs. The dispersion and
transmission characteristics are numerically studied by simulation. Due to the distinctive
structure of the SSPPs, the asymptotic frequency is lower than that of the original groove
structure; only one SIW cavity can achieve the characteristic of multi-order filter, and the
size of BPF is greatly diminished. The low-cutoff and high-cutoff frequencies can be flexibly
adjusted with the variation of size of the SIW and SSPPs, respectively. With the RDL pro-
cess, an improved TDC structure is proposed and analyzed. After obtaining the equivalent
lump model, a TDC is designed as a part of the coupling circuit to achieve capacitive
source-load cross-coupling, and a left transmission zero (TZ) appears successfully. The
location of the TZ id can be selected by tuning the TDC and interdigital capacitor. The
filter simulation results show that the sideband suppression and stopband suppression are
significantly improved, TZ is generated in 37.92 GHz with the rejection of −45 dB, and the
30-dB rectangular coefficient is 1.28.

2. Design of the Proposed BPF

This work adopts a redistribution layer (RDL) process whose stack-up is illustrated in
Figure 1a. All circuit structures are designed in a four-layer dielectric system interconnected
by through-dielectric vias (TDV). The material of the dielectric layer is polyimide (PI-
HD4100) with a relative permittivity of 3.2. As shown in Figure 1b, two dielectric layers
(P3, P4) are utilized as the SIW cavity. The device layer (M4) is employed to etch the SSPPs
grooves and M2 is used as a ground plane. The M1 layer is used to design interdigital
capacitors. The low-cutoff frequency is determined by the size of the SIW cavity, and the
high-cutoff is finally acquired from the dispersion curve of the SSPPs. All electromagnetic
(EM) simulations were carried out using the finite-element method (FEM) of the HFSS
3D simulator.

The vertical view of the proposed bandpass filter is shown in Figure 2., An array
of periodic curved slots is etched on the top surface metal of the SIW cavity along the
direction of electromagnetic wave propagation. The top layer comprises three parts: the
GCPW input (region I), the SIW–SSPP transition (region II), and the periodic array part for
the propagation of the SSPP. The GCPW transmission line with lower loss and better heat
dissipation is more appropriate for mmW integrated circuits; the filter is excited by two
50-Ω GCPW transmission lines with a pair of quarter wavelength coupling slots. Three
curved slot cells of different lengths (Ls1, Ls2, Ls3), which are gradually increased in length,
constitute region II. The increase is optimized to achieve smooth transition and mode
matching between the SIW and SSPP, and then the SSPP mode is effectively excited. The
dimensions of the BPF are calculated below.



Micromachines 2022, 13, 1195 3 of 11
Micromachines 2022, 13, x FOR PEER REVIEW 3 of 12 
 

 

PI (10μm)

via

Si (500μm)

RDL (5.4μm )

Device Layer (5.4μm )

P1

P2

P3

P4

M1

M2

M3

M4

 

Vias

SSPPs groove

interdigital capacitor

 

(a) (b) 

Figure 1. (a) Stack-up of the RDL process. (b) Configuration of the proposed filter (without Si layer). 

The vertical view of the proposed bandpass filter is shown in Figure 2., An array of 

periodic curved slots is etched on the top surface metal of the SIW cavity along the direc-

tion of electromagnetic wave propagation. The top layer comprises three parts: the GCPW 

input (region I), the SIW–SSPP transition (region II), and the periodic array part for the 

propagation of the SSPP. The GCPW transmission line with lower loss and better heat 

dissipation is more appropriate for mmW integrated circuits; the filter is excited by two 

50-Ω GCPW transmission lines with a pair of quarter wavelength coupling slots. Three 

curved slot cells of different lengths (𝐿𝑠1 , 𝐿𝑠2 , 𝐿𝑠3), which are gradually increased in 

length, constitute region II. The increase is optimized to achieve smooth transition and 

mode matching between the SIW and SSPP, and then the SSPP mode is effectively excited. 

The dimensions of the BPF are calculated below. 

LSIW

Region I Region II Region III Region II Region I

Wg1 Wg2

WSIWLg

p
d

 

Figure 2. Vertical view of the proposed SIW BPF based on SSPP. 

Figure 1. (a) Stack-up of the RDL process. (b) Configuration of the proposed filter (without Si layer).

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 12 
 

 

PI (10μm)

via

Si (500μm)

RDL (5.4μm )

Device Layer (5.4μm )

P1

P2

P3

P4

M1

M2

M3

M4

 

Vias

SSPPs groove

interdigital capacitor

 

(a) (b) 

Figure 1. (a) Stack-up of the RDL process. (b) Configuration of the proposed filter (without Si layer). 

The vertical view of the proposed bandpass filter is shown in Figure 2., An array of 

periodic curved slots is etched on the top surface metal of the SIW cavity along the direc-

tion of electromagnetic wave propagation. The top layer comprises three parts: the GCPW 

input (region I), the SIW–SSPP transition (region II), and the periodic array part for the 

propagation of the SSPP. The GCPW transmission line with lower loss and better heat 

dissipation is more appropriate for mmW integrated circuits; the filter is excited by two 

50-Ω GCPW transmission lines with a pair of quarter wavelength coupling slots. Three 

curved slot cells of different lengths (𝐿𝑠1 , 𝐿𝑠2 , 𝐿𝑠3), which are gradually increased in 

length, constitute region II. The increase is optimized to achieve smooth transition and 

mode matching between the SIW and SSPP, and then the SSPP mode is effectively excited. 

The dimensions of the BPF are calculated below. 

LSIW

Region I Region II Region III Region II Region I

Wg1 Wg2

WSIWLg

p
d

 

Figure 2. Vertical view of the proposed SIW BPF based on SSPP. Figure 2. Vertical view of the proposed SIW BPF based on SSPP.

The TE101 mode resonant frequency of the SIW cavity is adopted as the low-cutoff
frequency, and the dimensions are determined as in [31]:

f0 =
c0

2
√

εr

√
1

W2
SIW

+
1

L2
SIW

(1)

where WSIW and LSIW are the width and length of the equivalent rectangular waveguide,
calculated as:

WSIW = w− 1.08
d2

p
+ 0.1

d2

w
(2)

LSIW = l − 1.08
d2

p
+ 0.1

d2

l
(3)
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where w and l represent the width and length of the SIW cavity, respectively, d is the
diameter of Cu via, and p is the center-to-center pitch between the adjacent via holes. c0
is the light velocity in vacuum, and εr is the relative permittivity. In order to make the
resonance frequency f0 = 47 GHz, WSIW = 2 mm and LSIW = 3.8 mm is finally determined
by the above equations.

The schematic diagram of the unit cell of the SSPP is illustrated in Figure 3. According
to [32], the dispersion curve for the SSPP mode propagated in the metallic grove array can
be expressed as

k = k0

√
1 +

W2

C2 tan2(k0L) (4)

where k0 = 2π/λ refers to the propagation constant in free space, C is the width of the unit
cell, W and L represent the width and depth of the grooves, respectively.
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meander-slot unit cell.

When the width of the groove W and the width of the unit cell C is fixed, the depth of
the groove L is the main factor affecting the dispersion. Meanwhile, to keep the occupied
area of the groove unchanged, a meander-slot structure is proposed. Figure 3a,b show a
traditional groove unit and a meander-slot unit with the same height (L). Figure 3c shows
the unit cell consisting of an SIW and meander-slot units. The orange and white parts
represent the metal surface on the top layer and the slot line, respectively. The geometric
parameters are set as shown in Table 1.

Table 1. The geometric parameters of the SSPPs unit cell.

C L Ls W WSIW

0.4 mm 0.39 mm 1 mm 0.075 mm 2 mm

To visualize the relationship between the dimension and frequency of the SSPP, the
dispersion curves are calculated using the eigenmode solver of commercial electromagnetic
software. In the simulations, the dispersion relation was obtained by calculating the
eigenfrequency of the SSPPs unit. Figure 4 shows the dispersion curves of fundamental
SSPP modes, k represents propagation constant, and k is swept from 0◦ to 180◦ between
the period boundaries in the propagation direction. It is clear that the two dispersion
curves have similar frequency trends, increasing as k increases. It is obvious that these two
dispersion curves have similar frequency variation trends, but the asymptotic frequency of
the groove unit is 97 GHz when the asymptotic frequency of meander-slot unit is 73.7 GHz.
This means that adopting a meander-slot SSPP in the same occupied area can reduce the
available asymptotic frequency, which is effective in minimizing the device. Figure 4
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demonstrates that the SIW can be combined with SSPPs to achieve bandpass characteristics,
starting from the cutoff frequency, and its dispersion curve behaves like the SIW in the low
frequency range and like SSPPs in the high frequency range.
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To confirm the passband alteration characteristics of the proposed filter, a parameter
inquiry was conducted. The simulated results of transmission coefficients are demonstrated
in Figure 5 with different geometric parameters. It can be inferred that the high-cutoff
frequency of the proposed filter is determined by the SSPPs length Ls, and the low-cutoff
frequency is determined by the SIW width WSIW . Figure 5a shows that when the value
of LS increases gradually, the upper sideband frequency of the filter will move to the left,
while the lower sideband remains constant; the bandwidth becomes narrower accordingly.
It can be attributed to the gradual increase of the propagation constant and momentum,
and the decrease of the asymptotic frequency, with the increase of the geometric length Ls
of the curved slot. In addition, as shown in Figure 5b, the WSIW decreases and the lower
sideband shifts to the right because the resonant frequency of the SIW is determined by
the SIW width WSIW . Therefore, the bandwidth of the filter can be flexibly controlled by
adjusting the size of the SIW cavity and the SSPP slot. Finally, the dimensions of the BPF
are determined by the low-cutoff frequency (47 GHz) and high-cutoff frequency (74 GHz),
as shown in Table 2.
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Table 2. The dimensions of the BPF.

LSIW WSIW Lg Wg1 Wg2 Ls1 Ls2 Ls3

4 mm 2 mm 0.76 mm 0.055 mm 0.2 mm 0.26 mm 0.49 mm 0.78 mm

The SIW filter using SSPP without source-load coupling was simulated, and the result
is shown in Figure 6. Good bandpass features and high-efficiency propagation are obtained.
The BPF operates from 46.13 GHz to 74 GHz; the 30-dB bandwidth is from 37.5 GHz to
76.5 GHz; and the corresponding rectangular coefficient is 1.4.
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With the multi-layer stacked structure, 3D interconnections can be applied. To further
improve the performance of the filter, source-load cross-coupling was employed. The
sectional drawing of the proposed filter with source-load cross-coupling is shown in
Figure 7a. With the adoption of the TDC, signals can be transmitted vertically through
different layers. There are two microstrip lines and an interdigital capacitor in the M1 layer.
The interdigital capacitor is more suitable for applications where low values of capacitance
are required. Letting the finger width (X = 0.025 mm) equal the slot width to achieve
maximum capacitance density, the expression [33] for estimation of capacitance of the
interdigital capacitor can be given by

Ci = (εr + 1)
Li
Wi

[(n− 3)A1 + A2] (5)

where n is the number of fingers and C is in pF. A1 = 0.75 and A2 = 0.175 are determined
by the value of T

X refer to in [33], where T is the height of the substrate (T = 0.01 mm). As
shown in Figure 7b, the complete coupling circuit consists of two TDCs, two microstrips and
an interdigital capacitor which are lumped models. The collaborative design method of the
TDC and the coupling circuit can be used to minimize the influence of the interconnection
structure. The series connection of the interdigital capacitor and TDC can also reduce the
circuit capacitance and increase the adjustment range of the interdigital capacitor. The
admittance of the equivalent coupling circuit with the TDC in Figure 7b can be expressed as

Z = Zt + Rm + j(ωLm −
1

ωCi
) (6)

where Zt is the impedance of the TDC structure, which is analyzed below.
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Figure 8a shows the structure and the main parasitic components of the TDC in
the designed filter. Between the two metal layers, two polyimide bonding layers act as
capacitive coupling media, while one is filled with copper through the dielectric via. The
equivalent lump model of the TDC can be referred to [34], as shown in Figure 8b.
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The impedance Zt can be approximately expressed by

Zt =
2

Y1
+ jωL + R (7)

Y1 = G + jωC (8)

where Y1 is the admittance of the coupling medium, R and L represent via resistance and
inductance, respectively, when C and G represent the parasitic capacitance and conductance,
respectively.

To accurately verify the compatibility and analyze the electrical performance of the
TDC, Ansys Q3D was used to extract all the parasitic components of TDC. Substituting
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all the parasitic components into the proposed lump model then enables the transmission
characteristics to be obtained by the ADS. The comparison of transmission characteristics
between the TDC simulation result by HFSS and the proposed lumped model is shown
in Figure 9. Two experimental cases with different heights of through dielectric via (ht)
are used in simulation. The lumped models of the two cases both match well with the
HFSS simulations. The insertion loss S21 of TDC increases with frequency below 10 GHz,
which implies that the coupling behavior of the TDC is mainly capacitive coupling, and
slightly decreases in high frequency. The capacitive TDC effect is dominant in the lower
frequency range, and the inductive TDV effect becomes dominant in the higher frequency
range [34]; the inductance of the TSV channel starts to affect the insertion loss over 10 GHz.
The above analysis shows that the proposed TDC can be regarded as a CGRL lumped
model, collaboratively designed with the coupling circuit. In addition, it will not seriously
influence the circuit during the working frequency.
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Figure 9. Comparison of S parameters between TDC and model with different ht: (a) ht = 0.024 mm;
(b) ht = 0.08 mm.

To further verify the lumped model of the whole coupling circuit, the S-parameter
is extracted from Figure 6 and simulated with the above coupling circuit model, and the
result is compared with the HFSS simulation of the proposed filter, as shown in Figure 10.
The frequency responses of the equivalent circuit and filter simulations both exhibit a
transmission zero at 37.6 GHz, and their simulation results are in good agreement.
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Figure 10. Comparison of equivalent circuit and filter simulations.

According to the above analysis and verification, the proposed TDC structure can be
applied to transmit signals vertically through different layers, and it is possible to design a
circuit with a lumped model. With the adoption of the previous lumped model, capacitive
source-load cross-coupling is investigated.
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The capacitance of the interdigital capacitor will change over Li. By adjusting the
capacitance of the interdigital capacitor, the location of the TZ is moved, as shown in
Figure 11, and the suppression deteriorates as TZ approaches the passband. To optimize
the performance of the filter, a transmission zero is finally generated at 37.92 GHz, and the
height of the through dielectric via ht = 0.0246 mm and the radius of the via rt = 0.04 mm
are finally determined.
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3. Results and Analysis

The simulated results of the S-parameters with reflection coefficients (S11) and trans-
mission coefficients (S21) are demonstrated in Figure 12. An SIW cavity is employed
to provide multi-transmission poles in order to achieve a passband. The compact BPF
operates at 46.1–73.7 GHz with a wide 3 dB FBW of 45.8%. Good bandpass features and
high-efficiency propagation are obtained; the minimum insertion loss is 1.08 dB, and the re-
turn loss is better than −10 dB in the passband. Due to the steep upper sideband, the 30-dB
bandwidth is from 40 GHz to 75.4 GHz, and the corresponding rectangular coefficient is
1.28 when the BPF without TZ is 1.4. Meanwhile, the stopband rejection is better than 30 dB
up to 125 GHz (2 fc). The final core size of the BPF is 2 mm × 4.4 mm (0.74λg × 1.63λg).
It is notable that the proposed BPF has the merits of competitive wideband performance,
broad stopband, and compact size. The performance of the proposed filter is compared
with other work in Table 3; all the data are based on the simulation results.
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Table 3. Performance comparisons of BPFs operating above millimeter-wave. (All the data are based
on the simulation results).

Ref. fc (GHz) Size (λg × λg) MIN. IL (dB) BW30dB
BW3dB

FBW (%)

[4] 27 0.09 × 0.09 0.84 2.6 20

[6] 3.5 2.04 × 0.85 1.139 1.25 56

[7]-2 9.1 0.218 × 0.218 0.84 2.5 19.8

[9] 93 2.31 × 1.57 4 1.59 3.5

[29] 236.5 1.16 × 0.37 2 1.86 12

This work 60 1.63 × 0.74 1.08 1.28 45.8

4. Conclusions

In this article, an SIW-based 46.1 GHz to 73.7 GHz bandpass filter is proposed, which
is designed on the RDL process. The simulation results show low insertion loss, good
frequency selectivity, and wideband harmonic suppression. The etching of periodic arrays
of meander slot units on the top metallic layer enables the substrate integrated waveg-
uide (SIW) to attain bandpass characteristics with high-efficiency and strongly confined
microwave SSPP transmission. In addition, its asymptotic frequency can be significantly
reduced compared to the conventional groove SSPP. This means that the propagation of
the structure can occupy a smaller area with the benefit of lower cost, especially for the
process of integrating a passive device, and the leakage loss will decrease as the gap area
reduces. The simulated results show that the bandwidth of the proposed filter can be
flexibly elected by tuning the geometric parameters of the SIW and SSPPs. To improve
the performance of the upper sideband, a novel 3D capacitive interconnection is proposed
and investigated, the lump model of the TDC is obtained, and a collaborative design with
interdigital capacitance is adopted to achieve a transmission zero. By adjusting the height
of the metal via (ht) and the capacitance of the interdigital capacitor (Ci), the location of
the TZ can be selected. The proposed filter based on one SIW resonator is the same as the
multi-order filter with coupling, realizing the miniaturization with good performance.

Author Contributions: Conceptualization, D.P. and B.Y.; Data curation, D.P., X.W. and X.L.; Formal
analysis, D.P. and X.W.; Funding acquisition, B.Y.; Methodology, D.P., X.W. and X.L.; Validation, B.Y.
and X.L.; Writing—original draft, D.P.; Writing—review & editing, D.P., B.Y. and X.W. All authors
have read and agreed to the published version of the manuscript.
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